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The development of autism spectrum disorders (ASDs) involves both

environmental factors such as maternal diabetes and genetic factors such as

neuroligins (NLGNs). NLGN2 and NLGN3 are two members of NLGNs with

distinct distributions and functions in synapse development and plasticity. The

relationship between maternal diabetes and NLGNs, and the distinct working

mechanisms of different NLGNs currently remain unclear. Here, we first

analyzed the expression levels of NLGN2 and NLGN3 in a streptozotocin-

induced ASD mouse model and different brain regions to reveal their

differences and similarities. Then, cryogenic electron microscopy (cryo-EM)

structures of human NLGN2 and NLGN3 were determined. The overall

structures are similar to their homologs in previous reports. However,

structural comparisons revealed the relative rotations of two protomers in

the homodimers of NLGN2 and NLGN3. Taken together with the previously

reported NLGN2–MDGA1 complex, we speculate that the distinct assembly

adopted by NLGN2 and NLGN3 may affect their interactions with MDGAs. Our

results provide structural insights into the potential distinct mechanisms of

NLGN2 and NLGN3 implicated in the development of ASD.
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Introduction

Autism spectrum disorder (ASD) is a disease characterized

by neurodevelopmental disorders of the brain, which is mainly

recognized by difficulties in emotional and verbal expression,

social communication impairment, and a preference for

repetitive actions and behaviors (1). Generally, autistic patients

have the condition at the age of 2–3, and the patients’ symptoms

last during their lifetime (2). The incidence of autism has

increased 40-fold at the start of the 21st century (3). The US

Centers for Disease Control and Prevention reports that the

incidence of autism is more than 2%, with an average of one in

44 children (3). Imaging studies have found that the volume,

structure, and connection of autistic brain regions are abnormal,

revealing the abnormal development and function of the

nervous system in patients with autism (4). Although genetic

studies have identified more than 1,000 autism-related

mutations, and most of these genes are closely related to

synapse development and nervous system function, their

molecular mechanisms have not been well-studied yet (5). In

recent years, pregnancy factors are increasingly being paid

attention to, which is considered to be the main reason for the

increase in the prevalence of ASD in the past decade. Recent

epidemiological studies have also shown that maternal diabetes

increases the risk of autism in the offspring (6–13). Taken

together, these findings indicate that the occurrence of autism

is the result of the combined effects of genetic and environmental

factors (14, 15).

The mutated genes currently found in autism include

neuroligin (NLGN), neurexin (NRXN), and shank. They have

distinct roles in synapse formation, elimination, maturation,

plasticity, and modulation under the influence of the external

environment, ultimately affecting the function of synapses and

neural circuits (16–18). Neuroligins are postsynaptic membrane

cell adhesion molecules that connect presynaptic and postsynaptic

neurons, mediate the transmission of signals between synapses,

and shape the characteristics of neural networks through specific

synaptic functions (19). There are five members of NLGNs in

humans (NLGN1, 2, 3, 4X, and 4Y) and four in rodents (NLGN1,

NLGN2, NLGN3, and NLGN4) (20, 21). NLGNs have a unique

expression pattern. NLGN1 is mainly expressed at excitatory

synapses (22), NLGN2 is mainly expressed at inhibitory

synapses (23), NLGN3 is expressed at both excitatory and

inhibitory synapses (24), and NL4 expression seems to be

limited to the glycinergic synapses of retinal glial cells and

several other regions of the central nervous system (25). NLGNs

belong to single transmembrane proteins, and they all consist of a

large extracellular, acetylcholinesterase-like domain (CLD) and a

carbohydrate-binding region, following the transmembrane

region of O-glycosylation helix and the C-terminal intracellular

region as postsynaptic density zone (PDZ) recognition

component, which mainly binds to postsynaptic target proteins

such as Gephyrin and postsynaptic density protein, thus
Frontiers in Endocrinology 02
promoting synaptic differentiation and strengthening the

stability of synaptic space and the function of transmitting

intersynaptic signals (26). The neuroligin family members share

52% sequence identity (26). Among them, the intracellular region

was only 31% consistent, while the extracellular sequence and

transmembrane domains were 55% and 91%, respectively (27).

The differences in the intracellular and extracellular regions make

their functions variable.

