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Low back pain (LBP) is one of the most common musculoskeletal symptoms

and severely affects patient quality of life. The majority of people may suffer

from LBP during their life-span, which leading to huge economic burdens to

family and society. According to the series of the previous studies,

intervertebral disc degeneration (IDD) is considered as the major contributor

resulting in LBP. Furthermore, non-coding RNAs (ncRNAs), mainly including

microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs

(circRNAs), can regulate diverse cellular processes, which have been found

to play pivotal roles in the development of IDD. However, the potential

mechanisms of action for ncRNAs in the processes of IDD are still

completely unrevealed. Therefore, it is challenging to consider ncRNAs to be

used as the potential therapeutic targets for IDD. In this paper, we reviewed the

current research progress and findings on ncRNAs in IDD: i). ncRNAs mainly

participate in the process of IDD through regulating apoptosis of nucleus

pulposus (NP) cells, metabolism of extracellular matrix (ECM) and inflammatory

response; ii). the roles of miRNAs/lncRNAs/circRNAs are cross-talk in IDD

development, which is similar to the network and can modulate each other;

iii). ncRNAs have been attempted to combat the degenerative processes and

may be promising as an efficient bio-therapeutic strategy in the future. Hence,

this review systematically summarizes the principal pathomechanisms of IDD

and shed light on the therapeutic potentials of ncRNAs in IDD.
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Introduction

Currently, low back pain (LBP) serves as one of the most

prevalent musculoskeletal symptoms and has severe effects on the

quality of life of individuals in the worldwide (1–3). Previous

studies indicated that almost all people may have suffered from

LBP during their life-span, resulting in substantial distress and

economic burden (3, 4). With regard to the causes for LBP, it is

still not completely unraveled, but intervertebral disc degeneration

(IDD) is considered as the major contributor (5). IDD is a series of

physiological and pathological changes occurring in the aging and

degeneration of the intervertebral disc (IVD). A cross-sectional

study indicated that almost 40% individuals suffered from IDD are

less than 30 years, which is as high as 90% between 50 and 55 years

(6). Nonetheless, there is lack of effective bio-therapeutic strategies

for IDD and surgical intervention is hard to avoid in the final stage

(7). Therefore, it is greatly necessary to clarify the underlying

mechanisms of IDD at a cellular and molecular level.

IDD is a long and chronic process accompanying structural

failure and progressive aging of the normal intervertebral disc

(IVD), which is attributed to series of factors including lifestyle,

aging, genetic predispositions and excessively mechanical loading

(8, 9). IVD is the fibrocartilage tissue structure between each two

vertebrae and serve as crucial role in maintaining the stability of

the spine. In terms of anatomical structure, IVD is composed of

nucleus pulposus (NP) cells, annulus fibrosus (AF) and

cartilaginous endplate (CEP) (Figure 1). Accumulating

evidences demonstrate that genetic and environmental factors

contribute to IDD, but the exact molecular mechanisms are still

largely unclear (10). The pathophysiological processes of IDD are
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mainly characterized by cells apoptosis, imbalance of extracellular

matrix (ECM) and inflammatory response (Figure 1).

Noncoding RNAs (ncRNAs), primarily including

microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular

RNAs (circRNAs), have been found to exert extensive effects on

biological processes such as cell proliferation, apoptosis and

ECMmetabolism (4, 11, 12). Furthermore, compelling evidences

supported that the expression of ncRNAs are significantly

different between IDD and control samples, implicating

ncRNAs play crucial roles in the development of IDD (13–15).

Notably, novel ncRNAs have been constantly identified through

microarray, RNA sequencing and reverse transcription-

quantitative PCR (RT-qPCR) (16, 17), which has attracted a

large number of interesting researcher’s attentions on the

functions and specific molecular mechanisms of ncRNAs in

IDD. There is no doubt that these works provide excellent value

of understanding the precise roles of ncRNAs and display

promising future for IDD bio-therapeutic strategy.

In this review, we systematically summarized the literature

of past five years on ncRNAs in the pathophysiological processes

of IDD, mainly involving miRNAs, lncRNAs and circRNAs. In

addition, the application prospects of ncRNAs as bio-therapeutic

strategy for effective treatment of IDD are also discussed.
The roles of miRNAs in the
development of IDD

MiRNAs, a group of endogenous ncRNAs with 20–24bp

nucleotides in length, can regulate gene expression through
FIGURE 1

Schematic illustration of the anatomical structure of normal IVD and main pathophysiological features of IDD. IVD is composed of the central
NP tissue, AF surrounding the NP, and CEP adhering the upper and lower vertebrae.The pathophysiological features of IDD are mainly
characterized by cells apoptosis, imbalance of ECM and inflammatory response. IVD, intervertebral disc; IDD, intervertebral disc degeneration;
CEP, cartilaginous endplate; AF, annulus fibrosus; NP, nucleus pulposus; ECM, extracellular matrix.
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recognizing and targeting the complementary 3′untranslated
regions (3′UTRs) of particular mRNAs. Previous studies

demonstrated that miRNAs were significantly differentially

expressed between IDD and non-IDD, and acted as pivotal

roles in the development of IDD (11, 18).
MiRNAs regulate the apoptosis of cells

The apoptosis of NP cells is a typical feature of IDD and a

myriad of studies reported that miRNAs mediated the NP cells

apoptosis through regulating specific gene expression (18).

Previously, Ji et al. firstly confirmed that miR-141 causes

spontaneous progression of IDD by means of a study in miR-

141 KO and wild-type mice (19). Mechanistically, miR-141

induced NP cell apoptosis and facilitated IDD progress via the

regulation of downstream SIRT1/NF-kB axis (19). In addition,

silencing of miR-141 had a protective effect on IDD mice, while

upregulating miR-141 accelerated the development of IDD.

