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Background: Systemic inflammation and immune response are involved in the

pathogenesis of diabetic nephropathy (DN). However, the specific immune-

associated signature during DN development is unclear. Our study aimed to

reveal the roles of immune-related genes during DN progression.

Methods: The GSE30529 and GSE30528 datasets were acquired from the

Gene Expression Omnibus (GEO) database. Then, the intersection between

differentially expressed genes (DEGs) and immune score-related genes (ISRGs)

was screened. Subsequently, functional enrichment analyses were performed.

The different immune phenotype-related subgroups were finally divided using

unsupervised clustering. The core genes were identified by WGCNA and the

protein-protein interaction (PPI) network. xCell algorithmwas applied to assess

the proportion of immune cell infiltration.

Results: 92 immune score-related DEGs (ISRDEGs) were identified, and these

genes were enriched in inflammation- and immune-associated pathways.

Furthermore, two distinct immune-associated subgroups (C1 and C2) were

identified, and the C1 subgroup exhibited activated immune pathways and a

higher percentage of immune cells compared to the C2 subgroup. Two core

genes (LCK and HCK) were identified and all up-regulated in DN, and the

expressions were verified using GSE30122, GSE142025, and GSE104954

datasets. GSEA indicated the core genes were mainly enriched in immune-

related pathways. Correlation analysis indicated LCK and HCK expressions

were positively correlated with aDC, CD4+ Tem, CD8+T cells, CD8+ Tem,

and mast cells.

Conclusions: We identified two immune-related genes and two immune-

associated subgroups, which might help to design more precise tailored

immunotherapy for DN patients.
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Introduction

Diabetes accounts for 30% to 50% of all chronic kidney

disease cases, affecting 285 million people worldwide (1).

Diabetic nephropathy (DN) induced by diabetes mellitus is the

leading cause of end-stage kidney disease in both developing and

developed countries (2). Microalbuminuria is one of the

important indicators to evaluate the development of DN in

clinical practice (3). Studies now indicated that not all diabetic

patients with renal failure have massive proteinuria (4). It is not

accurate to assess the prognosis or severity simply based on the

degree of proteinuria (5). Besides, the current treatment

strategies for DN are aimed at controlling blood pressure and

blood glucose levels and suppressing the RAS system to slow DN

development (6, 7). However, due to the individual

heterogeneity of DN, not all patients could obtain effective

treatment effects. Therefore, it is critical need to identify novel

biomarkers and develop newmethods for the early diagnosis and

treatment of DN patients.

Given the morbidity and mortality associated with DN,

many studies have sought to investigate the pathogenesis of

DN and promote drug development aimed at showing or

revering the DN progression. Previous studies revealed that

renal fibrosis, activation of the renin-angiotensin-aldosterone

system, oxidative stress, and inflammation are the major

pathogenesis features of DN (8–10). Also, mitochondria

dysfunction, autophagy, and innate immunity are implicated

in the development of DN (11–13). The multiple signaling

pathways are involved in the immune pathogenesis of DN

(14). In diabetes, high blood sugar and high levels of lipids

(including oxidized lipids, reactive oxygen species, and oxidative

stress), cause the generation of damage-related molecular

patterns, and then activate the inflammation-related pathways

(15). In response to chronic activation of immune damage,

podocytes, endothelial cells, and renal mesangial cells could

generate all kinds of inflammatory factors, such as adhesion

molecules, chemokines, and cytokines, which recruit

macrophages and monocytes, and further initiate the pro-

inflammatory cascades (16). A recent study showed that

tissue-infiltrated immune cell populations play an important

role in the pathogenesis of DN, including the specific

contributions of leucocyte subsets (mast cells, lymphocytes,

neutrophils, and macrophages) (17–19). Besides, the immune

infiltration pattern was significantly changed in the glomerulus

of DN (20). Furthermore, IDO1 was identified as a novel

immune-related marker for DN patients and revealed to be

involved in immune cell infiltrates in DN (21). Therefore,

investigating the immune mechanisms of DN could provide

novel insights into DN pathogenesis.