The ectodomains of NLGNs can form specific cross-synaptic

connections with neurexins (NRXNs) of the presynaptic

membrane, and these connections can be regulated by the

membrane-associated mucin (MAM) domain-containing

glycosylphosphatidylinositol anchor (MDGAs) (28). The

MDGAs belong to the immunoglobulin-like (Ig) superfamily

with six extracellular Ig domains, following a fibronectin type

III-like (FNIII) domain and receptor protein tyrosine

phosphatase mu (MAM) domain (29). MDGAs have two

members, MDGA1 and MDGA2. They share 54% of identities

on the sequence. MDGAs have intracellular regions including a

glycosylphosphatidylinositol anchor, which requires an

association partner when they participate in protein

interactions (29, 30). The MDGAs were reported to suppress

synapse formation, by competing with NRXNs for NLGN

binding (31).

The current study found that the genetic variation of neuroligin

and neurexin can explain about 1% of the occurrence of autism (32).

The single mutation R451C of NLGN3 is the first single-nucleotide

polymorphism associated with ASD (33). Knock-in of NLGN3

R451C mainly affects the function of GABA inhibitory synapses,

leading to the imbalance of neurotransmitter levels in the brain and

brain development disorder. As a result, mice have enhanced

inhibitory synaptic transmission and accompanying difficulties in

social interaction and enhanced spatial learning ability (34). This is

consistent with the findings that many ASD mouse models have

synaptopathies (35). These models included NRXNs and NLGNs

mutations and recently reported MDGA mutations (19, 36).

Recently, studies have shown that the binding of MGDA2 to

NLGN2 obstructed inhibitory synapse development in an NLGN1-

independent manner (37).

Several high-resolution structures of NLGN/NRXN

complexes have been obtained (38–40). Different NRXN

molecules and NLGN molecules are similar in binding mode,

and the binding regions of MDGA1–NLGN overlapped with

those of NRXN–NLGN (38, 40). Although the biochemical

experiment indicated that MDGA2 has a similar binding

affinity to NLGNs as MGDA1 (41), the role of MDGA2 in

neuronal synapse development remains highly controversial

between the inhibitory and excitatory synapses, and the

molecular mechanism is still unclear. In this study, we solved

the high-resolution cryogenic electron microscopy (cryo-EM)

structures of human NLGN2 and NLGN3. These structures

illustrate that NLGNs are highly conserved in a homodimer

arrangement. However, the orientation of two protomers from
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NLGN2 and NLGN3 has a relative rotation with each other,

which may influence the interaction with MDGAs. Our findings

provide new clues for further in-depth study of the molecular

mechanism of neurodevelopmental disorders including ASD.
Materials and methods

Gene cloning, protein expression,
and purification

The full-length human NLGN2 and NLGN3 genes were

synthesized by GENERAL BIOL Co. (Chuzhou, China). The

extracellular domain of NLGN2 gene was then subcloned to

secretory vector pSecTAG2B with C-terminal Flag-tag and 6xHis-

tag. Full-length NLGN3 gene was further inserted into pCDNA3.1

plasmid containing C-terminal flag tag. Plasmids encoding NLGN2

and NLGN3 were transiently transfected into Expi293F cells

(Thermo Scient ific , Waltham, MA, USA) with the

polyethylenimine (PEI) reagent. After 4–5 days of culture, the cells

were harvested by centrifugation. The cell culture supernatants were

passed througha0.22-µmfilter, and the cellswere lysedby sonication

and then loaded on 2ml of nickel resin. After binding, proteins were

eluted in bufferA containing 25mMofHEPES at pH7.5, 150mMof

NaCl, and 500 mM of imidazole. NLGNs were further purified with

size-exclusion chromatography loading on Superose 6 10/300

column (GE Healthcare, Chicago, IL, USA), which was

equilibrated in buffer B (25 mM of HEPES at pH 7.5 and 150 mM

of NaCl). Fractions were assessed by sodium dodecyl sulfate–

polyacrylamide gel electrophoresis (SDS-PAGE), concentrated, and

stored at −80°C.
Cryogenic electron microscopy sample
preparation and data collection