Similar to miR-141, a large body of studies demonstrated that

miRNAs were up-regulated in DD and aggravated NP cells

apoptosis, such as miR-96/FRS2 (20), miR-4478/MTH1 (21)

and miR-328-5p/WWP2 (22). On the contrary, there were

substantial numbers of miRNAs were down-regulated and

most likely exert anti-apoptotic effects in IDD, mainly

involving miR-129-5p/BMP2 (23), miR-623/CXCL12 (24) and

miR-155-3p/KDM3A/HIF1a (25). Therefore, miRNA-mediated

apoptosis of NP cells affected the pathological process of IDD via

downstream hub proteins or signal pathway. Notably, apart

from anti-apoptosis, miR-623/CXCL12 axis inhibited

senescence in LPS-induced NP cells (24), which suggested that

miRNAs likely play an important role in IDD development by

affecting cellular senescence.

Given the particular structure of IVD, CEP is essential for NP

cells to acquire nutrition and prevent damaging factors into the

disc. Previous studies showed that CEP cells apoptosis or

calcification induced CEP degeneration, which resulted in

nutrient loss and rendered IDD progress (26, 27). In a previous

experiment, overexpression of miR-34a was evidenced to promote

Fas-induced CEP cells apoptosis through inhibiting Bcl-2 (28).

Additionally, miR-20a/ANKH-mediated stiff matrix enhanced

calcification of CEP, whereas suppression of miR-20a alleviated

the gene expression of calcification (29). Likewise, miR-221

positively regulated CEP cells apoptosis by targeting estrogen

receptor a (ERa) (30). Based on the findings above, miRNAs

have been shown to contribute to CEP cells apoptosis and

calcification, which is closely pertinent to the development of

IDD. However, recent literature demonstrated that miR-142-3p

knockdown promoted apoptosis and autophagy of CEP cells by

HMGB1 (31), implying that miR-142-3p is likely to have potential

in protecting IDD. Apart from the foregoing mechanisms, miR-

106a-5p alsomediates AF cells apoptosis, which can be suppressed

by melatonin (32).
Frontiers in Endocrinology 03
Taken together, miRNAs-mediated cells apoptosis (NP, CEP

and AF cells) regulates the onset of IDD, which provides

potential targets for intervening IDD. Nevertheless, the roles of

miRNAs in NP cells apoptosis attracted more attention. In the

future, the related-studies should pay more attention to the

effects of miRNAs on CEP and AF cells apoptosis.
MiRNAs regulate the metabolism of ECM

ECM, a non-cellular three-dimensional macromolecular

network predominantly composed of collagens and

proteoglycan, is indispensable to maintain normal IVD cell

function. With regard to the pathological process of IDD, the

imbalance of ECM metabolism is a biological hallmark for IDD,

which is characterized by synthesis decrease and degradation

increase (9, 33). The metabolism of ECM is determined by

proteolytic enzymes, such as matrix metalloproteinases (MMPs)

and growth differentiation factor 5 (GDF5). miRNAs have been

evidenced to play crucial roles in ECM degradation through

modulating the activity of essential enzymes.

MMPs have acted as an essential factor for modulating

metabolism of ECM. It has been reported that miR-127-5p

was downregulated in degenerated NP tissues and inhibited

the expression of type II collagen (34). Further experiment

confirmed that miR-127-5p mediated the degradation of ECM

components through enhancing MMP-13 expression.

Another study found that the level of miR-210 remarkably

increased in human degenerated NP cells, resulting in

suppression of autophagy-related gene 7 (ATG7) and

elevation of MMP-13 and MMP-3 (35). Notably, ATG7

knock-down seriously undermined the influences of miR-

210 inhibitor on MMP-13 and MMP-3. These findings

indicated that miR-210-induced ECM degradation was

attributed to the proteolytic activity of upregulated MMP-

13 and MMP-3 by directly targeting ATG7. Similarly, Wang

et al. (36) also evidenced that miR-21 contributed to ECM

catabolism by inhibiting autophagy through PTEN/Akt/

mTOR signal pathway and elicited upregulation of MMP-9

and MMP-3 expression. Collectively, miRNAs play critical

ro les in MMPs-mediated metabol ism of ECM via

modulating autophagy.

GDF5, a crucial member of bone morphogenetic protein

family, has been found to exert vital effects in musculoskeletal

physiological process (37, 38). More importantly, recent

publications also revealed that GDF5 provided protective

effects against IDD through inhibiting ECM catabolism and

promoting ECM anabolism (39, 40). Specifically, miR-132

contributed to the degradation of ECM by inhibiting GDF5,

whereas antagomiR-132 protected ECM from degradation in

IDD rats (39). Likewise, upregulation of miR-665 enhanced

expression of catabolic genes (MMP13 and ADAMTS4) via

specifically binding to GDF5, leading to ECM degradation
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(40). Consequently, GDF5 is likely to be an important target in

ECM degradation caused by miRNAs.

It has been evidenced that SRY-related high mobility group box

(SOX) is involved in the process of IDD (41). MiR-30d was found

to be upregulated in degenerative NP tissues, and suppression of

miR-30d resulted in hypoactive catabolism of ECM in vitro (42).

Notably, bioinformatics analysis demonstrated that SOX9, an

important transcription factor, was a direct target regulated by

miR-30d. Interestingly, overexpression of miR-499a-5p is

propitious to prevent NP cells apoptosis and ECM decomposition

through repressing SOX4 expression (43). Although SOX9 and

SOX4 belong to the transcription factors, they show opposite effects

on ECM in the development of IDD. In addition, there are some

miRNAsmediated ECMmetabolism, such as miR-154/FGF14 (44),

miR-145/ADAM17 (45) and miR-1260b/TCF7L2 (46) axis. This

implicates a wide biofunction of miRNAs in the IDD process.

