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Diabetic retinopathy (DR) is the major ocular complication of diabetes mellitus,

and is a problem with significant global health impact. Major advances in

diagnostics, technology and treatment have already revolutionized how we

manage DR in the early part of the 21st century. For example, the accessibility of

imaging with optical coherence tomography, and the development of anti-

vascular endothelial growth factor (VEGF) treatment are just some of the

landmark developments that have shaped the DR landscape over the last few

decades. Yet, there are still more exciting advances being made. Looking

forward to 2030, many of these ongoing developments are likely to further

transform the field. First, epidemiologic projections show that the global

burden of DR is not only increasing, but also shifting from high-income

countries towards middle- and low-income areas. Second, better

understanding of disease pathophysiology is placing greater emphasis on

retinal neural dysfunction and non-vascular aspects of diabetic retinal

disease. Third, a wealth of information is becoming available from newer

imaging modalities such as widefield imaging systems and optical coherence

tomography angiography. Fourth, artificial intelligence for screening, diagnosis

and prognostication of DR will become increasingly accessible and important.

Fifth, new pharmacologic agents targeting other non-VEGF-driven pathways,

and novel therapeutic strategies such as gene therapy are being developed for

DR. Finally, the classification system for diabetic retinal disease will need to be

continually updated to keep pace with new developments. In this article, we

discuss these major trends in DR that we expect to see in 2030 and beyond.
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1 Introduction

Diabetic retinopathy (DR) is the major ocular complication

of diabetes mellitus, and occurs in about 30 to 40% of diabetic

individuals (1, 2). Globally, more than 100 million individuals

are living with DR, and DR is a leading cause of blindness and

visual impairment, especially among the working-age adult

population (1, 3). Fortunately, much of the visual loss from

DR is preventable, and the rates of vision loss from diabetes and

DR have steadily declined over the past few decades (4, 5). Such

improvements in visual outcomes for DR are multifactorial, and

are due in large part to a combination of better systemic risk

factor control, coupled with advances in ocular disease

assessment, screening, imaging and treatment in recent years.

For example, the universal adoption of DR classification systems

such as the Early Treatment of Diabetic Retinopathy Study

(ETDRS) and International Classification of Diabetic

Retinopathy (ICDR) severity scales that effectively

prognosticate the risk of disease progression, coupled with

large-scale DR screening programs around the world, have

allowed for appropriate surveillance and early intervention to

prevent the onset of vision-threatening complications (5–7).

Panretinal laser photocoagulation (PRP) helps to prevent

severe vision loss due to proliferative DR (PDR), and the

introduction of pattern scan laser (PASCAL) has made the

procedure quicker, easier to perform, and more comfortable

for patients (8–10). The widespread availability and use of non-

invasive imaging such as optical coherence tomography (OCT),

together with the introduction of intravitreal anti-vascular

endothelial growth factor (anti-VEGF) treatments have

revolutionized the assessment and treatment of diabetic

macular edema (DME), and dramatically improved visual

outcomes for this complication of DR (11–13). Surgical

outcomes for tractional retinal detachments and diabetic

vitrectomies have also improved over the years, with the

availability of more advanced instrumentation and surgical

adjuncts such as pre-operative anti-VEGF injections (14–16).

Despite the tremendous progress that the field of DR has

already seen, there are yet more exciting advances being made.

Looking forward over the next decade, many of these ongoing

developments are likely to further transform the clinical and

research landscapes. In this article, we review some of the recent

progress that has been made, and suggest how these

developments may continue to shape the field in 2030

and beyond.
2 Shifts in epidemiology and disease
burden

The global prevalence and disease burden of DR is expected

to increase significantly over the next few decades, from about
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103 million individuals in 2020, to 130 million in 2030, and 161

million in 2045 (17). Such projections are due to a variety of

factors, including the increasing prevalence of diabetes around

the world, lifestyle changes, and increasing lifespans and aging

global populations (17). This sharp increase in DR disease

burden by more than 25% in just 10 years, is likely to further

strain healthcare systems and resources that are already

stretched. The economic costs associated with DR and its

complications are substantial. Direct healthcare costs related to

DR in the USA were estimated at $493 million per year in 2004

(18). More recent data is lacking, but it is notable that these

estimates were arrived at prior to the introduction of anti-VEGF

treatment for DME. Subsequent studies have found that

economic costs are significantly higher for patients with DME

than without, and much of this is due to the need for costly anti-

VEGF treatment (19, 20). Global prevalence of DME is also

projected by increase by about 25%, to about 24 million

individuals by 2030 (17). The resultant increase in healthcare

costs are expected to be staggering.

