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Mini review: The role of sensory
innervation to subchondral
bone in osteoarthritis pain

Michael Morgan*, Vida Nazemian, Kate Harrington
and Jason J. Ivanusic

Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
Osteoarthritis pain is often thought of as a pain driven by nerves that innervate

the soft tissues of the joint, but there is emerging evidence for a role for nerves

that innervate the underlying bone. In this mini review we cite evidence that

subchondral bone lesions are associated with pain in osteoarthritis. We explore

recent studies that provide evidence that sensory neurons that innervate bone

are nociceptors that signal pain and can be sensitized in osteoarthritis. Finally,

we describe neuronal remodeling of sensory and sympathetic nerves in bone

and discuss how these processes can contribute to osteoarthritis pain.
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Introduction

Osteoarthritis (OA) is a progressive degenerative disease of the articular cartilage that

impacts on surrounding synovial tissues and bone, and is characterized by swelling,

stiffness, and pain. Pain is the most debilitating aspect of OA, and both the onset and

severity of pain are key factors that lead those who suffer OA to seek medical advice (1).

While there is a justified focus on finding disease-modifying treatments that stop or slow

the progression of OA, we can also make significant improvements to quality of life and

economic burden by treating the underlying pain.

Cartilage is aneural, but the soft tissues and the subchondral bone around joints are

richly innervated by sensory nerve endings that respond to noxious stimuli, can be

sensitized by inflammation, and are relevant to the pathophysiology of OA pain (2–26).

However, because OA has in the past mostly been considered a joint disease, and because

the innervation of soft tissues of the joint are easily accessible in animal models, there has

been significant focus on the role of the nerves that specifically innervate the articular

tissues of the joint. There have already been a number of excellent reviews that
Abbreviations: OA, Osteoarthritis; OC, osteochondral; DRG, dorsal root ganglia; CGRP, calcitonin gene-

related peptide; TrkA, tyrosine receptor kinase A; MIA, monoiodoacetate; NGF, nerve growth factor
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summarize this literature (25, 27–31). In this review, we will

instead provide a contemporary overview of the pathogenesis of

pain in OA, with a particular focus on the role of the sensory

innervation of the subchondral bone, which is likely to be

important particularly in late-stage disease when there is

significant damage to the bone surrounding osteoarthritic joints.
Role of the innervation of synovial
tissues and joint capsule in and
around the joint

There have already been a number of excellent reviews that

summarize the role of the articular tissue in the literature (25,

27–31). Articular nociceptors innervate the joint capsule and

synovium, respond to noxious mechanical stimulation and

known algesic substances applied to the joint, and can be

sensitized by inflammatory mediators released in OA (3–8,

11–13). In studies of humans with OA, inflammatory

mediators released in the inflamed synovium provoke pain,

and there are a number of studies that report an association

between knee pain and synovitis (32–34). However, while it is

clear from radiographic evidence that joint damage predisposes

to pain, there is little relation between the severity of joint

damage and the pain experienced (35–38). In a study of 58

patients with OA and 33 pain-free controls, there was no

association between the extent of synovitis and the degree of

pain (39). These findings suggest that the activation of articular

nociceptors as a result of joint damage and/or inflammation may

not be the main contributor to the severe pain experienced by

patients with OA.
Clinical evidence for the
involvement of the subchondral
bone in the pathogenesis of OA pain

There is a growing body of evidence for the involvement of

the subchondral bone in the pathogenesis of OA and OA pain

(29, 40, 41). When the articular cartilage breaks down with the

progression of OA, subchondral and synovial compartments

become increasingly continuous, and histopathological changes

in the subchondral bone (including microdamage, bone marrow

lesions, and bone cysts) emerge (42, 43). These histopathological

changes occur during the most debilitating stage of OA when

pain is poorly controlled. In a cross-sectional observational

study of 401 patients with knee OA, 351 patients reported

painful knees and 50 patients reported no pain. Subchondral

bone lesions were noted in 77.5% of those that reported knee

pain, but in only 30% of those without knee pain (44).