In summary, ECM metabolism mediated by miRNAs has

affected the progress of IDD. Targeting miRNAs may be a

promising approach for maintenance of the proper balance of

ECM catabolism and anabolism, thereby delaying the

pathological change of IDD.
MiRNAs regulate the inflammation

Inflammation is widely envisioned as one of pathological

features accompanying with IDD (47, 48). Up to now,

accumulating evidence have also shown that multiple miRNAs are

involved in regulating the inflammatory response of IDD (49–51).

Nuclear factor kB (NF-kB) is a key signal pathway in

inflammatory response. The activation of NF-kB promotes the

inflammatory cascade, leading to adverse environment for NP cells

and impetus to degeneration of IVD (48).With regard tomiRNAs-

related to modulating inflammation, miR-16 was confirmed to

negatively regulate the inflammation-related genes in LPS-induced

NP cells, including COX-2, iNOS and PGE2 (51). Subsequently,

target prediction found that TAB3 was directly regulated by miR-

16, which was experimentally validated by a miRNA luciferase

reporter assay. Besides, miR-16 attenuated the inflammation in

LPS-mediated NP cells via inhibiting NF-kB and MAPK signal

pathway. Likewise, MiR-223 was identified to share similar roles in

LPS-treated NP cells through Irak1-mediated suppression of NF-

kB (52). Apart from the above-mentioned, miR-15a-5p was found

to aggravate the inflammation and apoptosis of NP cells by

modulating NF-kB pathway (53). Hence, miRNAs can alleviate

inflammation in NP cells by suppressing NF-kB. On the contrary,

Dong et al. (54) demonstrated that miR-640 showed overt pro-

inflammatory effects by enforcing activation of NF-kB, resulting in
NP cells degeneration, conversely, inhibition of miR-640 displayed

the opposite effects. Extracellular signal-regulated kinase (ERK)

pathway has been evidenced to play key role in inhibiting

inflammation (55). MiR-181a suppressed the expression of

inflammatory factors through blocking ERK pathway in IDD
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mice (56), indicating that miR-181a affords protective effects

in IDD.

Apart from mediated-apoptosis in IDD process, ERa is

reported to a key player in modulating inflammation (57, 58).

Specifically, the expression of miR-203-3p was positively

correlated with the severity of IDD and negatively with Era
(58). Further evidence showed that ERa was the specific target of

miR-203-3p and can be inhibited in LPS-stimulated NP cells,

indicating that miR-203-3p was likely to aggravate

intervertebral disc inflammation and degeneration through

targeting ERa. These findings revealed that the same gene

could exert different roles due to different miRNAs, implying

the complexity and diversity of miRNA in regulation of IDD.

Additionally, other miRNAs were also demonstrated to link

with inflammation in IDD progress. For example, miR-194-5p

actively contributed to human IDD by targeting CUL4A and

CUL4B and significantly decreased in inflammatory

environment of IDD, indicating a negative regulation of miR-

194-5p in the progression of IDD (59). In contrast, miR-125b-5p

expression was found to be enforced in IL-1b-induced NP cells

and human degenerating NP samples, which contributed to

inflammation and NP cells apoptosis by monitoring

TRIAP1 (60).

In summary, current studies demonstrate that miRNAs are

key regulators and have important effects on the pathological

cascades of IDD through intervening cells apoptosis, ECM

metabolism and inflammation. In fact, the roles of miRNAs in

the pathogenesis of IDD are not limited to the above-mentioned

aspects. Latest studies indicate that miRNAs-mediated

autophagy and ferroptosis are intimately linked with

pathological progression of IDD. MiR-202-5p suppressed

autophagy in degenerating NP cells through targeting ATG7

(61). Notably, Wu and colleagues (62) provided sufficient

evidence that downregulation of miR-130b-3p promoted

autophagy in NP cells and ameliorated IDD through ATG14/

PRKAA1 in vivo and vitro. Ferroptosis, an iron-dependent type

of programmed cell death, is associated with the pathogenesis of

IDD. Overexpression of miR-10a-5p partially reversed IL-6-

mediated ferroptosis in cartilage cells (63). In addition, latest

evidence showed that inhibition of miR-874-3p positively

modulated ferroptosis in NP cells by targeting activation

transcription factor 3 (ATF3) (64). Undoubtedly, increasing

studies revealed that miRNAs can mediate the initiation and

progress of IDD (Table 1), indicating miRNAs-based therapy for

IDD may be a promising strategy.
The roles of lncRNAs in the
development of IDD

LncRNAs are a class of long noncoding RNAs whose

transcript length exceeds 200 nucleotides in length. In general,

lncRNAs are lack of capacity to code proteins, but share
frontiersin.org

https://doi.org/10.3389/fendo.2022.1081185
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Jiang et al. 10.3389/fendo.2022.1081185
excellent regulation of gene expression through genetic,

transcriptional and post-transcriptional modifications (65).

Recently, emerging studies indicated that lncRNAs were

associated with musculoskeletal degeneration diseases, such as

osteoarthritis and IDD (4, 66). LncRNAs have exerted critical

effects on the IDD by regulating cellular phenotype (cells

proliferation, apoptosis, autophagy and ECM metabolism)

through directly targeting hub gene expression and miRNAs.

It is well known that lncRNAs participate in the pathological

changes of degenerative diseases by sponging specific miRNAs.

