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Objectives: Polycystic ovary syndrome (PCOS) is one of the most common
endocrinopathy disorders in premenopausal women, which is characterized by
hyperandrogenemia, anovulation, and polycystic ovarian morphology (PCOM).
Time-restricted feeding (TRF) is a new intermittent restriction dietary pattern,
which has been shown to have positive benefits on obesity and glycolipid
metabolism disorders. We aimed to explore the effect of the feeding regimen
(ad libitum vs. TRF) on the glycolipid metabolism and reproductive endocrine
disorders in a PCOS mouse model.

Methods: PCOS mouse model was induced by continuous subcutaneous
administration of dihydrotestosterone for 21 days. Mice were fed a high-fat
diet (HFD) for 8 weeks on an ad libitum or time- restricted diet (from 10:30 p.m.
to 6:30 a.m.).

Results: Compared to control mice, PCOS mice that received TRF treatment had
significantly lower body weight, reduced adiposity, lower area under the curve
(AUC) of glucose response in the oral glucose tolerance test (OGTT), and lower
AUC in the insulin tolerance test (ITT). TRF also ameliorated lipid metabolism, as
shown by a reduction in plasma lipid profiles (triglycerides and cholesterol) and
the triglyceride content in the liver of PCOS mice. In terms of reproduction, the
plasma androgen level, plasma estrogen (E2) level, and luteinizing hormone (LH)/
follicle stimulating hormone (FSH) ratio in PCOS mice were significantly reduced
after 8 weeks of TRF treatment. In addition, ovarian histology showed that TRF
inhibits cyst formation and promotes corpus luteum formation.

Conclusion: In conclusion, TRF improved metabolic and endocrine profiles in
mice with PCOS.

KEYWORDS

time-restricted feeding (TRF), glycolipid metabolism, polycystic ovary syndrome,
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1 Introduction

Polycystic ovary syndrome (PCOS) is one of the most
common endocrinopathy disorders in premenopausal women.
Nearly 8%-13% of women worldwide have been diagnosed with
PCOS according to the clinical definition (1). PCOS is a
heterogeneous disease characterized by the signs and symptoms
of androgen excess, ovarian morphological abnormalities, and
dysfunction. Furthermore, patients with PCOS also suffer from
comorbidities such as obesity, type 2 diabetes mellitus (T2DM),
dyslipidemia, and cardiovascular disease (2), with obesity being
one of the most common comorbidities. A large meta-analysis
showed that women with PCOS were four times more likely to
develop obesity than controls (3). In turn, being overweight or
obese can exacerbate hyperinsulinemia further aggravating
insulin resistance (IR) in patients with PCOS (4). Researchers
also found that dyslipidemia and IR induced by obesity play an
important role in hyperandrogenism, which forms a vicious cycle
and further aggravates clinical characteristics (5-7).

Treatments for PCOS patients include lifestyle interventions
and medical interventions that aim to alleviate clinical
symptoms rather than rescue them from pathogenesis, which
is still unclear and needs to be further explored. For medical
intervention, hormonal contraceptives (HCs) are commonly
used to treat menstrual disorders, hirsutism, and acne (8, 9).
Off-label administered insulin sensitizers such as metformin and
thiazolidinediones (TZDs) have been reported to be effective in
the treatment of irregular cycles and hyperandrogenism (10, 11).
A recognized successful intervention strategy for weight
management is lifestyle treatment including eating pattern
modification and increased physical activity (12). Among
various therapeutic measures, dietary control is a common
intervention to reduce excessive calorie intake and restore
circadian rhythm, especially time-restricted feeding (TRF),
which is becoming an irreplaceable dietary pattern (13).