With the rapid development of genomics and bioinformatics,

many disease databases have been established and improved, which

provided a theoretical basis for exploring the new therapeutic
Frontiers in Endocrinology 02
targets and pathogenesis of diseases. Identification of immune cell

infiltration-related differentially expressed genes via bioinformatics

analysis could provide potential biomarkers for the diagnosis of DN

and help us to better understand the pathogenesis of DN (22, 23). In

this research, we aimed to identify immune-related genes (IRGs)

that are implicated in the DN progression via a series of

bioinformatics methods. Furthermore, unsupervised clustering

was used to identify immune phenotype-associated subtypes in

DN patients. Our findings will provide the theoretical basis for a

better understanding of the immune response associated with DN

development. The workflow of this study is presented in Figure 1.
Materials and methods

Collection of datasets

A total of five gene expression profile datasets, namely

GSE30529, GSE30528, GSE104954, GSE142025, and

GSE30122, were acquired from the Gene Expression Omnibus

(GEO, available at: https://www.ncbi.nlm.nih.gov/geo/). The

details for these datasets are presented in Table 1. Before data

analysis, in order to remove possible outliers and make sure the

accuracy of data, all gene expression profiles were standardized

and normalized using limma R package (24). Two microarray

datasets (GSE30529 and GSE30528) were merged and used as

the training dataset. The surrogate variable analysis (SVA)

algorithm was used to eliminate the batch effects (25).
A screen of immune score-related DEGs

First, we used the limma package of R to screen DEGs

between the normal and DN groups (24). ∣logFC∣≥ 1 and p.adj <

0.05 were the cutoff criteria for DEGs screen (26). The immune

score of each sample was calculated by xCell algorithm (27).

Besides, the training dataset of samples was divided into the high

immune score and low immune score groups based on the

median values of the immune score. Immune score-related genes

(ISRGs) were screened between the two immune score-

associated groups using the limma package of R. ∣logFC∣≥ 1

and p.adj < 0.05 were the cutoff criteria for ISRGs identification.

The ggplot and heatmap packages of R were used to visualize the

analysis results. ISRDEGs were obtained by the intersection of

DEGs and ISRGs.
Unsupervised clustering analysis

Based on the gene expression profiles of ISRDEGs, we further

performed a consensus cluster analysis to identify distinct immune

cell infiltration-related subgroups. In this study, the robustness and

clustering number were evaluated by using a consensus clustering
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algorithm (28). The “ConsensusClusterPlus” package of R was

applied to perform 1000 iterations to ensure the robustness of the

classification. The maximum cumulative distribution function

(CDF) index was used as the optimal K value.
Weighted gene coexpression network
analysis

WGCNA was used to establish potential modules associated

with different subgroups of DN samples (29). The distance between

each gene was calculated by the Pearson correlation coefficient,

WGCNA package was applied to establish the correlation adjacency

matrix. The hierarchical clustering analysis was performed using the

“hclust” function, and the “pickSoftThreshold” function was

applied to calculate the soft thresholding power value.

Furthermore, the associated modules were constructed using the

“blockwiseModules” function. The hub genes in the most relevant
Frontiers in Endocrinology 03
modules were identified based onModule Membership (MM) > 0.8

and Gene Significance (GS) > 0.6 (30).
Functional enrichment analysis and
protein-protein interaction

A total of 1793 immune-related genes (IRGs) were

collected from the InnateDB website (https://www.innatedb.com/

redirect.do?go=resourcesGeneLists). The clusterProfiler package of

R was applied to perform the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway and Gene Ontology (GO) annotation

enrichment analyses (31). For the top 10 significant GO and KEGG

pathways, the ggplot2 R package of R was used to draw the bubble

diagram. The Search Tool for the Retrieval of Interacting Genes

(STRING) database (https://string-db.org/) was used to construct

the PPI network, and the medium confidence > 0.4 was set to

generate the TSV format file (32). Then, the PPI network was
TABLE 1 The microarray dataset information.