The purified NLGNs were used to prepare cryo-EM grids

with a concentration of 0.25 mg ml−1 and applied to the holey

carbon film (Quantifoil, Großlöbichau, Germany; R1.2/1.3)

grids. The grids were blotted for 2.5 s under 100% humidity at

4°C with Vitrobot Mark IV (Thermo Fisher) and plunge-frozen

into pre-cooled liquid ethane. The grids were then observed

using Titan Krios microscope (Thermo Scientific) operated at

300 kV and equipped with K3 Summit camera (Gatan,

Pleasanton, CA, USA) for NLGN2 or K2 Summit camera

(Gatan) for NLGN3. Micrographs were recorded with

SerialEM under a nominal defocus value ranging from −1.5 to

−2.5 mm and nominal magnification of ×130k for NLGN2 and

×165k for NLGN3, corresponding to calibrated pixel size of 0.92

Å pix−1 for NLGN2 and 0.842 Å pix−1 for NLGN3. A total of

4,021 and 7,984 micrographs were collected for NLGN2 and

NLGN3, respectively. A detailed description of the data

collection parameters is available in Supplementary Table 1.
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Cryogenic electron microscopy
data processing

After contrast transfer function (CTF) estimation, motion

correction, and particle picking performed by Relion3.1 (42), the

particles of NLGN2 were imported into cryoSPARC v3.3.2 for

2D classification, Ab-initio 3D reconstruction, heterogeneous

3D refinement, and non-uniform refinement (43). For NLGN3,

all those steps were performed in Relion3.1. The iterative model

building and refinement were performed with Coot and Phenix.

The 3D figures were then generated with PyMol and Chimera

(44–47). The workflow of data processing is available in

Supplementary Figure 1 for NLGN2 and Supplementary

Figure 2 for NLGN3.
Generation of diabetic offspring

Diabetic WT C57BL/6/J mice were induced by injection of

streptozotocin (STZ). Four-week-old female mice were injected

daily with 60 mg/kg of STZ (dissolved in Na+ citrate buffer)

intraperitoneally after an 8-h fasting period. Animals with blood

glucose >10 mmol/L were considered positive, while vehicle

injection littermates served as control. The females were then

caged with proven males, and male offspring were then used for

autism-like behavior tests and sacrificed for further experiments.
Analysis of mRNA levels by real-time
quantitative PCR

The total RNA of the mouse brains was extracted by the

RNAzol RT reagent (MRC, OH, USA) using total RNA isolation

protocol and was reverse transcribed using HiScript III Reverse

Transcriptase (Vazyme, Nanjing, China). Each complementary

DNA measuring 100 ng was used to measure target genes. All

the primers were designed by Primer 3 Plus software

(Supplementary Table 2). Real-time quantitative PCR was run

on LightCycler® 480 Instrument II (Roche, Basel, Switzerland;

product no. 05015243001, 384-well) with the Taq Pro Universal

SYBR qPCR Master Mix (Vazyme). b-Actin was used as the

control for transcript normalization.
Quantification and statistical analyses

The qPCR and single-cell sequencing data were given as

mean ± SEM, and all the experiments were performed at least in

quadruplicate unless indicated otherwise. The unpaired

Student’s t-test was used to determine the statistical

significance of different groups. Statistical significance was

determined by Student’s test analysis (*p < 0.05; **p < 0.01;

***p < 0.001; ns, not significant).
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Results and discussion

Characteristics of NLGN2 and NLGN3 in
maternal diabetes-mediated autism
spectrum disorder mouse model and
different brain regions