TREF is a new intermittent restriction dietary pattern, which
suggests that food is available only during the active phase
without altering the nutritional composition of food. The
defined period can vary from 8 to 12 h, which is enough to
ensure sufficient calorie intake compared to ad libitum feeding
(14, 15). Compared to non-restricted diets, TRF has great
advantages in preventing obesity, lowering blood pressure, and
improving glucose intolerance in a high-fat diet (HFD)-induced
obesity mouse model without changing daily caloric intake
between TRF-treated and ad libitum-fed mice (16). Previous
studies have shown that these benefits of TRF intervention were
achieved through improvements in metabolic regulatory
mechanisms and the rebuilding of the circadian rhythm (17-
19). Moreover, a recent clinical study found that orthodox fasting
combined with TRF features could improve blood adiponectin
levels in women (20). TRF could also help female mice escape
estrous cycle disorders and ovarian follicle dysfunction fed by a
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chow diet or HFD (21). Anovulatory PCOS patients with TRF
also showed substantial improvements in weight loss,
hyperandrogenemia, menstruation, and IR (22), which showed
good consistency in animal experiments. In a word, numerous
experiments have been done to demonstrate the contribution of
TRF to metabolic disorders, but little attention has been paid to
its effects on PCOS. How TRF affects the reproductive and
metabolic aspects of PCOS patients and how it attenuates
clinical symptoms in patients with PCOS remained largely
unknown. The current study aims to investigate the effect of
TRF on the metabolic and endocrine status in mice with PCOS.

2 Material and methods
2.1 Animals and experiment design

In this study, all mice were of C57BL/6] background and
were housed in the Xiamen University Animal Center under a
12-h light/dark cycle in an specific pathogen free (SPF) animal
facility under a conventional environment (22°C-24°C and
60%-70% relative humidity). All animal experiments involved
were approved by the Institutional Animal Care and Use
Committee of Xiamen University School of Medicine.

Animals (n = 24) were randomly divided into four groups, and
all animals were put on an HFD (60% kcal fat, 20% kcal
carbohydrate, and 20% kcal protein; D12492, Research Diets). In
this study, mice with a TRF dietary pattern were limited to eating
for 8 h (from 10:30 p.m. to 6:30 a.m.) and drinking water ad libitum.
The TRF model of night eating and day fasting in mice can more
accurately mimic human rhythms as mice are nocturnal rhythm
animals. For the establishment of the PCOS mouse model,
dehydroisoandrosterone (DHEA) has been used to induce related
phenotypes (23), while the control was injected with the same
volume of sesame oil. The protocol of the study is set in Figure 1.

HFD and ad libitum feeding (HA) group (n = 6). Mice
were fed an HFD with ad libitum food and water intake, and 100
ul of sesame oil were injected subcutaneously between the
scapulae daily for 21 days, starting at 3 weeks of age.

HFD and TREF intervention (HT) group (n = 6). Mice were
given an HFD as well as a TRF dietary pattern, and 100 ul of
sesame oil were daily injected subcutaneously interscapular for
21 consecutive days.

DHEA and ad libitum feeding(DA) group (n = 6). Mice in this
group were given an HFD and water ad libitum. When they were 3
weeks old, DHEA (Sigma-Aldrich, #252805; 6 mg/100 g body
weight) was mixed in 10 ul 95% ethanol with 90 ul sesame oil and
injected subcutaneously daily for 21 days as previously applied (24).

DHEA and TRF intervention (DT) group (n = 6). In this
group, mice were given an HFD as well as a TRF dietary pattern with
daily subcutaneous injections of DHEA (6 mg/100 g body weight) in
10 pl 95% ethanol mixed with 90 ul sesame oil for 21 days.
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FIGURE 1

Schematic of the experimental design.

Thus, TRF groups included the HT group and DT group and
non-TRF groups included the HA group and DA group. Body
weights were measured weekly at the same time. After a
subcutaneous injection of DHEA, reproductive features were
evaluated by the estrus cycle, plasma steroid hormone
concentration, and ovarian morphology. Glycometabolic features
were assessed by the oral glucose tolerance test (OGTT), insulin
tolerance test (ITT), lipid profiles in plasma and liver, and liver
morphology. The TRF dietary pattern had been administered
continuously for 8 weeks, and then, changes in reproductive and
glycometabolic features were explored. At the end of the study,
tissue and blood samples were collected from fasted mice in the
diestrus phase, and plasma was collected by eyeball blood collection
and immediately mixed with 7 ul of Ethylene Diamine Tetraacetic
Acid (EDTA) on ice. Ovaries and livers were sampled in turn, some
of which were fixed in 4% paraformaldehyde, while the rest were
stored at -80°C for further experimental procedures.