Dataset ID Platform DN Normal Data type

Type Number Type Number

GSE30528 GPL571 Glomeruli 9 Glomeruli 13 Training

GSE30529 GPL571 Tubuli 10 Tubuli 12 Training

GSE104954 GPL22945 Tubulointerstitium 7 Tubulointerstitium 18 Testing

GSE104954 GPL24120 Tubulointerstitium 10 Tubulointerstitium 3 Testing

GSE142025 GPL20301 Kidney biopsies 21 Kidney biopsies 9 Testing

GSE30122 GPL571 Glomerulus 19 Glomerulus 50 Testing
fro
FIGURE 1

A flowchart for the analysis process to identify potential genes and molecular subgroups in this study.
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visualized by using Cytoscape software (version 3.7.2). Core genes

were identified using the cytoHubba plug-in based on 10

algorithms (33).
Receiver operating characteristic
curve analysis

ROC analysis was performed to further assess the predictive

accuracy of core genes. The pROC package was applied to draw

the ROC curves of core genes based on the gene

expression profile.
Enrichment analysis

Gene set enrichment analysis (GSEA) is often used to

analyze and interpret pathway-level changes between normal

and disease groups (34). The “clusterProfiler”, “enrichplot”,

“pathwork”, and “DOSE” packages of R were applied to

implement GSEA. The gene set of “h.all.v7.3.symbols” from

the Molecular Signature Database was used as a reference gene

set. P < 0.05 was considered a significant enrichment. Gene Set

Variation analysis (GSVA) was also conducted by using the
Frontiers in Endocrinology 04
tidyverse R package and “C2.cp.all.v7.0.symbols” was used as the

reference gene set.
Estimation of immune cell infiltrations
in DN

xCell is a robust algorithm that analyzes the infiltration levels of

64 immune and stroma cell types, including extracellular matrix

cells, epithelial cells, hematopoietic progenitors, innate and adaptive

immune cells (27). The xCell algorithm was used to analyze the

immune cell infiltrations between two subgroups. The correlation

analysis between core genes and immune cell types was performed

using the ggplot2 package of R.
Results

Screening for DEGs

As presented in Figure 2A, we identified a total of 266 DEGs

between normal and DN groups, of which 202 genes were up-

regulated and 64 genes were down-regulated. The cluster

heatmap of the DEGs was presented in Figure 2B.
BA

FIGURE 2

Screening for DEGs in DN. Volcano (A) and heatmap (B) plots of the DEGs. For the volcano, the blue dots indicated the down-regulated genes
and the red dots indicated the up-regulated genes. For the heatmap, the red group is the DN group, while the dark blue group is the normal
group. The down-regulated genes are presented in blue, and up-regulated genes are presented in red.
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Characterization of the immune cell
infiltrations in DN and identification
of ISRGs

xCell was applied to assess the differences in immune cell

infiltrates between the DN and normal groups. As shown in

Figure 3A, aDC, CD4+ memory T cells, CD4+ T cells, CD4+

Tem, CD8+ T cells, CD8+ Tcm, CD8+ Tem, cDC, iDC,

macrophages, macrophages M1, macrophages M2, mast cells,

memory B cells, NK cells, Tgd cells, Th2 cells, and immune score

were significantly increased in the DN group, whereas CD8

+naïve T cells, pro B cells, and Tregs were significantly decreased

in the DN group. The results indicated that immune cell patterns

were significantly different between the normal and DN groups.

Thus, two immune score-related subgroups were divided based

on the median values of the immune score. As presented in

Figure 3B, a total of 108 ISRGs were obtained between high

immune score and low immune score subgroups. Among these
Frontiers in Endocrinology 05
genes, 78 genes were up-regulated, and 30 genes were down-

regulated. The heatmap of the IRGs were presented in Figure 3C.
Functional enrichment analysis
of ISRDEGs

The common genes (ISRDEGs) between DEGs and ISRGs

were identified (Figure 4A). Based on the Venn result, a total of

92 ISRDEGs were used to perform the functional enrichment

analysis. As shown in Figure 4B and Table S1. The results

indicated that ISRDEGs were mainly enriched in the GO-

biological process (BP) of leukocyte migration, regulation of

lymphocyte activation, leukocyte cell-cell adhesion, tumor

necrosis factor superfamily cytokine production, regulation of

tumor necrosis factor superfamily cytokine production, etc.