Epidemiological studies have shown that maternal diabetes is

closely associatedwithASD, and thematernal diabetesmousemodel

is a well-established model for ASD study (9). To further study the

relationship between ASD and NLGNs, we first evaluated mRNA

levels in mouse brains from maternal diabetes-induced ASD mice

and control mice. The expression levels of NLGN2 and NLGN3 in

the ASDmouse group were found to be increased by 56% and 38%,

respectively, compared to the control group (Figure 1A). This result

indicates that the expression levels ofNLGN2andNLGN3are tightly

related to maternal diabetes-induced ASD. We then further

examined and compared the expression levels of NLGN2 and

NLGN3 based on the deposited single-cell sequencing data from

themice’s cortex and hippocampus (Allen BrainMap database), and

we found that the expression pattern of NLGN2 and NLGN3 is

similar except for the cortical layer 4 (L4)/5 intratelencephalic cell

regionswhereNLGN2hasahigherexpression level (boxedregions in

Figure 1B, top panel). Further analysis of the single-cell sequencing

dataof humanbrain tissue (AllenBrainMapdatabase) shows similar

results and further support the conclusion, except for

oligodendrocyte progenitor cell (OPC) L1-6 cell regions where

human NLGN3 has a higher expression level (boxed regions in

Figure 1B, bottom panel). Although there are some similarities

between NLGN2 and NLGN3 in the overall expression in the

brain, we found that the expression of different cells in the mouse

and human brain varies. Inmouse brain cells, althoughNLGN2 and

NLGN3 have the highest expression levels in OPC, NLGN2 is more

expressed in astrocytes than neurons, which is different from that of

NLGN3(Figure1C) (48).Thisfindingwas similarly confirmed in the

human data (49). Meanwhile, we also found that the increase in the

expression levels of NLGN2 and NLGN3 in different brain regions

varied in the development stage age (50). NLGN2 shows a higher

expression level on postnatal day 7 (P7) compared to that in P32,

whereas NLGN3 shows different trends as demonstrated in the

cortex, hippocampus, and striatum of mice (Figure 1D).
Determination of cryogenic electron
microscopy structures of human NLGN2
and NLGN3

NLGN2 and NLGN3 play different roles in the development

of ASD (51), and they have different interactions with MDGAs

(24), which are also important in ASD (39). Considering their

importance, many studies have been performed to decipher the
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structural basis of NLGN2 and NLGN3, including the apo form

of mouse NLGN2 (52) and mouse NLGN3 (53) and the complex

of human NLGN2 and MDGA1 (40). However, the apo form of

human NLGN2 and NLGN3 has not been determined yet. This

study aims to solve their structures using cryo-EM and compare

their differences to deepen our understanding of their distinct

roles in the development of ASD.

The extracellular domain of human NLGN2 full-length

human NLGN3 was expressed in HEK293F cells and purified

by nickel-affinity chromatography. The gel filtration

chromatography results showed that the elution volume of

these two NLGN proteins was similar (15.5 ml for NLGN2

and 15.1 ml for NLGN3). Both NLGN2 and NLGN3 were eluted

as one peak to near homogeneity, which was further

demonstrated by SDS-PAGE analysis (Figures 2A, 3A). They

could form a homodimer in solution, and the peak fraction was

subjected to cryo-EM sample preparation. These structures were

solved with resolutions of 3.5 and 3.9 Å (Figures 2B, 3B,

Supplementary Figures 1, 2 and Supplementary Table 1).
Overall structures of NLGN2 and NLGN3

The NLGN structures were highly conserved in both human

NLGN2 and human NLGN3 dimer forms as two symmetrical

elliptical spheres, and the interface comprises a four-helix

bundle including two helices from each protomer (Figures 2B–

E, 3B–E). For NLGN2 protomer, it contains an a/b hydrolase

fold, a 13-stranded central curved b-sheet surrounded by 22 a-
helices (Figure 2C, Supplementary Figure 3A). The interface area

between NLGN2 dimer is about 744 Å2, which consisted of

interacting residues (E429, H607, M434, F433, A599, Q592,

L604, A439, W438, and Q596), among which E429 and H607

form salt bridges, and other residues mainly contribute

hydrophobic interactions (Supplementary Figure 3B).

Although the NLGN3 was used at full length, the size-

exclusion chromatography and SDS-PAGE analysis showed

that the molecular weight of NLGN3 was similar to NLGN2

ectodomain (Figure 3A), with NLGN3 slightly earlier than

NLGN2. There are two possibilities: one was that the full

length of NLGN3 was degraded, and the other was that the C-

terminal of NLGN3 was very flexible and hard to see. As the C-

terminal flag tag was used for purification and NLGN3 can be

purified successfully, it is possible that the C-terminal of NLGN3

was too flexible to be seen in our case. For modeled human

NLGN3 dimer, the protomer consists of an a/b hydrolase fold, a

14-stranded central curved b-sheet surrounded by 25 a-helices
(Figure 3C, Supplementary Figure 4A). The interface area is

about 789 Å2, contributed by interface residues including H615,

T619 , F623 , L627 , W461, A462 , F456 , and A622

(Supplementary Figure 4B).
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Structural comparison of human NLGN2
and NLGN3

Human NLGN2 and NLGN3 have distinct roles in synapse

development and plasticity (55), and the development of ASD as

well. To explore the potential mechanism and structural basis of

their differences, we compared the structures of NLGN2 and

NLGN3. The overall structure of NLGN2 and NLGN3

protomers is very similar, with root-mean-square deviation

(RMSD) of 1.518 Å over 522 Ca atoms. However, when chain

A from NLGN2 and NLGN3 was superimposed, the orientation

of chain B from NLGN3 has a rotation relative to that from

NLGN2, indicating the distinct arrangement adopted by

different NLGNs (Figures 4A, B).