LncRNA PART1 was verified to be significantly increased in NP

cells isolated from IDD patients, indicating that PART1

probably impacted the degeneration of NP cells (67). Then,

the expression of genes responsible for cells apoptosis,

proliferation and ECM metabolism were evaluated. Results

showed that lncRNA PART1 promoted NP cells apoptosis and

ECM degradation, whereas cells proliferation and ECM

synthesis were suppressed. Mechanistically, lncRNA PART1

competitively sponged miR-93, causing the degradation of NP

cells by MMP2. Based on these findings, it can be inferred that

lncRNAs play key role in IDD, albeit lack of in vivo evidence to

support the potential role of PART1 for IDD. Zhong and team

(68) found that lncRNA ADIRF-AS1/miR-214-3p/SERPINA1

pathway was negatively correlated with the severity of IDD,

suggesting the protective role of ADIRF-AS1. Specifically,

upregulation of ADIRF-AS1 enhanced NP cells viability and

suppressed cellular senescence and apoptosis. Strikingly, latest

study reported by Yu et al. (69) uncovered that lncRNA GAS5

was a principal contributor to NP cells apoptosis and catabolism

of ECM through miR-17-3p/Ang-2 axis, eliciting the occurrence

and progress of IDD. In addition, both inhibition of GAS5 and

upregulation of miR-17-3p ameliorated IVDD in mice models.

Collectively, in vitro and vivo studies afforded abundant

supports that the lncRNA GAS5 might participate in IDD

progress by miR-17-3p/Ang-2-mediated NP cells apoptosis

and ECM degradation. Besides, inflammation and oxidative

stress destroyed the homeostasis of IVD, enhancing the

development of IDD. LncRNA MT1DP was found to mitigate

anti-oxidation through miR-365/NRF-2 signal pathway, leading

to NP cells apoptosis and IDD (70). Notably, LncRNA

FAM83H-AS1 alleviated inflammatory response and promoted

NP cells proliferation through miR-22-3p, preventing further

deterioration of IDD in rat models caused by advanced glycation

end products (71).

LncRNAs play important roles in regulating IDD through

direct modulation of hub gene or signal pathway, ultimately

triggering downstream cascades. Within the event, nuclear

factor E2-related factor 2 (Nrf2) was reported to facilitate

protecting NP cells from oxidative injury and preventing

IDD deterioration (72, 73). Kang and colleagues (74)

evidenced that upregulation of lncRNA ANPODRT

attenuated oxidat ive stress and reduced tert-butyl

hydroperoxide-stimulated apoptosis in NP cells, which could
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be attributed to the activation of Nrf2. As previously

mentioned, miRNAs-mediated autophagy influenced the

progress of IDD. As a consequence, lncRNAs may affect the

process of IDD through autophagic pathway. HOTAIR, a novel

lncRNA, was found to associate with autophagy and highly

expressed in human NP tissue suffering from IDD (75).

Furthermore, upregulation of HOTAIR potentiated

autophagy via AMPK/mTOR/ULK1 signaling pathway in

human NP cells, leading to NP cells apoptosis, senescence,

and ECM degradation. More importantly, blocking HOTAIR

attenuated the adverse effects in IDD rats. Interestingly,

lncRNA HOTAIR could activate Wnt/b-catenin pathway and

exert similar functions except for modulating AMPK/mTOR/

ULK1 (76), implying lncRNA may act as key regulators of

multiple downstream pathways.

At the present, an increasing number of lncRNAs have been

found to involve in the pathological process of IDD, such as

lncRNA SNHG6/miR-101-3p (77), lncRNA MIR155HG/miR-

223-3p (78) and lncRNA H19/miR-139-3p/CXCR4/NF-kB (79)

axes. In summary, these important roles of lncRNAs in IDD

have been comprehensively verified (Table 2). Helpfully, these

findings further elucidate the underlying mechanisms of IDD

and shed light on lncRNAs as potential therapeutic target for

treatment of IDD.
The roles of circRNAs in the
development of IDD

CircRNAs, another particular type of ncRNAs with the

covalently closed loops, have attracted substantial attentions

because of their excellent biological properties. Currently,

there are a series of circRNAs have been evidenced to be

pertinent to the underlying mechanisms of IDD (15, 80). As

naturally formed endogenous non−coding RNAs, circRNAs

serve as a competing endogenous RNAs and modulate the

pathological process of IDD, mainly involving in cellular

apoptosis, ECM metabolism and inflammation (80).

In the light of pathological mechanism of IDD, NP cells

apoptosis is primary factor accelerating the pathological

progression of IDD. Cheng and colleagues (81) observed that

circVMA21 could depress the expression of apoptotic and

catabolic genes, and enhance the collagen II and aggrecan

expression in NP cells treated by inflammatory cytokines

through miR-200c/XIAP pathway. In vivo injection of

circVMA21 ameliorated the degeneration of NP tissues in rat

model, suggesting the protective role of circVMA21/miR-200c/

XIAP against IDD. Subsequently, Guo et al. (82) also verified

that circGRB10 provided the beneficial effects in preventing IDD

by reducing NP cell apoptosis through miR-328-5p/ERBB2 axis.

Similarly, other studies demonstrated that cicrRNAs also

afforded protection against IDD development, mainly

including circRNA-CIDN/miR-34a-5p/SIRT1 (83), circGLCE/
frontiersin.org

https://doi.org/10.3389/fendo.2022.1081185
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Jiang et al. 10.3389/fendo.2022.1081185
TABLE 1 The roles of miRNAs in the development of IDD.

MiRNAs Expression Target/Pathway Function Reference

miR-141 Up SIRT1/NF-kB NP cells apoptosis(+) Ji et al. (19)

miR-96 Up FRS2 NP cells apoptosis(+) Yang et al. (20)

miR-4478 Up MTH1 NP cells apoptosis(+) Zhang et al. (21)

miR-328-5p Up WWP2 NP cells apoptosis(+) Yan et al. (22)

miR-129-5p Down BMP2 NP cells apoptosis(-) Yang et al. (23)

miR-623 Down CXCL12 NP cells apoptosis/senescence(-) Zhong et al. (24)

miR-155-3p Down KDM3A/HIF1a NP cells apoptosis(-) Zhou et al. (25)

miR-34a Up Bcl-2 CEP cells apoptosis(+) Chen et al. (28)

miR-20a Up ANKH CEP calcification(+) Liu et al. (29)