ISRDEGs were mainly enriched in GO-cell component (CC)

of secretory granule lumen, immunological synapse, primary
B C

A

FIGURE 3

Characterization of the immune cell infiltrations in DN and identification of ISRGs. (A) The comparisons of the immune cell infiltration level
between DN and normal groups. Volcano (B) and heatmap (C) plots of the ISRGs. For the volcano, the blue dots indicated the down-regulated
genes and the red dots indicated the up-regulated genes. For the heatmap, the red group is the high immune score group, while the dark blue
group is the low immune score group. The down-regulated genes are presented in blue, and up-regulated genes are presented in red.
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lysosome, azurophil granule, etc. ISRDEGs were mainly

enriched in GO-molecular function (MF) of heparin-binding,

glycosaminoglycan binding, peptidase regulator activity,

cytokine binding, C-C chemokine binding, etc. Besides, the

results of KEGG enrichment analysis showed that the 92

ISRDEGs were significantly enriched in cytokine-cytokine

receptor interaction, focal adhesion, chemokine signaling

pathway, pertussis, natural killer cell medicated-cytotoxicity,

NF-kappa B signaling pathway, Chagas disease, viral protein

interaction with cytokine and cytokine receptor, and primary

immunodeficiency (Figure 4C and Table S1).
Unsupervised cluster analysis identifies
immune-associated gene subtypes

The unsupervised cluster analysis was applied to classify the

DN patients with different immune phenotypes based on the

expression of 92 ISRDEGs. We used the cophenetic correlation

coefficients to determine the optimal k number, and our results

showed that k = 2 was the optimal subtype number

(Figures 5A–D). Two subtypes of DN samples were identified:
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C1 with 12 samples, and C2 with 7 samples. As presented in

Figures 5E, F, a total of 286 differential genes were obtained

between C1 and C2 subgroups. Among these genes, 218 genes

were up-regulated, and 68 genes were down-regulated. As shown

in Figure 5G, the positive regulation of CD4 positive alpha beta

T cell proliferation, T cell cytokine production, response to

interferon beta, regulation of B cell proliferation, regulation of

immunoglobulin production, T cell extravasation, B cell lineage

commitment, and immunological memory process were

activated in C1 subgroup, indicating that the C1 subgroup

exhibited higher immune activation than the C2 subgroup.
Identification of key modules by WGCNA

As shown in Figures 6A, B, the soft-threshold power of b =

16 was selected, and the corresponding Pearson’s correlation

coefficient was calculated to construct a scale-free network. As

shown in Figure 6C, 24 modules were identified, and bisque4

and skyblue modules exhibited the highest correlation with

subgroups. Therefore, we selected the two modules for

further analysis.
B

C

A

FIGURE 4

Functional enrichment analysis of ISRDEGs. (A) The Venn diagram shows the interaction between DEGs and ISRGs. GO (B) and KEGG
(C) enrichment analyses for the 92 ISRDEGs.
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Identification and functional enrichment
analysis of IRGs in key modules

75 hub genes were identified in the two key modules (bisque4

and skyblue) based on MM > 0.8 and GS > 0.6. Among these hub

genes, 24 IRGs were identified (Figures 7A, B). KEGG pathway

analysis showed that these 24 IRGs were mainly enriched in natural

killer cell mediated cytotoxicity, T cell receptor signaling pathway,

NF-kappa B signaling pathway, Rap1 signaling pathway, B cell
Frontiers in Endocrinology 07
receptor signaling pathway, PD-L1 expression and PD-1 checkpoint