2.2 Estrus cycle

Vaginal smears were used to determine the estrus cycle of
mice (25). The vagina of mice was washed with 20 ul of saline,
and then, the vaginal lavages were placed on the glass slide. After
drying was completed, vaginal cytology was stained with
hematoxylin and eosin (H&E) (Biosharp, BL702B, BL703B)
and then analyzed under a positive microscope (Leica DM4B,
Germany) to determine the specific date of the estrous cycle (26).
Vaginal smears were performed daily at 9:00 a.m. on all mice
and analyzed for estrous cycles for seven consecutive days.

2.3 0GTT and ITT

After overnight fasting (from 5:00 p.m. to 9:00 a.m.), mice
were weighed and glucose (2 g/kg body weight) was administered
orally by gavage. Blood samples were collected from the tail vein at
0,15,30, 60, 90, and 120 min after glucose administration (27, 28).
Data were shown as the absolute values of blood glucose
concentrations. The total area under the curve (AUC) of
glucose response was calculated by GraphPad Prism 5.0 software.
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ITT was performed for the mice after fasting for 6 h, 1 week
after the OGTT experiment. Mice were injected intraperitoneally
with insulin (0.5 U/kg body weight), and blood glucose was
monitored at 0, 15, 30, 60, 90, and 120 min after the injection of
insulin (29). The AUC was calculated using GraphPad Prism
5.0 software.

2.4 Biochemical analysis of steroid
hormones and lipid profiles

All blood samples thoroughly mixed with 7 ul of Ethylene
Diamine Tetraacetic Acid (EDTA) were centrifuged at 5,000 rpm
for 10 min at 4°C; then, the supernatant was carefully collected
and stored as a 50 ul tube at -80°C for subsequent hormone
evaluation. The plasma concentrations of testosterone, estradiol
(E2), follicle-stimulating hormone (FSH), luteinizing hormone
(LH), triglyceride, cholesterol, anti-Miillerian hormone (AMH),
and leptin were analyzed using commercial ELISA Kits
(testosterone, Jiangsu Meibiao Biological Technology Co., Ltd,
Yancheng, China, MB3306A; E2, Jiangsu Meibiao Biological
Technology Co., Ltd, China; FSH, Jianglai Biotechnology Co.,
Ltd, Shanghai, China, JL13439; LH, Maiman, Jiangsu Feiya
Biological Technology Co. Ltd, MM-0582M1; triglyceride,
Wako, 290-63701; cholesterol, Wako Lab AssayTM Cholesterol
kit; leptin, Crystal Chem, 90030; AMH, Maiman, Jiangsu Feiya
Biological Technology Co. Ltd, MM-44204M1).

2.5 Liver morphology and
ovarian morphology

After collecting liver and ovaries from PCOS mice in the
diestrus phase, liver segments at the same site and one ovary in
each mouse were excised and then immersed in 4%
paraformaldehyde for fixation, gradient dehydration, and
embedded with paraffin wax. Sections of 5 um thickness were
collected every 40 um on slides using a sectioning machine
(Leica RM2235, America) according to the conventional
histological protocol and were then stained with H&E
(Biosharp, BL702B, BL703B).
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2.6 Statistical analyses

The data were shown as mean + SEM. One-way ANOVA
was performed and followed by post hoc comparisons corrected
using Bonferroni’s test. All data were analyzed using the
statistical software SPSS (version 19.0), and the level of
significance was set at p < 0.05.

3 Result

3.1 TRF prevents weight gain and
reduces body fat mass in mice

All mice were weighed weekly. There was a significant
difference in body weight between the TRF and non-TRF
groups, which increased progressively over time (Figure 2A).
For body composition, fat mass rates were much lower in the
mice treated with TRF compared to the control group
(Figure 2B). As for lean body mass, an increase could be
observed in the TRF groups (Figure 2C).

3.2 TRF improves glucose intolerance
and reverses insulin resistance in mice
with PCOS

To investigate the effect of changing dietary patterns on
glucose homeostasis, we performed OGTT. Mice in the DT
group exhibited significantly improved glucose intolerance in
comparison to mice in the DA group (P < 0.001 at 12, 60, and
90 min; P < 0.01 at 30 min), as evidenced by lower blood glucose
levels and a significantly lower AUC throughout (Figures 3A, B).