Perhaps just as important as the overall increase in disease

burden, is the projected pattern of increase. Based on

epidemiologic projections to 2030, the rates of increase in DR

prevalence for traditionally high-income regions such as North

America and Europe appear to be relatively low, ranging from

10.8 to 18.0%. In contrast, the rates of increase in middle- and

low-income regions such as the Western Pacific (WP), South

and Central America, Asia, Africa, the Middle East and North

Africa (MENA) are much higher, ranging from 20.6% to as high

as 47.2%. In absolute terms, the largest increases by far are

projected to occur in MENA, and WP, where the numbers of

individuals with DR are expected to rise by more than 6 million

in each region respectively (17). This geographic shift in disease

burden towards Asia, Africa and WP means that global health

strategies to combat DR will need to pivot to follow the shifting

disease demographic. Healthcare resources for DR screening,

diagnosis, follow-up, and treatment are urgently needed in these

areas. Large-scale systematic, rather than opportunistic, DR

screening programs that target all patients with diabetes in

these regions will allow for early detection and intervention,

will be cost-effective, and will reduce rates of vision loss, but they

require significant investment in infrastructure and time to set

up (21–24).
3 Non-vascular aspects of diabetic
retinal disease

The clinically-visible retinal lesions associated with DR, such

as microaneurysms, hemorrhages and hard exudates, are

primarily the result of retinal microvascular damage.

Consequently, the focus on DR pathophysiology, diagnosis and

assessment has traditionally always centered around the vascular
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aspect of the disease. However, with the availability of better

structural retinal imaging modalities and functional assessments,

evidence has accumulated over the years of significant retinal

neural dysfunction as well, which occurs together with, or in

some cases precedes, the development of vascular abnormalities.

These structural and functional changes have collectively been

termed “diabetic retinal neurodegeneration” (DRN) (25–28).

OCT studies have shown that patients with diabetes

demonstrate significant thinning of the inner retinal layers,

including the retinal nerve fiber layer (RNFL), and ganglion

cell layer (GCL) (26, 29–31). Retinal thinning is progressive over

time, and can precede the development of clinically-visible DR

lesions (26, 30). Histological studies on enucleated eyes also

corroborate these findings, showing reductions in retinal

ganglion cell density in eyes with DR (32). Functional

assessments in diabetes reveal reductions in contrast

sensitivity, visual field defects, electrophysiologic deficits, and

impaired pupillary responses (33–38).

Despite the clear evidence of DRN occurring in diabetic

retinal disease, there remain many important unanswered

questions in this area. What is the prognostic significance of

DRN in terms of ocular or systemic outcomes in diabetes? What

is the functional impact of DRN on quality of life? How and

when should DRN be assessed and quantified? Current OCT

studies on DRN measure different retinal layers (e.g. RNFL,

GCL), and in different, non-standardized locations. Functional

assessments such as electrophysiology, visual field perimetry and

pupillometry are often time-consuming and resource-intensive.

Recently, a portable, handheld chromatic pupillometer was

shown to able to provide rapid, clinic-based assessment of

retinal neural function in diabetes (38). Such findings,

however, need to be replicated and validated in larger cohorts.

There is also much ongoing work to determine the prognostic

impact of DRN, and to incorporate such assessments of DRN

into routine DR classification and staging systems (28, 39, 40).

These efforts are likely to change the way we routinely assess and

manage DR in the next few decades.
4 New imaging modalities and
biomarkers

New imaging modalities such as ultra-widefield (UWF)

retinal imaging and OCT angiography (OCTA) have been

available for research and commercial clinical use for a

number of years now. UWF retinal imaging provides a field of

view of about 110° to 220°, and allows for visualization up to at

least the anterior edge of the ampullae of the vortex veins (41).