Importantly, the size of the bone lesion was independently

associated with pain (44). This association was also observed
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in another cross-sectional study of over 1400 patients, where it

was reported that the size of bone marrow lesions correlated

specifically with weight-bearing pain (45). In advanced OA,

severe pain may also be a result of raised intraosseous pressure

in the bones around joints (46–51). In some of these cases, the

increase in pressure has been associated with pain which can be

relieved by fenestration, suggesting that increased pressure in the

marrow cavity produces pain.

Interestingly, several clinical studies have tested whether

bisphosphonates, a group of drugs that slow bone loss by

reducing osteoclast activity, can reduce bone marrow lesion

size and also OA pain. A randomized controlled trial of 60

patients with OA found that patients given four intravenous

doses of neridronate had reduced bone marrow lesion size and

reported less pain (52). A similar result was seen in a clinical trial

of 59 patients given a different bisphosphonate, zoledronic acid

(53). Patients with knee OA displayed reduced bone marrow

lesion size and reduced pain at 6 months after a single infusion

with zoledronic acid compared to placebo (53).

Together, these findings highlight a clear link between

damage to the subchondral bone and pain. This role appears

to be particularly important in late-stage OA, when there is

cartilage breakdown, and provides evidence that changes to the

function of nerves that innervate the subchondral bone may

drive pain during this late stage of disease.
Sensory innervation of
subchondral bone

There is a long history of work documenting the innervation of

the bone (9, 54–61). Nerves can be found entering the bone through

the nutrient foramina, Haversian canals, the osteochondral (OC)

junction, and at the attachments of the synovial membrane (23, 62–

65). They branch extensively in the periosteum, bone marrow, and

subchondral bone associated with synovial joints, where they end as

unencapsulated, free fiber nerve endings (23, 60, 66). The bone is a

highly vascularized structure, and most nerves found within the

bone run with the vasculature (63, 65, 67), so many authors

suggested they had a vasculature function but did not comment

further. The advent of retrograde tracing in combination with

immunohistochemistry has provided clear evidence that nerves

within the bone are of both sensory and autonomic origin, and

those that are sensory predominantly function as nociceptors

(68, 69).

Pain is transmitted by two main classes of peripheral

nociceptors (70). Small-diameter myelinated sensory neurons,

known as Ad nociceptors, transmit fast, intense pain, while small-

diameter unmyelinated sensory neurons, known as C nociceptors,

encode slow, aching pain. In the dorsal root ganglia (DRG), the

soma of peripheral sensory neurons that innervate the medullary

cavity, trabecular bone, and the periosteum are almost exclusively

small-diameter myelinated (neurofilament rich) or unmyelinated
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(neurofilament poor) neurons (10, 15–17, 19, 21). They express

markers characteristic of nociceptive neurons, with rodent studies

finding that approximately half express calcitonin gene-related

peptide (CGRP), two thirds express tyrosine receptor kinase A

(TrkA), a quarter express Substance P, almost half express transient

receptor potential vanilloid 1 (TRPV1), and some bind isolectin B4

(10, 16, 17, 20, 68, 71, 72). Both peptidergic and non-peptidergic

bone-projecting nociceptors have been identified in DRG on the

basis of various combinations of these markers (10, 72), and these

molecular phenotypes are likely maintained in their peripheral

nerve terminals in the bone (23, 66, 73, 74). Thus, it is clear that

sensory neurons that innervate the bone have a morphology and

molecular phenotype consistent with a role in nociception.

Until recently, there were few published studies recording the

response of peripheral sensory neurons to noxious stimulation of

the bone marrow (75, 76). These studies used anesthetized dogs to

make whole-nerve recordings from branches of a nerve that

innervates the tibial marrow cavity. Application of noxious

mechanical and chemical stimulation to the marrow cavity

evoked an increase in whole-nerve activity, but no attempts were

made to characterize the response of individual bone marrow

nociceptors to different types of noxious stimuli. More recently,

an in vivo bone–nerve preparation was developed to record the

activity of nerves that innervate the tibial marrow cavity of rats (18,

20). Electrophysiological recordings weremade from a small branch

of the tibial nerve, proximal to its entry into the tibia, in response to

increasing intra-osseous pressure (to provide noxious mechanical

stimulation), or through the application of noxious chemical

stimuli, directly to the marrow cavity. Single bone nociceptors

were isolated from the whole-nerve recordings with spike

discrimination software providing unprecedented insight into the

function of single sensory neurons that innervate the bone. This

approach has been used to show that single sensory neurons that

innervate the bone have conduction velocities consistent with Ad
and C nociceptor classifications, can be activated and/or sensitized