miR-221 Up ERa CEP cells apoptosis(+) Sheng et al. (30)

miR-142-3p Down HMGB1 CEP cells apoptosis(-) Wang et al. (31)

miR-106a-5p Up ATG7 AF cells apoptosis(+) Hai et al. (32)

miR-127-5p Down MMP-13 ECM anabolism(+) Hua et al. (34)

miR-210 Up ATG7/MMP-13/MMP-3 ECM catabolism(+) Wang et al. (35)

miR-21 Up PTEN/Akt/mTOR/MMP-9/MMP-3 ECM catabolism(+) Wang et al. (36)

miR-132 Up GDF5 ECM catabolism(+) Liu et al. (39)

miR-665 Up GDF5 ECM catabolism(+) Tan et al. (40)

miR-30d Up SOX9 NP cells apoptosis/ECM catabolism(+) Lv et al. (42)

miR-499a-5p Down SOX4 NP cells apoptosis/ECM catabolism(-) Sun et al. (43)

miR-154 Up FGF14 ECM catabolism(+) Wang et al. (44)

miR-145 Down ADAM17 NP cells apoptosis(-)/ECM anabolism(+) Zhou et al. (45)

miR-1260b Down TCF7L2 ECM anabolism(+) Chen et al. (46)

miR-16 Down TAB3 Anti-inflammation Du et al. (51)

miR-223 Down Irak1 Anti-inflammation Wang et al. (52)

miR-15a-5p Up SOX9/NF-kB Pro-inflammation/NP cells apoptosis(+) Zhang et al. (53)

miR-640 Up NF-kB Pro-inflammation Dong et al. (54)

miR-181a Down ERK Anti-inflammation Sun et al. (56)

miR-203-3p Up ERa Pro-inflammation Cai et al. (58)

miR-194-5p Down CUL4A/CUL4B Anti-inflammation Chen et al. (59)

miR-125b-5p Up TRIAP1 Pro-inflammation/NP cells apoptosis(+) Jie et al. (60)

miR-202-5p Up ATG7 NP cells autophagy(-) Chen et al. (61)

miR-130b-3p Up ATG14/PRKAA1 NP cells autophagy(-) Wu et al. (62)

miR-10a-5p Down IL-6R Cartilage cells ferroptosis(-) Bin et al. (63)

miR-874-3p Down ATF3 NP cells ferroptosis(-) Li et al. (64)
Frontiers in Endocrinol
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(+), promotion; (-), inhibition.
TABLE 2 The roles of lncRNAs in the development of IDD.

LncRNAs Expression Target/Pathway Function Reference

lncRNA PART1 Up miR-93/MMP2 NP cells apoptosis/ECM catabolism(+) Gao et al. (67)

lncRNA ADIRF-AS1 Down miR-214-3p/SERPINA1 NP cells apoptosis/senescence(-) Zhong et al. (68)

lncRNA GAS5 Up miR-17-3p/Ang-2 NP cells apoptosis/ECM degradation(+) Yu et al. (69)

lncRNA MT1DP Up miR-365/NRF-2 NP cells apoptosis(+) Liao et al. (70)

lncRNA FAM83H-AS1 Down miR-22-3p Anti-inflammation/NP cells growth(+) Jiang et al. (71)

lncRNA ANPODRT Down Nrf2 Anti-inflammation Kang et al. (74)

lncRNA HOTAIR Up AMPK/mTOR/ULK1 NP cells apoptosis/senescence(+) Zhan et al. (75)

lncRNA HOTAIR Up Wnt/b-catenin NP cells apoptosis/ECM degradation(+) Zhan et al. (76)

lncRNA SNHG6 Up miR-101-3p NP cells apoptosis(+) Gao et al. (77)

lncRNA MIR155HG Up miR-223-3p NP cells pyroptosis(+) Yang et al. (78)

lncRNA H19 Up miR-139-3p/CXCR4/NF-kB NP cells apoptosis(+) Sun et al. (79)
(+), promotion; (-), inhibition.
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miR-587/STAP1 (84) and circARL15/miR-431-5p/DISC1 (85)

pathway. On the contrary, recent studies showed that circRNAs

facilitated apoptosis of NP cells. For instance, circ_001653 was

significantly upregulated in degenerated NP tissues, which

promoted the NP cells apoptosis and ECM degradation by

miR-486-3p/CEMIP axis (86). In addition, a series of evidence

indicated that circITCH induced apoptosis and mediated IDD

through miR-17-5p/SOX4 axis (87).

As is known to all, the imbalance of ECM metabolism is

detrimental for IDD. Considering that miRNAs play important

role in modulating anabolism and catabolism of ECM, circRNAs

also have been reported to associate with ECM metabolism

through sponging miRNAs. Upregulation of circ-4099

promoted the ECM (collagen II and aggrecan) synthesis and

restricted expression of pro-inflammatory factors (IL-1b, TNF-
a, and PGE2) through targeting miR-616-5p/SOX9 (88).

Likewise, circSEMA4B could alleviate ECM catabolism in IL-

1b-induced NP cells via miR-431/GSK-3b/SFRP1 axis (89).

Accordingly, these results support that circRNAs can prevent

IDD through facilitating the anabolism of ECM. Nevertheless,

circRNAs also share unfavorable roles in ECM metabolism and

can induce ECM degradation. For instance, growing evidence

showed that circRNA_104670 enhanced the expression of

MMP-2 known to be associated with ECM catabolism,

through miRNA-17-3p/MMP2 pathway, potentiating ECM

degradation (90). Furthermore, circRNA_104670 and miRNA-

17-3p was found to have excellent diagnostic significance for

IDD based on the outcome of the receiver-operating

characteristic curve.