0= HA -0~ HT
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®

»
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> 8

-
N

10.3389/fendo.2022.1057376

The fasting glucose levels of mice in both HT and DT groups had a
lower tendency compared to HA and DA groups (Figure 3E).
Similar results existed between the HT group and the HA group,
but the differences between the mice in the DT and HT groups
were not significant (Figures 3A, B, E). ITT was used to further
assess insulin sensitivity. Mice in both the HT group and the DT
group showed higher insulin sensitivity compared with that in the
non-TRF groups (Figures 3C, D). This improvement in glucose
tolerance was also supported by fasting insulin levels (P < 0.0001,
DT group vs. DA group; P < 0.0001, HT group vs. HA group)
(Figure 3F). In addition, judged by Homeostatic Model
Assessment for Insulin Resistance (HOMA-IR), the intuitive
and most widely used quantitative index of IR, TRF
significantly reversed IR in PCOS mice with an HFD or non-
PCOS mice with an HFD (HT group vs. HA group, P<0.0001; DT
group vs. DA group, P <0.0001; DA group vs. HA group,
P<0.0001; respectively) (Figure 3G). Leptin is a product of the
obesity gene and plays a role in the regulation of food intake,
lipolysis, and glucose homeostasis (30). The plasma leptin level
was also significantly lower in TRF groups, which further
indicated that TRF could improve IR in PCOS mice (Figure 3H).

3.3 TRF ameliorates abnormal ovarian
morphology in PCOS mice

Compared to the non-TRF group, mice in TRF groups
showed a significant moderation in the duration of estrus and
a gradual return to the normal cycle, i.e., a significant increase in
the percentage of estrus and interestrus, which implies a
remission of ovulatory disturbances (Figure 4I). This was
further confirmed by ovarian morphology. Mice in the DA
group exhibited typical ovulatory arresting ovarian polycystic
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Time-restricted feeding (TRF) prevents weight gain and reduces body fat mass in mice. Growth curves and body fat composition for four groups. HA
group: high-fat diet (HFD) feeding mice with ad libitum; dihydrotestosterone (DHEA) and ad libitum feeding (DA) group: mice were given an HFD and
water ad libitum; HFD and TRF intervention (HT) group: mice were given an HFD as well as a TRF dietary pattern; DHEA and TRF intervention (DT)
group: mice were given an HFD as well as a TRF dietary pattern. (A) Growth curves for four groups. (B, C) Body fat test. Values are mean + SEM.
*P<0.05, **P < 0.01, ***P< 0.001, ****P<0.0001, DA group vs. DT group; *##P<0.001, *##p<0.0001, HA group vs. HT group.
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TRF improves glucose intolerance and reverses insulin resistance in mice with polycystic ovarian syndrome (PCOS). (A, B) Oral glucose
tolerance test (OGTT, glucose 2 g/kg), (C, D) Insulin tolerance test (ITT, insulin 0.5 U/kg), (E) Plasma fasting glucose level in four groups. (F)
Plasma fasting insulin level in four groups. (G) Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), (H) Plasma leptin level. All data
were presented as mean + SEM **P < 0.01, ***P < 0.001, ****P < 0.0001, DA group vs. DT group; #P < 0.05, *#P< 0.01, **#P < 0.001,

#HEED < 0.0001, HA group vs. HT group, AMAAP < 0.0001, DA group vs. HA group.

changes: large, cavitary, and cystic-like follicles presented at the
edge of the ovarian cortex and a reduced number of corpus
luteum (Figures 4C, G). The ovaries of control mice treated with
an HFD only behaved similarly but not as same as the DA group
mice (Figures 4A, E). According to ovarian sections, mice treated
with TRF had fewer cystic follicles and more corpus luteum
compared to the non-TRF group (Figures 4B, D, F, H). AMH is
one of the reliable biomarkers to evaluate ovarian function. Mice
in the DT group had a lower level of AMH than that in the DA
group, which further supports that TRF intervention could
improve ovarian dysfunction in the PCOS mouse
model (Figure 4]).