pathway in cancer, cytokine-cytokine receptor interaction, etc

(Figure 7C). These 24 IRGs in BP were mainly involved in

immune response-activating cell surface receptor signaling

pathway, regulation of lymphocyte activation, T cell activation,

leukocyte proliferation, T cell receptor signaling pathway, T cell

proliferation, etc (Figure 7D). As for MF, 24 IRGs were mainly

enriched in protein tyrosine kinase activity, cytokine binding,

phosphoprotein binding, etc (Figure 7E). The CC analysis showed
B C

D E

F

G

A

FIGURE 5

Unsupervised clustering analysis of immune-associated genes. (A) Consensus CDF when k = 2-10. (B) The cophenetic correlation coefficient was
calculated for k = 2-10. (C) Consensus values when k = 2-10. (D) Heatmap of the matrix of co-occurrence proportions for DN samples. Heatmap
(E) and volcano (F) and plots of the differential genes between C1 and C2 subgroups. (G) Heatmap of the potential pathways between C1 and C2
subgroups by GSVA. For the volcano, the blue dots indicated the down-regulated genes and the red dots indicated the up-regulated genes. For the
heatmap, the down-regulated genes or pathways are presented in blue, and up-regulated genes or pathways are presented in red.
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that 24 IRGs were enriched in the membrane region, membrane

microdomain, plasma membrane receptor complex, T cell receptor

complex, etc (Figure 7F).
Identification and verification
of core genes

Two core genes, namely, lymphocyte-specific protein

tyrosine kinase (LCK) and hematopoietic cell kinase (HCK)

were identified based on the overlapped parameters of the top 10

IRGs in 10 algorithms (Figure 8A). As shown in Figure 8B, the

expression levels of LCK and HCK genes in the normal group

were significantly lower than that of the DN group (p < 0.001).

Besides, the diagnostic AUC values of LCK and HCK genes were

0.92 and 0.787, respectively (Figure 8C).

Furthermore, three independent microarray datasets

(GSE30122, GSE142025, and GSE104954) were used for cross-

validation. As shown in Figures 9A–C, the expression levels of

LCK and HCK genes in the normal group were significantly
Frontiers in Endocrinology 08
lower than that of the DN group (p < 0.01). Besides, the

diagnostic value of core genes was verified by ROC analysis.

For the GSE30122 cohort, the diagnostic AUC values of LCK

and HCK genes were 0.886 and 0.724, respectively (Figure 9D).

For the GSE104954 cohort, the diagnostic AUC values of LCK

and HCK genes were 0.854 and 0.866, respectively (Figure 9E).

For the GSE142025 cohort, diagnostic AUC values of LCK and

HCK genes were 0.984 and 0.958, respectively (Figure 9F).
Single gene GSEA

We analyzed potential signaling pathways associated with

core genes via GSEA. As shown in Figure 10A, type 1 diabetes

mellitus (NES = -0.7254, p < 0.01), leishmania infection (ES =

-0.7881, p < 0.01), intestinal immune network for IGA

production (NES = -0.724, p = 0.002), chemokine signaling

pathway (NES = -0.504, p < 0.001), B cell receptor signaling

pathway (NES = -0.49, p = 0.004), primary immunodeficiency

(NES = -0.7078, p = 0.009), leukocyte transendothelial migration
B

C

A

FIGURE 6

Identification of key module by WGCNA. (A) Scale-free fitting index analysis for the different soft thresholds. (B) Mean connectively for the
different soft thresholds. (C) Heatmap presenting the module-trait correlations.
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(NES = -0.4655, p = 0.002), T cell receptor signaling pathway

(NES = -0.4783, p = 0.006), NOD-like receptor signaling

pathway (NES = -0.5274, p = 0.01), and natural killer cell-

mediated cytotoxicity (NES = -0.4878, p = 0.003) were mainly

enriched in the HCK high-expressed phenotype.