These platforms can be used for UWF color or pseudocolor

photography (UWFCP), as well as UWF fluorescein

angiography (UWFFA). UWF imaging platforms are non-

contact and often do not require pupillary mydriasis, but their
Frontiers in Endocrinology 03
most important advantage, is that they provide for assessment of

the retinal peripheries, and overall a much larger retinal surface

area than standard color fundus photography (CFP). With

standard CFP, the typical 7 standard ETDRS fields cover only

about 30% of total retinal surface area (39, 42). In contrast, UWF

imaging systems allow for assessment of approximately 80% of

retinal surface area, which is a major advantage (42).

Assessment of the retinal peripheries with UWF images in

DR has significant prognostic and management implications.

For one, inclusion of the peripheries in UWFCP images results

in a greater DR severity level in 10 to 19% of eyes (43–46).

Furthermore, studies from a longitudinal cohort showed that

various peripheral DR lesions, such as predominantly peripheral

lesions (PPLs), and number, surface area, and distance of

hemorrhages/microaneurysms and cotton-wool spots from the

optic nerve head, were independently associated with greater

risk of progression to PDR (47, 48). However, the prospective

longitudinal Diabetic Retinopathy Clinical Research Network

(DRCR.net) Protocol AA study recently concluded that PPLs in

UWFCP images were not correlated with DR worsening,

whereas PPLs and non-perfusion on UWFFA were (49, 50).

Unfortunately, UWFFA has some major drawbacks that limit its

universal use in all DR patients, including the need for invasive

dye administration, time needed for acquisition, and the need for

tertiary specialist interpretation. At present, the ideal modality

for peripheral assessment and the best way to do so in DR

remain unclear. Nevertheless, it is clear that as we better define

the role of the retinal peripheries, UWF imaging platforms are

sure to play an important role in DR assessment and

management over the next decade.

OCTA is another imaging platform that will be increasingly

important in DR assessment and prognostication. OCTA is a

non-invasive, non-contact system that can provide angiographic

information without the need for invasive dye administration

like fluorescein. Other advantages of OCTA over dye-based

fluorescein angiography are better visualization of the capillary

microvasculature, and depth-resolved segmentation of the

superficial, middle and deep capillaries plexuses, which are

differentially affected in diabetes and DR (51–53). OCTA can

provide quantitative metrics relating to the retinal

microvasculature, and many of these, such as lower vessel

density, lower fractal dimension, greater tortuosity, and greater

foveal avascular zone area, have been associated in cross-

sectional studies with greater DR severity (51–55). The impact

of such cross-sectional associations in clinical practice is limited,

but the major impact from OCTA will be realized when such

OCTA metrics are eventually linked to clinical outcomes of

interest on longitudinal studies. At present, longitudinal

prospective OCTA studies are limited, but hopefully this need

will be addressed in the next few years (56–59). Other barriers to

widespread adoption and clinical impact of OCTA include scan

quality and gradability, as well as the use of multiple different

commercial OCTA machines, with proprietary algorithms and
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quantitative metrics that are not standardized or interchangeable

between devices. As these barriers are addressed, it is likely that

OCTA will become a powerful, non-invasive prognostic tool for

clinical assessment in DR.
5 Artificial intelligence

Artificial intelligence (AI) and deep learning (DL) algorithms

will play an increasingly important role over the next decade in

the areas of medical diagnostics, screening, prognostication, and

assisting with management or treatment decisions.

Ophthalmology has been a leader in developing AI algorithms

for clinical use, and automated diagnosis or detection of DR from

CFP images was one of the first use cases developed, from as early

as 2016 (60–62). Initial studies already demonstrated that AI

algorithms developed on large datasets could reach very high

levels of diagnostic performance for detection of referable DR and

vision-threatening DR (61, 62). About 5 years later, there are now

multiple AI-based systems for DR screening that have been

approved for clinical use. IDx-DR (IDx LLC, Coralville, IA,

USA) and EyeArt (Eyenuk, Inc., Woodlands Hills, CA, USA)

have both received approval by the USA Food and Drug

Administration (FDA), and are already in clinical use (63, 64).