Recently, accumulating studies found that circRNAs play

vital roles in modulating inflammation response. It is well

known that NF-kB is a classical inflammation-related

pathway. Guo et al. (91) evidenced that circ-FAM169A
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mediated inflammatory cytokines (IL-1b and TNF-a)
expression through BTRC/NF-kB axis, which induced NP

cells apoptosis and ECM degradation. Based on above, there is

no doubt that circRNAs play a crucial role in the regulation

of miRNAs. Notwithstanding, whether multiple circRNAs

can interplay and impact the biological process remain

unclear . Str ikingly , latest publicat ion showed that

circ_0040039 and circ_0004354 competitively regulated

miR-345-3p/FAF1/TP73 pathway in IDD, initiating

inflammation, ECM catabolism and pro-inflammation in

NP cells (92). In detail, circ_0004354 showed stronger

capacity to bind miR-345-3p when inflammatory cytokines

reached lower level at the early phase of IDD. Subsequently,

circ_0004354 was suppressed through negative feedback due

to increase of inflammatory cytokines. Meanwhile, increased

inflammatory cytokines induced circ_0040039 expression,

which in turn inhibited the binding of circ_0004354 with

miR-345-3p and augmented circ_0040039 ability to target

miR-345-3p. Collectively, circ_0004354 and circ_0040039

showed different capacity to bind miR-345-3p relying on

different concentrat ion of inflammatory cytokines ,

even tua l l y t r i gge r ing inflammatory cascades and

accelerating IDD progression.

Taken together, circRNAs display excellent ability to

modulate the development of IDD through cells apoptosis,

ECM metabolism and inflammation (Table 3). In addition,

circRNAs also take important roles in affecting cellular

senescence. For instance, latest research published by Wang

et al. (93) reported that circ_7042 could prevent the IDD

progression through inhibiting NP cells apoptosis, senescence

and ECM degradation by absorption of miR-369-3p/BMP2/

PI3K/Akt axis. Apart from sponging miRNAs, the interaction

of different circRNAs may have impacts on the downstream
TABLE 3 The roles of circRNAs in the development of IDD.

CircRNAs Expression Target/Pathway Function Reference

circVMA21 Down miR-200c/XIAP NP cells apoptosis(-)/ECM anabolism(+) Cheng et al. (81)

circGRB10 Down miR-328-5p/ERBB2 NP cells apoptosis(-) Guo et al. (82)

circRNA-CIDN Down miR-34a-5p/SIRT1 NP cells apoptosis/ECM catabolism(-) Xiang et al. (83)

circGLCE Down miR-587/STAP1 NP cells apoptosis/ECM catabolism(-) Chen et al. (84)

circARL15 Down miR-431-5p/DISC1 NP cells apoptosis(-) Wang et al. (85)

circ_001653 Up miR-486-3p/CEMIP NP cells apoptosis/ECM catabolism(+) Cui et al. (86)

circITCH Up miR-17-5p/SOX4 NP cells apoptosis/ECM catabolism(+) Zhang et al. (87)

circ-4099 Down miR-616-5p/SOX9 ECM anabolism(+) Wang et al. (88)

circSEMA4B Down miR-431/GSK-3b/SFRP1 ECM anabolism(+) Wang et al. (89)

circRNA_104670 Up miRNA-17-3p/MMP2 ECM catabolism(+) Song et al. (90)

circ-FAM169A Up miR-583/BTRC/NF-kB ECM catabolism(+) Guo et al. (91)

circ_0040039/circ_0004354 Up miR-345-3p/FAF1/TP73 Inflammation/ECM catabolism(+) Li et al. (92)

circ_7042 Down miR-369-3p/BMP2/PI3K/Akt NP cells apoptosis/senescence/ECM degradation Wang et al. (93)
(+), promotion; (-), inhibition.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1081185
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Jiang et al. 10.3389/fendo.2022.1081185
pathway , which urgent ly needs more evidence to

further verify.
Interactions of miRNAs, lncRNAs,
and circRNAs

In terms of current findings, dysregulation of ncRNAs

mediates the onset and progression of IDD. More importantly,

the exertion of functions regarding ncRNAs appears to be not

completely independent of modulating the pathological process

of IDD. LncRNAs and circRNAs, as particular ncRNAs, can

directly sponge miRNAs and initiate a series of gene expression

to regulate cells apoptosis, ECM metabolism and inflammation.

Furthermore, there is a competitive relationship to bind

miRNAs among multiple circRNAs. Collectively, the cross-talk

of miRNAs/lncRNAs/circRNAs orchestrates IDD development

(Figure 2), which is similar to the network and can modulate

each other.
Therapeutic strategies for IDD based
on ncRNAs

On the basis of understanding functions of ncRNAs,

emerging evidence demonstrate that multiple strategies show

excellent efficacy on treatment IDD through ncRNAs, mainly

including stem cell therapy, exosomes, biomaterials and

pharmacologic strategy (Figure 3).
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Stem cell

Withmore profound studies on stem cells, stem cell therapy is

considered as a promising approach to intervene IDD owing to

their capacity to release ncRNAs (94, 95). Shi and colleagues (96)

found that bone marrow mesenchymal stem cells (BMSCs)

enhanced the expression of autophagy-related genes and

suppressed apoptosis-related genes in OGD NP cells through

secreting miR-155, reducing NP cells apoptosis. Although they

indicated that miRNA-derived from BMSCs probably afforded

protective effects on NP cells in vitro, there is currently no in vivo

evidence. Therefore, whether stem cells can improve IDD by

ncRNAs needs further study. Intriguingly, a recent study

demonstrated that BMSC-derived extracellular vesicles (BMSC-

EVs) supported survival of NP cells and reduced ECM catabolism

through circ_0050205/miR-665/GPX4 pathway in IDDmice (97).