As shown in Figure 10B, leukocyte transendothelial

migration (NES = -0.5069, p < 0.001), chemokine signaling

pathway (NES = -0.4971, p < 0.001), NOD-like receptor

signaling pathway (NES = -0.5482, p = 0.01), primary

immunodeficiency (NES = -0.7069, p = 0.006), T cell receptor

signaling pathway (NES = -0.4884, p = 0.004), intestinal immune

network for IGA production (NES = -0.724, p = 0.002), natural

killer cell-mediated cytotoxicity (NES = -0.4914, p = 0.0038),

Type 1 diabetes mellitus (NES = -0.6312, p = 0.019), B cell

receptor signaling pathway (NES = -0.4268, p = 0.023), and
Frontiers in Endocrinology 09
apoptosis (ES = -0.3467, p = 0.016) were mainly enriched in the

LCK high-expressed phenotype. These results revealed that the

two core genes were all linked to the immune responses.
Immune cell infiltration analysis

xCell was applied to assess the differences in immune cell

infiltrates between the C1 and C2 subgroups. As shown in

Figure 11A, aDC, B cells, CD4+ Tem, CD8+ T cells, CD8+

Tcm, CD8+ Tem, cDC, dendritic cells (DC), iDC, mast cells, and

immune score were significantly increased in the C1 subgroup.

As shown in Figure 11B, the expression levels of LCK and HCK

genes in the C1 subgroup were significantly higher than that of

the C2 subgroup (p < 0.01). Besides, correlation analysis showed
B

C

D

E F

A

FIGURE 7

Identification and functional enrichment analysis of IRGs in key modules. (A) The Venn diagram shows the interaction between the key modules
and IRGs. (B) PPI network of 24 IRGs. KEGG (C), GO-BP (D), GO-MF (E), and GO-CC (F) enrichment analyses for the 24 IRGs.
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that LCK and HCK were positively correlated with aDC, CD4+

Tem, CD8+ T cells, CD8+ Tem, CD8+ Tcm, and mast

cells (Figure 11C).
Discussion

DN is one of the common microvascular complications of

type 2 diabetes mellitus and occurs in up to 20-50% of patients

with diabetes (35). DN imposes a huge burden on national

health systems due to its high expenditure and high incidence.

Therefore, there is an urgent need to develop promising clinical

biomarkers of early DN that can effectively slow the progression

of DN. DN represents a chronic inflammatory disease that leads

to renal function disorder, albuminuria, and podocyte injury

(11). Recent studies have revealed that inflammation and

immune pathways play important roles in DN progression,
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and the identification of novel immune-related signatures may

link to the development of novel therapeutic strategies (8, 19,

36). Thus, it is important to develop novel immune-associated

signatures for the diagnosis and treatment of DN.

In our study, we identified 92 ISRDEGs in the expression

profiles of 25 normal samples and 19 DN samples using a series

of bioinformatics analyses. The subsequent KEGG and BP

functional enrichment analyses indicated that these ISRDEGs

were enriched in leukocyte migration, regulation of lymphocyte

activation, humoral immune response, leukocyte cell-cell

adhesion, tumor necrosis factor superfamily cytokine

production, cytokine-cytokine receptor interaction, chemokine

signaling pathway, natural killer cell mediated cytotoxicity, NF-

kappa B signaling pathway, and primary immunodeficiency.

Consistent with our findings, activated leukocytes play an

important role in the pathogenesis of DN (37). Cytokine and

cytokine receptors have been reported to play a key role in
B C

A

FIGURE 8

Identification of core genes. (A) Two core genes were identified by ten algorithms. (B) LCK and HCK gene expression in the training dataset.
***p < 0.001 was analyzed by the Willcoxon rank sum test. (C) ROC curves of LCK and HCK genes in the training dataset.
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macrophage/monocyte recruitment in animal models of DN, as

well as associated with the progression of interstitial

inflammation of DN (38, 39).

Based on the result of WGCNA, two IRGs (LCK and HCK)

were identified as core biomarkers associated with immune

response in DN. All of them could predict the progression of

DN in multiple GEO datasets. LCK is a vital activator of T cells,

which plays an important role in several cellular processes such

as cell differentiation, cell proliferation, cell adhesion, and cell

cycle (40, 41). LCK is related to the CD8 and CD4 co-receptors

and contributes to signaling via T cell receptor complex (42).