SELENA+ (EyRIS Pte Ltd, Singapore) has received European CE

Mark Approval, and is planned to be deployed as part of the

national DR screening program in Singapore soon. An economic

modelling study suggested that incorporation of such an AI

algorithm as an assistive tool in a large scale DR screening

program will be associated with significant cost savings (65). It

is likely that by 2030, we will see AI algorithms routinely deployed

in many large-scale DR screening programs around the world,

either as fully autonomous systems, or in hybrid systems where

the algorithms function as assistive tools (65). However, there are

still some challenges that need to be overcome for widespread

acceptance of large-scale AI screening systems. Retinal images

frequently contain signs of other ocular or systemic diseases

besides DR, and the medicolegal aspects of this are still

uncertain. IDx-DR, for example, only detects DR, and the FDA

approval for its use clearly states that the algorithm does not

diagnose any other ocular disease. Other AI-based systems take a

different approach to this; SELENA+ detects DR, as well as 2

other major eye diseases – age-related macular degeneration and

glaucoma (62). Poor image quality can also adversely affect the

accuracy of such algorithms, but most commercial AI systems

now have in-built automated image quality assessments (62, 63).

Beyond just diagnosis and screening of DR, there are other

potential use cases for AI algorithms that are also being

developed. AI-based detection of DME from CFP images is

promising, and could help to improve and reduce false positive

referral rates from DR screening programs (66). Some imaging

modalities such as OCT and OCTA have in-built software and

segmentation algorithms that provide quantitative parameters,
Frontiers in Endocrinology 04
such as central subfield thickness (CST) in OCT, or capillary

vessel density in OCTA. However, the capability of these

automated software algorithms to provide detailed quantitative

information is limited to a few parameters, and is dependent on

the accuracy and resolution of automated segmentation. Using AI

to improve retinal layer segmentation and to provide precise

quantification of fluid volumes in different fluid compartments

could have major impact in terms of prognostication, and guiding

treatment decisions for DME (67–71). Similarly, there has been a

shift in emphasis towards quantitative assessment in modalities

that are typically assessed qualitatively or categorically, such as

number, size and location of retinal vascular lesions on CFP or

UWFCP images, or areas of retinal non-perfusion on UWFFA

images (48, 50, 72–74). Manual grading and assessment of these

quantitative parameters would be impractical, and AI algorithms

for automated quantification will go a long way to making such

quantitative parameters accessible, and clinically useful. Finally,

the use of AI to process multimodal clinical and imaging data in

DR, to provide more accurate prognostication of long-term

outcomes, such as visual outcomes, risk of developing incident

DME, and anti-VEGF treatment burden in DME, is an exciting

area to look forward to (75).
6 New treatment strategies

Intravitreal anti-VEGF therapy is the established first line

treatment for center-involved DME, and has also been shown to

be a valid treatment option for PDR (12, 76, 77). Observations

from the registration trials for anti-VEGF therapy in DME

showed that anti-VEGF therapy can also result in significant

improvements in DR severity for patients with non-proliferative

DR, and this has been confirmed in more recent prospective

clinical trials as well (78–81). As a result, intravitreal aflibercept

is now FDA-approved for treatment of non-proliferative DR, as

well as PDR and DME. However, at this point, it seems unlikely

that anti-VEGF therapy will be used on a large scale for routine

treatment of non-proliferative DR. The DRCR.net Protocol W

trial showed that anti-VEGF therapy for non-proliferative DR

could prevent the onset of PDR and DME, but that final visual

outcomes were no different from a strategy of initial observation,

with treatment for PDR or DME initiated as-needed (81).

Furthermore, while anti-VEGF therapy results in regression of

vascular lesions and apparent “improvement” in DR severity,

reports show that the underlying retinal ischemia is unchanged,

and that lesions and retinopathy often recur rapidly after

cessation (82, 83). Finally, the cost-effectiveness of treating

non-proliferative DR with regular anti-VEGF therapy has not

been well-examined, but it is difficult to imagine widespread use

outside of high-resource clinical settings.