Hence, stem cell therapy may also be an effective strategy for

treatment of IDD through ncRNAs.
Exosome

Exosome, a kind of extracellular vesicles secreted by the

majority of cell types, contains numerous bioactive components

involved in intercellular communication. Accumulating studies

have paid attention to the role of exosomal ncRNAs in treatment

of IDD (98, 99). For instance, Cheng and colleagues (100)

demonstrated that MSC-derived exosomes (MSC-exosomes)

could be taken by NP cells and exerted cytoprotective effects
FIGURE 2

Schematic diagram of the cross-talk of miRNAs/lncRNAs/circRNAs orchestrating IDD development. LncRNAs/circRNAs directly sponge miRNAs
and initiate a series of gene expression relating to IDD. Besides, miRNAs are able to modulate IDD independently through targeting key genes.
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against NP cells apoptosis. This was likely to be mainly ascribed

to activation of miR-21/PI3K/Akt signal pathway. In rat IDD

model, the injection of MSC-exosomes reduced NP cells

apoptosis and delayed IDD deterioration, showing the

therapeutic potential of MSC exosomes in IDD. Recently,

Chen et al. (101) also extracted exosomes from cartilage

endplate stem cells (CESC-exosomes) and found that CESC-

exosomes can suppress NP cells apoptosis and ECM degradation

through delivery of miR-125-5p. Although exosomal ncRNAs

show greatly therapeutic potential in treatment of IDD,

obtaining highly purified exosomes in large quantities still

requires further investigation. Hence, further study needs to be

conducted to bail out current dilemma for clinical application.
Biomaterial

Biomaterial-based strategies have attracted increasing

attention in the field of disc pro-regeneration (102, 103).

Existing studies indicate that biomaterials have shown

remarkable potential to arrest IDD owing to their unique

biological properties including excellent biocompatibility and

mechanical properties (103). Hydrogel, a particular biomaterial,

is similar to the natural extracellular matrix and has been widely

used to clinical trials. Feng and colleagues (104) designed a kind

of polyplex micelle-encapsulated hydrogel that could
Frontiers in Endocrinology 09
encapsulate miR-29a and prevent miR-29a from spillage and

degradation in vivo. In rabbit IDD models, the injection of miR-

29a/polyplex reversed IDD through the suppression of MMP-2/

b-catenin signal pathway. Lipid nanocapsules (LNC), as a

particular carrier, can load and release certain miRNAs into

cells. Regarding the point, miR-155-loaded LNC (miR-155 LNC)

has been devised to evaluate the potential for treatment of IDD

in vitro and in vivo (105). Intriguingly, their results showed that

miR-155 LNC could be internalized in NP cells and maintain

bioactivity. Moreover, in vivo experiments, injection of miR-155

LNC was proven to be safe and feasible. Unfortunately, they

didn’t further investigate the specific effects of miR-155 LNC on

IDD progress. Collectively, biomaterials show great potential for

treatment of IDD through delivery of ncRNAs.
Pharmacologic

At the present, pharmacological intervention is also considered

as adjuvant therapy alternatives for IDD, such as traditional

Chinese medicine (TCM) and natural products (106, 107).

Notably, Yang et al. (108) found that aucubin, an active

ingredient of eucommia ulmoides, could prevent the ECM

degradation in human NP cells treated by IL‐1b or TNF‐a.
Concomitantly, further experiments verified that miR-140/

CREB1 signal pathway participated in aucubin-mediated
FIGURE 3

A simplified scheme of ncRNA-based therapeutics for treatment of IDD. Stem cell, exosome, biomaterial and pharmacologic strategy, as carries,
deliver loading endogenous and exogenous ncRNAs to degenerative intervertebral disc tissue. TCM, traditional Chinese medicine.
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protection against IDD (108). In addition, latest study

demonstrated that arctigenin shared multiple roles in anti-IDD

through up-regulating miR-483-3p, including reduction of NP

cells apoptosis, ECM catabolism and inflammation-related genes

expression (109). Consequently, these vitro findings afford a novel

pharmacological strategy based on ncRNAs for treatment IDD.

Although ncRNAs can be envisioned as pharmacological targets

for the management of IDD, whether pharmacologic strategy-

linked with ncRNAs exerts positive effects in vivo due to the

complicated internal environment. Therefore, future study should

focus on the in vivo effects and screen the determined ncRNAs for

potential treatment of IDD.

Up to now, ncRNA-based therapeutics have made enormous

progress, but present studies focused only on NP cells or rodents

with IDD models. In fact, the biomechanical properties of

intervertebral disc are obviously different between human and

rodents. Therefore, it is essential to investigate the efficacy of

ncRNA-based therapy in the IDD models conforming to the

human biomechanical properties.
Prospects

Intervertebral disc degeneration is a main contributor to

chronic low back pain. With regard to the pathological features,

many factors involved in the progression of IDD, mainly focused

on cells apoptosis, ECM metabolism and inflammation (9, 11).

Increasing evidence have indicated that ncRNAs involve in the

initiation and development of IDD, which hints the important

potential of ncRNAs for IDD of treatment (110). In present

review, we summarized the functions of ncRNAs in IDD and

found that ncRNAs acted as pivotal regulators in the pathological

process of IDD. On one hand, ncRNAs play positive roles in

delaying or reversing IDD progression through inhibiting cells

apoptosis, ECM catabolism and inflammatory cascades. On the

other hand, ncRNAs also cause IDD deterioration by promoting

cells apoptosis, ECM degradation and pro-inflammatory

cytokines secretion. In addition, ncRNAs have exerted effects on

IDD by regulating autophagy and ferroptosis. In fact, the ncRNAs

to IDD is a double-edge sword, which depends on the

downstream hub gene or signal pathway. Critically, multiple

ncRNAs can regulate the same target genes or the different

targets can be modulated by the same ncRNAs, like network,

which jointly participates in IDD. Based on the existing evidence,

ncRNAs have been attempted to manage the degenerative

processes and shown positive efficacy though delivery of ncRNAs.

To our best knowledge, it is requisite for clinical application to

develop drug targeting ncRNAs and conduct large-scale studies.