Since LCK plays a vital role in T cell signaling and cytokine

production, alteration in activity or expression of LCK may be

involved in various disease progressions, including

atherosclerosis, ulcerative colitis, psoriasis, rheumatoid

arthritis, diabetes, asthma, and cancer (41). LCK is involved in

the progress of leptin-induced renal inflammation during aging

(43). A recent study revealed that the G allele of SNP rs10914542

of LCK inhibits the TCR/CD3-mediated T cell activation and

increases the risk of type 1 diabetes in children (44). It has been

reported that big-h3 inhibits T cell activation in type 1 diabetes

via suppression of LCK (45). HCK transmits various

extracellular signals and involves in cell migration, cell

differentiation, and cell proliferation (46). Activation of the

NLRP3 inflammasome may involve the development of DN

(47). HCK is essential for the activation of NLRP3
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inflammasome in vivo (48). The previous study revealed that

HCK is an important Src kinase family member that participated

in the progression of renal fibrosis (49). HCK plays a vital role in

the macrophage activation and the secretion of TNF-a, which
leads to the progression of diabetes (50). However, there were

few reports on the role of LCK and HCK in DN progression. In

the present study, for the first time, our findings showed that

LCK and HCK were significantly up-regulated in DN and could

act as an effectively diagnostic biomarker for DN patients.

Importantly, LCK and HCK were also found to be positively

correlated with immune cell infiltrations in DN progression.

Recent studies revealed that DN is a chronic inflammatory

disease, and immune cells associated with adaptive and innate

immune responses, including mast cells, neutrophils, T cells, B

cells, DC, and macrophage, might be implicated in DN

development (51). Since the immune-associated pathways

(positive regulation of CD4 positive alpha beta T cell

proliferation, T cell cytokine production, regulation of

B cell proliferation, regulation of immunoglobulin production,

T cell extravasation, B cell lineage commitment, and

immunological memory process) were activated in the C1

subgroup, the relationship between DN subgroups and

immune cells was further investigated. We found that the

aDC, B cells, CD4+ Tem, CD8+ T cells, CD8+ Tcm, CD8+

Tem, cDC, DC, iDC, mast cells, and immune score were

significantly expressed in the C1 subgroup compared with the
B C

D E F

A

FIGURE 9

Validation of core genes in DN. Verification of LCK and HCK gene expression in the GSE30122 (A), GSE104954 (B), and GSE142025 datasets
(C). **p < 0.01 and ***p < 0.001 were analyzed by the Willcoxon rank sum test. ROC curves of LCK and HCK genes in the GSE30122
(D), GSE104954 (E), and GSE142025 datasets (F).
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C2 subgroup. The previous study has reported that aberrant

recruitment and activation of T cells in the interstitium are the

potential pathological mechanisms of DN (52). B cells also

contributed to the progression of diabetic kidney disease (53).

Mast cells could promote renal fibrosis and inflammation, and

thus implicated in the pathogenesis of DN (54, 55). A recent
Frontiers in Endocrinology 12
study reported that DC plays an important role in the

pathogenesis of DN (56). Therefore, we speculated the C1

subgroup is more likely to develop advanced DN than the

C2 subgroup.

However, there are several limitations in our study. First, larger

clinical sample sizes are needed to verify the expression of key genes.
B

A

FIGURE 10

GSEA identified potential signaling pathways associated with the core genes. The major signaling pathways are mainly enriched in high
expressions of HCK (A) and LCK (B).
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Second, DN-related animal models should be established to verify

the role of immune-related genes on disease progression.
Conclusion

In conclusion, we identified two core genes (LCK and HCK)

as diagnostic biomarkers for the diagnosis and immunotherapy

of DN patients. Furthermore, we proposed a novel molecular

classification containing non-immune and immune subgroups

in DN patients. Collectively, our findings could help to design

more precise tailored immunotherapy for ND patients.
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