MDGAs have been reported as interacting partners of

NLGNs to regulate the recognition between NLGNs and
Frontiers in Endocrinology 05
NRXNs (29, 40). X-ray crystallography structural analysis of

numerous of MDGAs/neuroligin complexes provides a

structural basis for understanding the role of this complex in

synapses. These studies suggested that neither MDGA1 nor

MDGA2 can bind to NLGN2, but not NLGN1 or NLGN3.

However, there is no direct evidence to reveal the reasons for

this phenomenon, especially at the molecular level. A previous

study has determined the complex structure of human NLGN2

with human MDGA1 Ig1-3 domain with PDB ID 5XEQ (40);

we thus also compare the NLGN2/NLGN3 structure with

5XEQ. The structural alignment shows that the relative

rotation of chain B may affect the interaction between

NLGN2 and MDGA1 (Figure 4C). To further explore more

details, sequence alignment was performed using NLGNs from

different species (Supplementary Figure 5), and the identified

residues critical for human NLGN2–MDGA1 interactions were
A B

D

C

FIGURE 1

Comparison of NLGN2 and NLGN3 in expression levels and development stage. (A) Maternal diabetes induces expression increase of NLGN2 and
NLGN3 (*p < 0.05, n = 6) in mouse model. (B) The expression levels of NLGN2 and NLGN3 in mouse and human brains by single-cell sequencing.
Unit: fragments per kilobase of transcript per million mapped reads (FPKM). (C) The expression levels of NLGN2 and NLGN3 in different cells in the
mouse brain. (D) The expression levels of NLGN2 and NLGN3 in postal 7 and 32 days in cortex, hippocampus, and striatum of mice.
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extracted and listed in Figure 4D. The result showed that

although some residues are identical across species (D362,

E372, and D415 from human NLGN2), there are some

different residues in the interface (F408 and I117 from

human NLGN2; A113 is identical in NLGN2 and NLGN3

but not in NLGN1). The electrostatic potential distributions of

NLGN2 and NLGN3 were also calculated using APBS plugin in
Frontiers in Endocrinology 06
PyMol (56) and shown in Figures 4E, F. The interacting

residues were mapped to the previously identified patches A–

C (40). The results intuitively showed a slight difference in

patch B, where F408 of NLGN2 was substituted by Y431 in

NLGN3. To summarize, the differences in interface residues

and distinct dimer arrangement may contribute to the different

roles of NLGN2 and NLGN3.
A B

D EC

FIGURE 2

Overall structure of NLGN2. (A) Preparation of NLGN2. NLGN2 was expressed in HEK293f cells, purified via affinity chromatography and gel
filtration, and eluted at about 15.5 ml on Superose 6 column. Results of SDS-PAGE demonstrated that the purity of NLGN2 was suitable for
further analysis. (B) Cryo-EM map of NLGN2. NLGN2 forms homodimer in C2 symmetry. Two different views are shown. (C) Secondary
structure of NLGN2 analyzed using PDBsum (54). (D) Superimposing NLGN2 dimer model into the cryo-EM maps. (E) Model of NLGN2
homodimer. SDS-PAGE, sodium dodecyl sulfate–polyacrylamide gel electrophoresis; cryo-EM, cryogenic electron microscopy.
A B

D EC

FIGURE 3

Overall structure of NLGN3. (A) Preparation of NLGN3. NLGN3 was expressed in HEK293f cells, purified via affinity chromatography and gel
filtration, and eluted at about 15.1 ml on Superose 6 column. Results of SDS-PAGE demonstrated that the purity of NLGN2 was suitable for
further analysis. (B) Cryo-EM map of NLGN3. NLGN3 forms homodimer in C2 symmetry. Two different views are shown. (C) Secondary
structure of NLGN2 analyzed using PDBsum (54). (D) Superimposing NLGN3 dimer model into the cryo-EM maps. (E) Model of NLGN3
homodimer. SDS-PAGE, sodium dodecyl sulfate–polyacrylamide gel electrophoresis; cryo-EM, cryogenic electron microscopy.
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Discussion