Current studies demonstrate that a variety of ncRNAs are involved

in the process of IDD (15, 80), but the decisive ncRNAs in IDD

remain unclear. Furthermore, most studies still focused on the NP

cells or IDD models. Therefore, ncRNAs-based therapy is still in

the preclinical stage. Apart from clinical treatment, whether
Frontiers in Endocrinology 10
ncRNAs can be considered as clinical biomarkers for diagnosis is

not fully elucidated, diagnosis of IDD at early stage is still

challenging. In the future, research should pay more attention to

the following aspects: i). the roles of ncRNAs should be explored in

depth to better understand the underlying mechanisms of IDD; ii).

screening of the ncRNAs with diagnostic value; iii). design of the

IDD models that are similar to human biomechanical properties.

In conclusion, the present studies have demonstrated that

ncRNAs are hub regulators mediating the onset and progression

of IDD. In this review, we have systematically reviewed recent

advances in related fields and summarized the role of ncRNAs in

IDD. Further, we have discussed the ncRNAs-based strategy for

treatment of IDD, which sheds light on the preface of switching

theoretical strategy toward actually clinical application. Lastly,

considering the current research advance in ncRNAs for

treatment of IDD, we have analyzed the issues that need to be

paid more attention in future research, producingmeaningful ideas

for next studies. Based on the aforementioned, ncRNAs, as novel

therapeutic targets for IDD, may possess an excellent prospect.

Comprehensive understanding the function of ncRNAs in IDD is

critical for exploring biological therapies for treatment of IDD.
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105. Le Moal B, Lepeltier É, Rouleau D, Le Visage C, Benoit JP, Passirani C, et al.
Lipid nanocapsules for intracellular delivery of microrna: A first step towards
intervertebral disc degeneration therapy. Int J Pharm (2022) 624:121941.
doi: 10.1016/j.ijpharm.2022.121941

106. Zhu L, Yu C, Zhang X, Yu Z, Zhan F, Yu X, et al. The treatment of
intervertebral disc degeneration using traditional Chinese medicine. J
Ethnopharmacol (2020) 263:113117. doi: 10.1016/j.jep.2020.113117

107. Chen HW, Zhang GZ, Liu MQ, Zhang LJ, Kang JH, Wang ZH, et al.
Natural products of pharmacology and mechanisms in nucleus pulposus cells and
intervertebral disc degeneration. Evid Based Complement Alternat Med (2021)
2021:9963677. doi: 10.1155/2021/9963677

108. Yang S, Li L, Zhu L, Zhang C, Li Z, Guo Y, et al. Aucubin inhibits il-1b- or
tnf-a-Induced extracellular matrix degradation in nucleus pulposus cell through
blocking the mir-140-5p/Creb1 axis. J Cell Physiol (2019) 234(8):13639–48.
doi: 10.1002/jcp.28044

109. Ji Z, Guo R, Ma Z, Li H. Arctigenin inhibits apoptosis, extracellular
matrix degradation, and inflammation in human nucleus pulposus cells by up-
regulating mir-483-3p. J Clin Lab Anal (2022) 36(7):e24508. doi: 10.1002/
jcla.24508

110. Zhang H, Zhang M, Meng L, Guo M, Piao M, Huang Z, et al. Investigation
of key mirnas and their target genes involved in cell apoptosis during intervertebral
disc degeneration development using bioinformatics methods. J Neurosurg Sci
(2022) 66(2):125–32. doi: 10.23736/s0390-5616.20.04773-6
frontiersin.org

https://doi.org/10.18632/aging.104035
https://doi.org/10.3389/fgene.2021.669598
https://doi.org/10.1016/j.omtn.2020.01.026
https://doi.org/10.18632/aging.203036
https://doi.org/10.1038/s12276-018-0056-7
https://doi.org/10.1016/j.bbadis.2018.08.033
https://doi.org/10.1038/s12276-018-0125-y
https://doi.org/10.1038/s41419-020-2543-8
https://doi.org/10.1155/2022/2776440
https://doi.org/10.1186/s13075-022-02895-7
https://doi.org/10.1155/2019/2376172
https://doi.org/10.1155/2019/2376172
https://doi.org/10.1186/s13287-022-02745-y
https://doi.org/10.1016/j.spinee.2021.05.007
https://doi.org/10.1155/2022/8983667
https://doi.org/10.1016/j.intimp.2022.108537
https://doi.org/10.3389/fphar.2022.992476
https://doi.org/10.1111/jcmm.13316
https://doi.org/10.1016/j.yexcr.2022.113066
https://doi.org/10.1016/j.yexcr.2022.113066
https://doi.org/10.1016/j.biomaterials.2017.03.013
https://doi.org/10.3389/fbioe.2021.766087
https://doi.org/10.1002/adhm.201800623
https://doi.org/10.1016/j.ijpharm.2022.121941
https://doi.org/10.1016/j.jep.2020.113117
https://doi.org/10.1155/2021/9963677
https://doi.org/10.1002/jcp.28044
https://doi.org/10.1002/jcla.24508
https://doi.org/10.1002/jcla.24508
https://doi.org/10.23736/s0390-5616.20.04773-6
https://doi.org/10.3389/fendo.2022.1081185
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	The potential mechanisms and application prospects of non-coding RNAs in intervertebral disc degeneration
	Introduction
	The roles of miRNAs in the development of IDD
	MiRNAs regulate the apoptosis of cells
	MiRNAs regulate the metabolism of ECM
	MiRNAs regulate the inflammation

	The roles of lncRNAs in the development of IDD
	The roles of circRNAs in the development of IDD
	Interactions of miRNAs, lncRNAs, and circRNAs
	Therapeutic strategies for IDD based on ncRNAs
	Stem cell
	Exosome
	Biomaterial
	Pharmacologic

	Prospects
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