3.4 TRF ameliorates hyperandrogenemia
in PCOS mice

To further investigate the effect of TRF intervention on sex
hormonal levels, especially on hyperandrogenemia, plasma
testosterone, LH, FSH, and E2 levels were measured in the
diestrus phase. Mice in the DT group and HT group had
significantly reduced plasma testosterone levels (Figure 5A)
compared to that in the DA group and HA group, respectively
(DA group vs. DT group, P<0.0001; HA group vs. HT group,
P<0.0001). Moreover, the plasma testosterone concentrations of
mice in the DA group were higher than that in the HA group,
indicating the successful establishment of the PCOS mouse
model (DA group vs. HA group, P<0.0001) (Figure 5A). There
was no difference in plasma LH levels between the groups
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(Figure 5B), but the ratio of LH to FSH (LH/FSH) was
significantly different between the DA and DT groups
(Figure 5D). FSH can promote follicular maturation. In the
group treated with TRF, elevated FSH levels were consistent with
improved ovarian morphology (Figure 5C). The plasma E2
concentrations of mice in the DT group were also different
from those in the DA group (Figure 5E).

3.5 TRF-approved non-alcoholic fatty
liver disease—like liver morphology in
PCOS mice

We further explored the effect of TRF intervention on lipid
metabolism. As shown by H&E staining, liver lipid accumulation
was severely increased in both HA and DA group mice
(Figures 6A, C), which was ameliorated by TRF intervention
in the HT and DT groups (Figures 6B, D). Liver triglyceride
content, plasma cholesterol, and plasma triglyceride were tested
using commercial ELISA kits. Plasma triglyceride levels and
plasma cholesterol were significantly lower in TRF-treated mice
than in ad libitum—-fed mice (Figures 6E, G). A similar trend was
observed for liver triglyceride levels (Figure 6F).

4 Discussion

Since TRF was proposed as a new model of intermittent food
restriction, there have been many clinical and animal studies
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FIGURE 4

TRF ameliorates ovarian dysfunction in PCOS mice. (A-H) Hematoxylin and eosin (H, E) staining of typical sections of mouse ovary, Bar = 500
um in A, B, C, and D. Bar = 250 um in (E=H). () Comparison of the percentage of estrous cycle (1 week) in each group 2 weeks after TRF
(J) Plasma anti-Mdillerian hormone (AMH) level. *P<0.05, DT group vs. DA group. #*P<0.05, HA group vs. HT group. Data were presented as

mean + SEM.

demonstrating its efficacy and safety. In this study, we showed
that the DHEA combined with an HFD-induced PCOS mouse
model had a significant typical PCOS phenotype, including an
irregular estrus cycle, hyperandrogenism, polycystic ovarian
morphology (PCOM), and metabolic syndrome manifestations
such as obesity, IR, abnormal serum leptin level, impaired
glucose tolerance, dyslipidemia, and non-alcoholic fatty liver
disease (NAFLD). After 8 weeks of experimental intervention,
TRF-treated mice had healthier glucolipid metabolism and
significantly improved reproductive endocrinology compared
to mice that ate ad libitum.

PCOS is a common female reproductive endocrine disorder,
and the prevalence of obesity in PCOS patients varies from 30%
to 76% according to many studies (31, 32), which is significantly
higher than the normal population (33). Obesity exacerbates
menstrual disorders and other clinical symptoms and increases
the risk of T2DM, dyslipidemia, NAFLD, and cardiovascular
diseases in PCOS patients (34). Consistent with the previous
study that a time-limited diet improved weight of obese mice
and decreased fat mass (16), our study showed that TRF could
significantly reduce body weight and decrease fat mass in a
PCOS mouse model.

IR is one of the important pathophysiological elements of
PCOS, affecting nearly 65%-70% of women with PCOS (35).
Although the high frequency of IR in PCOS patients was
attributed to the high occurrence of obesity, subsequent
clinical studies have found that PCOS patients with normal
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body weights and body masses also suffered from IR (36, 37).
The inextricable relationship between hyperandrogenemia and
IR is getting more attention as the understanding of this disorder
increases (38, 39). Lifestyle interventions such as intermittent
fasting can improve IR (40, 41). In the current study, we
confirmed that obese PCOS mice also had IR and
hyperinsulinemia, which was consistent with the early studies
(42, 43). However, the IR of obese PCOS mice had been
indigenously improved after 8 weeks of TRF intervention,
which could be attributed to the restoration of circadian
rhythm, the same mechanism of action as TRF in obese mice
(16). Reduced gluconeogenesis capacity and increased
tricarboxylic acid (TCA) and pentose phosphate pathways
were also potential mechanisms of TRF intervention in IR
(44-46).