Instead, new treatments that are more likely to have

significant impact on the DR landscape over the next decade

are those targeting new pathophysiologic pathways, and those
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that improve the durability of treatment effect. For example,

faricimab is a bi-specific monoclonal antibody that provides dual

inhibition of both the VEGF and the angiopoietin (Ang) and

tyrosine kinase with immunoglobulin-like and epidermal

growth factor homology domains (Tie) pathways (84, 85).

Inhibiting Ang-2 on top of VEGF-A is thought to provide a

synergistic effect, with better vascular stability and reduction in

vascular leakage (84). The recent phase 3 YOSEMITE and

RHINE clinical trials demonstrated that intravitreal faricimab

for DME provided substantial visual gains comparable to

aflibercept, but with superior anatomic outcomes. More

importantly, faricimab had a durable treatment effect, with

more than 70% and 50% of eyes reaching dosing intervals of

every 12 to 16 weeks, and 16 weeks respectively at 1 year (85).

Other promising treatment strategies to provide increased

durability and reduced treatment burden include high-dose

aflibercept (8 mg), sustained delivery of ranibizumab through

a refillable port delivery system (PDS), and gene therapy with

agents such as RGX-314 and ADVM-022 for long-term VEGF

suppression (86–89). By providing more durable treatment

effect, these approaches aim to address real unmet needs in

DME treatment, where high treatment burden, problems with

compliance to therapy, and under-treatment limit real world

visual outcomes (90–93). These treatment approaches will play a

major role in DME management in the near future.
7 An updated classification system
for diabetic retinal disease

As a consequence of these many exciting advances in the field

of DR over the past few decades, our DR classification and

severity staging systems need to be updated to keep pace with

the latest developments (39, 40, 94). The ETDRS and ICDR

severity scales that are in routine use have made tremendous

impact to research trials and clinical management, but they are

now 2 to 3 decades old, and have significant limitations (7, 95).

Some of the key areas that need to be addressed in an updated

classification system are: (1) Inclusion of relevant prognostic

information from the retinal peripheries that can now be

reliably imaged with UWF systems, (2) Recognition and

assessment of non-vascular aspects of diabetic retinal disease,

such as retinal neural dysfunction or DRN, (3) Incorporating

information and biomarkers from available imaging modalities

such as OCT and OCTA, (4) Greater emphasis on, and clinically-

relevant severity classification for DME, which is now the most

common cause of visual impairment from DR, and which drives

management decisions, and (5) Accurate prognostication of eyes

that have undergone intravitreal anti-VEGF or other treatments.

There are major international efforts ongoing to update the

DR classification system, such as the Diabetic Retinal Disease

Staging System Update Effort, a project which is part of the Mary

Tyler Moore Vision Initiative, which brings together leading
Frontiers in Endocrinology 05
scientists and experts on DR, with the overall aim of preventing

vision loss from diabetes (94). There are still many gaps and

unmet needs in the literature that need to be addressed, to

inform a robust, evidence-based updated classification system.

Nevertheless, it is likely that we will see a new and improved DR

classification and staging system soon, that will have major

impact on how we practice and manage DR in 2030. Such a

classification system will no doubt need to be validated, regularly

reviewed, and further updated to keep pace with new

developments in the field. Furthermore, various widely-used

international DR management guidelines, such as those by the

International Council of Ophthalmology (ICO), will also need to

be updated in accordance with new classification systems (76).
8 Conclusion

Clearly, many important strides have been made in the field

of DR over the past few years, which will shape and transform the

clinical and research landscapes in the years to come. Here, we

have attempted to anticipate and predict some of these trends that

are likely to be influential over the next decade. While many of

these new imaging, assessment and treatment modalities have the

potential to significantly improve clinical outcomes in DR, it is

important that these advances are translated equally to both high-

and low-resource settings around the world. As we have discussed

above, epidemiologic projections suggest a continued shift

towards increased disease burden in low-resource settings, and

advances in DR management must be accessible to these patient

populations, if we hope to see continued reductions in the rates of

visual loss and blindness from DR in 2030 and beyond.
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