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Glycosylation-related
molecular subtypes and risk
score of hepatocellular
carcinoma: Novel insights to
clinical decision-making
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Yu Zhang2, Kun Feng1, Qingpeng Lv1, Kaiyi Niu1, Jiping Chen1,
Li Li3* and Yewei Zhang1*

1Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University,
Nanjing, Jiangsu, China, 2The Second Clinical Medical College, Lanzhou University, Lanzhou,
Gansu, China, 3Department of General Surgery, Fuyang Hospital of Anhui Medical University,
Fuyang, Anhui, China
Background: Hepatocellular carcinoma (HCC) is the fifth most common

cancer and the third leading cause of cancer deaths worldwide, seriously

affecting human community health and care. Emerging evidence has shown

that aberrant glycosylation is associated with tumor progression and

metastasis. However, the role of glycosylation-related genes in HCC has not

been reported.

Methods: Weighted gene coexpression network analysis and non-negative

matrix factorization analysis were applied to identify functional modules and

molecularm subtypes in HCC. The least absolute shrinkage and selection

operator Cox regression was used to construct the glycosylation-related

signature. The independent prognostic value of the risk model was

confirmed and validated by systematic techniques, including principal

component analysis, T-distributed random neighbor embedding analysis,

Kaplan–Meier survival analysis, the ROC curve, multivariate Cox regression,

the nomogram, and the calibration curve. The single-sample gene set

enrichment analysis, gene set variation analysis, Gene Ontology, and Kyoto

Encyclopedia of Genes and Genomes analyses were evaluated by the immune

microenvironment and potential biological processes. The quantitative real-

time polymerase chain reaction and immunohistochemistry analysis were used

to verify the expression of five genes.

Results: We identified the glycosylation-related genes with bioinformatics

analysis to construct and validate a five-gene signature for the prognosis of

HCC patients. Patients with HCC in the high-risk group had a worse prognosis.

The risk score could be an independent factor and was associated with clinical

features, such as the grade and stage. The nomogram exhibited an accurate

score that included the risk score and clinical parameters. The infiltration levels
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of antitumor cells were upregulated in the low-risk group, including B_cells,

Mast_cells, neutrophils, NK_cells, and T_helper_cells. Moreover, glycosylation

was more sensitive to immunotherapy, and may play a critical role in the

metabolic processes of HCC, such as bile acid metabolism and fatty acid

metabolism. In addition, the five-gene messenger RNA (mRNA) and protein

expression were overexpressed in HCC cells and tissues.

Conclusions: The glycosylation-related signature is effective for prognostic

recognition, immune efficacy evaluation, and substance metabolism in HCC,

providing a novel insight for therapeutic target prediction and clinical decision-

making.
KEYWORDS
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Introduction

Hepatocellular carcinoma (HCC) is the fifth most common

cancer and the third leading cause of cancer deaths worldwide,

seriously affecting human community health and care (1, 2).

People with a history of chronic liver diseases, such as hepatitis B

virus and alcoholic steatohepatitis, are more likely to progress to

HCC. However, non-alcoholic fatty liver disease is rapidly

becoming a dominant cause of HCC (3). Although there are

many treatments for HCC, including surgery, chemotherapy,

radiofrequency ablation, and liver transplantation, their efficacy

is not always satisfactory (4). Due to the high heterogeneity of

tumors, patients with HCC have a poor prognosis and high

mortality, with the 5-year survival rate of 18% (5). It is necessary

to excavate more effective prognostic biomarkers for therapeutic

targets and clinical decisions.