Women with PCOS are often accompanied by lipid
abnormalities (47). In our study, mice fed 8-h TRF at night
showed a decreased level of both plasma triglycerides and total
cholesterol in comparison with mice that had ad libitum access
to food. Furthermore, from the liver morphology, many lipid
droplets squeezed the normal hepatocytes of PCOS mice,
disrupting the normal liver morphology and function.
However, mice in the TRF group had improved liver
morphology, showing fewer and smaller lipid droplets and an
orderly organization. Meanwhile, the assay of triglyceride
content in the liver showed that the triglyceride content in the
liver of TRF mice was significantly decreased. All these
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TRF ameliorates hyperandrogenemia in PCOS mice. (A) Plasma testosterone levels. (B) Plasma luteinizing hormone (LH) levels. (C) Plasma
follicle-stimulating hormone (FSH) levels. (D)The ratio of LH to FSH. (E) Plasma estradiol (E2) levels. All data were presented as mean + SEM.
*P < 0.05, **P < 0.01, ****P < 0.0001, DA group vs. DT group; *P < 0.05, **P < 0.01, ****P < 0.0001, DA group vs. DT group; *### p < 0.0001,
HA group vs. HT group. AP < 0.05, AP < 0.01, AMAAP < 0.0001, DA group vs. HA group.
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Representative liver morphology, triglyceride content in liver, and plasma lipid profiles in different groups. (A-D) H&E staining of liver sections
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confirmed that TRF ameliorates lipid distribution in the PCOS
mouse model. There are some potential mechanisms. The effect
of TRF on improving lipid profiles may be attributed to the
combined action of biological circadian clock molecules and
metabolic modulators. Previous studies have found that the
expression of circadian clock genes Reverb and Per2 was
upregulated in the liver of TRF mice, which further inhibited
downstream fatty acid synthesis and prolonged the related
clock-controlled genes, resulting in a decrease in fatty acid
synthesis (16, 48, 49). Our team will further explore whether
TREF supports lipid homeostasis in PCOS mice through the same
mechanism in the future.

Reproductive endocrine dysfunction is a prominent feature of
PCOS, and hyperandrogenism is one of the most common features
in women with PCOS (50, 51). Previous studies have suggested that
abnormal secretion of ovarian theca cells may be an underlying
cause of hyperandrogenism (52, 53). The plasma FSH level and LH
level are considered to be clinical indices to assess ovarian reserve
function and ovulation. A higher ratio of LH/ESH has a great
diagnostic value for PCOS (54, 55). The PCOS mouse model in our
study had typical hyperandrogenism and an elevated LH/FSH ratio.
After 8 weeks of TRF treatment, plasma androgen levels and the
LH/FSH ratio were significantly lower in PCOS mice, which was
consistent with other dietary interventions to improve endocrine
and metabolism in PCOS (56, 57). A previous study of a time-
restricted diet on the reproductive system of female mice suggested
that TRF may regulate gonadotropin-releasing hormone (GnRH)
secretion through fibroblast growth factor 21 (FGF21) (21), which
could further influence the synthesis of steroid hormones.

This is the first study to address the beneficial effect of TRF
on the reproductive system, glucose metabolism, and lipid
profiles in a PCOS mouse model. There were still several
limitations in our study. Firstly, we did not explore the
mechanism of TRF-induced reduction in plasma androgen
levels. Secondly, in mice grouping, we did not add a low-fat
feeding group to better mimic the differences in diet and body
weight in clinical PCOS patients. In addition, we did not estimate
the daily energy consumption of mice in each group. Finally,
although all microscopic assessments were conducted by two
independent accessors for double-checking, it still per se involves
a degree of subjectivity. In the future, our team will further

improve our experiments and explore relevant mechanisms.

5 Conclusion

As an emerging dietary treatment for obesity, TRF has a
significant role in weight loss, which is more acceptable because
of the unrestricted calorie intake for a defined period (58). In the
present study, the data indicated that TRF significantly
improved glycolipid metabolism, hyperandrogenemia, the
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menstrual cycle, and PCOM in obese PCOS mice, which
provides new evidence for clinical lifestyle interventions in
obese PCOS.
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