by inflammatory mediators and known algesic substances directly

applied to bone, and can respond to noxious increases in

intraosseous pressure (16–22). Importantly, many of the

inflammatory agents used in these electrophysiological recording

studies also produced altered pain behavior when applied within the

bone, providing a clear link between the altered function of sensory

neurons that innervate the bone and pain (20–22). These

physiological data provide strong evidence that sensory neurons

found in bones have a role in nociception.
Activation and sensitization of bone
nociceptors in OA

Whilst there have been many high-quality studies that have

explored mechanisms related to how OA affects the function of
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articular afferent neurons (13, 28, 77–80), there has been only a

single report of howOA specifically affects those that innervate the

surrounding bone (81). The latter study applied the in vivo bone–

nerve preparation described above to make electrophysiological

recordings of the nociceptors that innervate the subchondral bone

(by recording the nerve to the rat tibia), or the articular tissues

around the knee (by recording from the medial articular nerve), in

a rat model of monoiodoacetate (MIA)-induced OA. MIA-

induced OA is a robust and reliable animal model of OA that

results in rapid changes in weight-bearing within a day post-

injection, and which continue beyond 28 days (81–83). It is

characterized by an early inflammatory response in the joint

that is obvious in the first week (early-stage OA), and

significant cartilage breakdown that predisposes to the

inflammation and damage of the subchondral bone later in

disease progression (late-stage OA) (81, 82). The authors

showed that there were significant changes in the function of

knee joint nociceptors, but not bone nociceptors, early in the

progression of OA (day 3 post-MIA injection), when there was

histological evidence of inflammation in the joint capsule, but no

damage to either the articular cartilage or surrounding

subchondral bone. The changes in articular nerve function

noted in early MIA-induced OA included increased

spontaneous activity, decreased thresholds for mechanical

activation, and increased discharge frequencies in response to

mechanical stimuli compared to animals without OA (81).

Changes in the function of bone nociceptors occurred later in

the progression of OA, when there was histological evidence of

damage to the articular cartilage and surrounding subchondral

bone. The changes in bone–nerve function noted at this later stage

of MIA-induced OA included decreased thresholds for

mechanical activation of Ad bone nociceptors, and increased

discharge frequencies for both Ad and C bone nociceptors

during mechanical stimulation. These data are the first to show

that the progression of OA pathology from the joint into the

subchondral bone is accompanied by functional changes to the

nociceptors innervating the subchondral bone, and could account

for the increased pain in OA patients later in the disease when

there is pathology in the bone surrounding the joint (Figure 1).

Most of this work has been in MIA-induced OA. There have

been a number of studies that have explored the temporal

characteristics of pain associated with histopathological

changes in the bone in alternative models, including partial

meniscectomy and destabilization of the medial meniscus (30,

84–89). However, none of these have documented mechanisms

by which the nerves in the bone contribute to this pain.

The findings of sensitization of nerves that innervate the

bone cited here are important because they highlight the need to

target the peripheral nociceptors that innervate the bone, in

addition to those that innervate the joint, for therapeutic benefit

in late-stage OA to be realized.
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Neuronal sprouting in bone
and OA pain

Neuronal remodeling is a phenomenon that can occur as a

result of tissue damage and can result in hyperalgesia, allodynia,

and ectopic firing (90–94). One type of neuronal remodeling is

neuronal or axonal sprouting, where axons from undamaged

neurons in neighboring areas sprout into the damaged tissue

region (95). There is significant evidence that sprouting of both

nociceptors and sympathetic neurons promote pain in and

around joints. In a painful animal model of experimental

inflammation, injection of Complete Freund’s adjuvant into

the joint resulted in the sprouting of sympathetic and sensory

neurons into the synovium, and the blockade of nerve growth

factor (NGF) signaling reduced both sympathetic and sensory

neuron sprouting and pain behavior (96).