Recentfindingshave studied the linkbetweenASDtoboth type1

and type 2 diabetes (57–59), while the results are complicated and

make it hard to draw a credible conclusion. The studies based on

NorthernCaliforniaASDpatients showed that there is a significantly

increased prevalence of diabetes in ASD patients (60). However,

studies based on Illinois, NewYork, and Texas ASDpatients showed

reduced prevalence (61). Also, limited by the sample sizes,

researchers can only conclude that there may be an association

between gestational diabetes and ASD (59). However, a convincing

connection was built between maternal diabetes and ASD in a rat

model (9). In rats with diabetes, transient hyperglycemia induces

persistent reactive oxygen species (ROS) generation and oxidative

stress-mediated histone methylation, further suppressing SOD2

expression, which was the major cause of ASD in rat offspring (9).

Neuroligins, known as postsynaptic cell adhesion proteins, had been

shown for decades to be related to oxidative stress regulation (62).

Neuroligin-deficient animals are hypersensitive to oxidative stress

andhave sensoryprocessingdeficits (62). In thehypothesis ofHunter

et al., neuroligins regulated ROS generation in neuronal and glial

cells, and mutants in neuroligins disrupted the redox homeostasis,

which might be a potential mechanism for neuroligin defect that
Frontiers in Endocrinology 07
inducedASD.This hypothesiswas supported by a recent publication

that showed that lutein feeding restores neuroligin expression and

redox homeostasis, further rescuing neuroligin-mediated

neurodevelopmental defects (63). In our studies, the expression

levels of NLGN2 and NLGN3 were elevated in the maternal

diabetes-related streptozotocin-induced ASD mouse model, which

may be a response to the increased oxidative stress (9).

The development of ASD is closely related with neuron–

neuron communications (64). Synaptic adhesion molecules

mediate the communications between presynaptic and

postsynaptic neurons and play critical roles in synapse

development and plasticity (65). Among them, NLGNs and

NRXNs are two important interacting partners across the

synapse (19). Each of them has several members with different

distributions and splicing isoforms (66, 67). The combination of

NLGNs and NRXNs results in different affinities across the

synapse, which contributes to its plasticity regulation (19).

Moreover, other interacting partners such as MDGAs may

also be involved in the regulation of NLGN-NRXN

interactions. MDGAs may selectively interact with different

NLGNs and eventually regulate the differentiation of synapses

(39–41, 68). In this study, the cryo-EM structures of NLGN2 and

NLGN3 were determined using cryo-EM techniques. The
A C

D

E F

B

FIGURE 4

Comparison of NLGN2 and NLGN3 structures. (A) Structural alignment of NLGN2 and NLGN3 with chain A as reference. Chain B of NLGN2 and
NLGN3 has a rotation relative to each other. (B) Schematic diagram showing the relative rotation of chain B as shown in panel (A). (C) Structural
alignment of NLGN2, NLGN3, and NLGN2–MDGA1 complex (PDB ID: 5XEQ). (D) Key residues for human NLGN2–MDGA1 interactions identified
and confirmed previously (40). Electrostatic potential distributions of NLGN2 (E) and NLGN3 (F) calculated using APBS Electrostatics plugin (56)
in PyMol (https://pymol.org/2/). Patches A–C critical for NLGN2–MDGA1 interaction are shown in green circles (40). Key residues shown in
panel D were mapped and shown in yellow color. Unit of electrostatic potential is kT e−1.
frontiersin.org

https://pymol.org/2/
https://doi.org/10.3389/fendo.2022.1067529
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2022.1067529
structures of neuroligins are highly conserved. The extracellular

domain of NLGN2 is a cholinesterase-like domain, which might

be required for synapse-specific functions (52). Structural

comparisons show that two chains of their homodimers show

distinct orientations, although their protomers adopt a similar

assembly. The functional difference between NLGN2 and

NLGN3 indicated that their small structural differences may

cause a huge functional gap. Our results showed that the

differences in interface area and orientation are the small

structural differences between NLGN2 and NLGN3, which

possibly confer the ability of NLGN2 to determine inhibitory

synaptic transmission in neurons (23) and confer the ability of

NLGN3 to control AMPAR-mediated basal excitatory

transmission (69). Taken together with the previously reported

complex structure of NLGN2 and MDGA1 (40), it is possible

that the different orientations of NLGNs may also affect their

interactions with MDGAs. This may provide one explanation for

why MGDAs selectively interact with different NLGNs (39,

41, 68).

Several disease-related mutations have been reported for

neuroligins, including R55G, V72X, K82Q, N236S, R451C, R471C,

P534S, R617W, T659N, L721F, and T812S in NLGN3

(Supplementary Figure 6A, retrieved from UniProt ID Q9NZ94).

Among them,R451C is awell-knownmutation that is closely related

to the development of ASD (70) and has recently been found to

enhance the gain offunction in excitatory synaptic transmission (71).

This residue locates in the central helix of NLGN3 (Supplementary

Figures 6A, B), and the mutation may affect the intracellular traffic

and membrane localization of NLGN3. Knock-in of NLGN3R451C

has also been developed as one of the ASD mouse models (72).

Sequence alignment shows that NLGN2 also has the corresponding

arginine residue at position 428 in a conserved region

(Supplementary Figures 5, 6C). Structural superimposition

demonstrates that R451 from NLGN3 and R428 from NLGN2

adopt similar conformations (Supplementary Figure 6B).

Interestingly, only R451C from NLGN3 was reported to be related

to ASD, but not R428 from NLGN2. This might be because of the

subtle differences between NLGN2 and NLGN3, which still need

further exploration.
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SUPPLEMENTARY FIGURE 1

Workflow of structural determination for NLGN2. Data of NLGN2 were

collected using Titan krios. Raw micrographs were subjected to beam-
induced motion collection and contrast transfer function (CTF)

estimation. NLGN2 particles were then boxed, extracted and subjected
to 2D classification, initial model building and 3D classification. Good

classes were then used for final map reconstruction. The overall

resolution of NLGN2 was determined to be 3.5 Å according to Fourier
Shell Correlation (FSC) with 0.143 criteria.

SUPPLEMENTARY FIGURE 2

Workflow of structural determination for NLGN3. Data of NLGN3 were
collected using Titan krios. Raw micrographs were subjected to beam-

induced motion collection and contrast transfer function (CTF)

estimation. NLGN3 particles were then boxed, extracted and subjected
to 2D classification, initial model building and 3D classification. Good

classes were then used for final map reconstruction. The overall
Frontiers in Endocrinology 09
resolution of NLGN3 was determined to be 3.9 Å according to Fourier
Shell Correlation (FSC) with 0.143 criteria.

SUPPLEMENTARY FIGURE 3

Structural analysis of NLGN2. (A) Wiring diagram to show secondary
structure of NLGN2. (B) Identified residues in the protomer-protomer

interface import for NLGN2 dimerization. Figures were prepared in
PDBsum (54).

SUPPLEMENTARY FIGURE 4

Structural analysis of NLGN3. (A) Wiring diagram to show secondary

structure of NLGN3. (B) Identified residues in the protomer-protomer
interface import for NLGN3 dimerization. Figures were prepared in

PDBsum (54).

SUPPLEMENTARY FIGURE 5

Sequence alignment of NLGNs. Amino acid sequences of different NLGNs
(NLGN1, NLGN2 and NLGN3) from different species (human, mouse and

rat) were extracted from Uniprot (https://www.uniprot.org/) and
subjected to multiple sequence alignment using Clustal Omega (73).

The alignment file and NLGN2 structure were further used as input of
ESPript webserver (74) to map the secondary structure.

SUPPLEMENTARY FIGURE 6

Disease-related mutations of NLGNs. (A)Mapping of the mutation sites in

NLGN3 cryo-EM structures. Those sites include R55, V72, K82, N236,
R451, R471, P534 and R617 from NLGN3. (B) Structural superimposition of

R428 from NLGN2 and R451 from NLGN3. (C) Sequence alignment of
human NLGN2 and human NLGN3 in the conserved arginine site regions

(R428 of NLGN2 and R451 of NLGN3).

SUPPLEMENTARY TABLE 1

Summary of Cryo-EM data collection, data processing, and
structure refinement.

SUPPLEMENTARY TABLE 2

Primers used in real-time quantitative PCR
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