There is also evidence of increased innervation in the

subchondral bone marrow of femoral heads taken from patients

with OA compared to those without (97). In a more recent study,

increased sensory and sympathetic innervation was observed at the

OC junction, and in the bone marrow and osteophytes, of patients

with tibiofemoral OA (62). These findings are supported by animal

studies showing that both nerve fibers and vessels sprout through

channels at the OC junction to get access to the inflamed joint

cavity (98, 99) and provide a potential structural explanation for

increased pain sensation in OA patients (Figure 1). Aso et al. (100)

further examined the effect and pain outcomes of anti-NGF

treatment on the innervation of subchondral bone in rats with

meniscal transection-induced OA. Rats that received anti-NGF

treatment had less sprouting of CGRP-immunoreactive nerves
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through OC junctions and displayed reduced pain behavior (100),

suggesting a clear association between sprouting and OA pain.
Neuropathy in bone and OA pain

There is emerging evidence for a role for neuropathy of

nociceptors that innervate the bone in the pathophysiology of OA

(28, 29, 101). Onemeta-analysis found that 23% of patients sampled

reported neuropathic pain associated with their OA (102). Patients

suffering from OA often use neuropathic descriptors to describe

their pain, such as burning, numbness and pins and needles (103,

104), and application of therapeutics used to treat neuropathic pain

in other conditions, such as gabapentin, often resolves the pain

(105). In rats with MIA-induced OA, there is an increase in the

number of DRG neurons that express ATF-3, a marker of sensory

and motor neuron damage (106), and MIA administration results

in the upregulation of other markers of neuronal injury and

neuropathic pain in the DRG, including neuropeptide Y and

interleukin-6 (107, 108).

One hypothesis for the cause of neuropathy in OA is damage

to the subchondral bone in late-stage OA (109). It is possible that

nociceptive nerve fibers become damaged when there is

destruction of subchondral bone, such as that which is

associated with bone marrow lesions and sclerosis (Figure 1).

Damaged nerve axons are known to spontaneously and

ectopically fire, and therefore can signal pain to the central

nervous system (CNS) (110). Another potential mechanism is

known as ‘cross talk’ or ‘ephaptic cross talk’ (111). This term

refers to the phenomenon whereby regenerating nerve axons
A B C

FIGURE 1

The subchondral bone contributes to osteoarthritis pain through mechanical sensitization, sprouting, and/or neuropathy of bone nociceptors.
Osteoarthritis results in joint inflammation, reduced synovial space, breakdown of cartilage and cartilage lesions, osteophyte formation, and
subchondral bone lesions and sclerosis. (A) A healthy bone with typical sympathetic and nociceptor innervation. (B) Subchondral bone
remodeling in advanced osteoarthritis can result in increased neuronal sprouting of bone nociceptors and sympathetic neurons within bone.
Sprouting sensitizes peripheral sensory neurons and makes them hyperexcitable. (C) Neuropathy of bone nociceptors may also contribute to
osteoarthritis pain through generating ectopic spontaneous discharge.
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form synapse-like links with adjacent nerve axons following

injury. The result of this process is abnormal nerve-to-nerve

communication that can contribute to changes in the pain

signals presented to the CNS.

Whilst it is possible that some of the physiological changes to

the function of nociceptors reported are a response to the damage of

peripheral nerve terminal endings in the subchondral bone in late-

stage OA, a clear link between the two remains to be determined. It

will be important in the future to determine how neuropathy affects

nociceptors that innervate the bone, and its contribution to the

pathogenesis of OA.

Conclusions

The role of nerves that innervate bone in OA pain has been of

increasing interest due to the relationship between pain and

subchondral bone pathology. There is evidence that bone

nociceptors contribute to OA pain in several ways including

sensitization, sprouting, and neuropathy. Targeting nociceptors

that innervate the bone may provide an effective strategy to treat

OA pain.
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