Glycosylation is a complex form of protein modification in

the biological process that inserts sugar chains into

macromolecules such as proteins, DNA, and lipids, which

directly lead to the mutation or inactivation of biological

macromolecules (6, 7). Aberrant glycosylation, a hallmark of
, non-negative matrix

n network analysis;

r; TCGA, The Cancer

nes; PCA, principal
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cancer, is a consequence and a driver of malignant phenotypes,

directly impacting key processes supporting tumor progression

and metastasis, including cell adhesion, motility, invasion, and

immune evasion (8, 9). Sustained high glucose can promote

abnormal glycosylation, activate specific signaling pathways, and

produce irreversible toxic products, thereby accelerating HCC

proliferation and metastasis (10, 11). Moreover, evidence

suggested that the glycosylation-related genes were associated

with Programmed cell death-Ligand 1 (PD-L1) expression and

immune infiltration, which was helpful to investigate the

diagnosis and targeted therapy in head and neck squamous

cell carcinoma (12). However, the role of glycosylation-related

genes in HCC has not been reported.

Herein, we identified a novel prognostic glycosylation-

related signature using non-negative matrix factorization

(NMF) and weighted gene coexpression network analysis

(WGCNA) analysis followed by least absolute shrinkage and

selection operator (LASSO) regression construction in HCC.

Importantly, we verified the expression offive-signature genes by

experiments in HCC. A systematic analysis of the model results,

including the risk score, independent factors, immune

microenvironment, functional enrichment, and drug

sensitivity, may reference the association between glycosylation

and HCC for further study.
Methods

Data acquisition

The overall outline of the study is presented in Figure 1. The

RNA-sequencing data (365 HCC and 50 adjacent normal

samples) and clinical information were downloaded from The
frontiersin.org
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Cancer Genome Atlas (TCGA, https://portal.gdc.com) (13). The

expression profiles were normalized by log2 fragments per

kilobase. The totals of glycosylation-related genes were

obtained from gene set enrichment analysis (GSEA)

(Supplementary Table 1).
Identification of functional module and
molecular subtype

Based on glycosylation-related genes, we extracted the

expression profiles in the TCGA database and analyzed the

differentially expressed genes (DEGs) by the R package “limma”

with the values of FDRP< 0.05, |log2FC| > 1 in HCC. The

WGCNA was applied to identify the strongest correlation

module of glycosylation (14). Outlier samples were removed

by hierarchical clustering analysis. By analyzing the appropriate

soft threshold power, a scale-free network is established. The

clustering of coexpression modules is based on the dynamic tree-

cutting method. The glycosylation-related DEGs were detected

in HCC-related modules, and their correlation with module

membership was analyzed. Finally, we selected the most robust

correlation module as candidate genes for further study.
Frontiers in Endocrinology 03
Moreover, the candidate genes were used for NMF analysis

with the “brunet” standard and 50 iterations. Moreover, the

value of k defined as 2–10. The optimal k was dependent on the

indexes of cophenetic, dispersion, and silhouette (15). The

Kaplan–Meier (K-M) curves were used to show overall

survival (OS) and progression-free survival (PFS) in two clusters.
Construction and estimation of
glycosylation-related signature

LASSO Cox regression analysis was used to construct

prognostic signature by R package “glmnet.” To avoid

overfitting, we also introduced a penalty parameter (l) to risk

model by 10-fold cross-validations (16). The formula of risk

score was as follows:riskscore =on
i=1(Expi*Coei). The five

glycosylation-related genes and corresponding coefficients were

identified in the prognostic model. Then, patients were divided

into training and testing cohorts. According to the median cutoff

value, each cohort was classified into low- and high-risk groups.

The PCA and t-SNE analysis aimed to evaluate the ability to

distinguish classification of two risk groups (17). Moreover, the

R packages “plot,” “pheatmap,” “survival,” and “timeROC” were
FIGURE 1

The flow chart of the study.
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applied to evaluate the status, survival, and ROC in the training,

testing, and total cohorts.
Independent prognostic
signature validation

Univariate and multivariate Cox regression analyses were

conducted to determine the relationship between the risk score

and clinical features, and the specificity and sensitivity of risk

score were investigated for 1, 3, and 5 years by the ROC curve.

To forecast survival probability, we established the nomogram

containing the risk score and clinical features by the R package

“rms” (18). Then, the calibration curve and ROC curves verified

the consistency between actual survival time and probability OS

in 1, 3, and 5 years. To further identify independent prognostic

factors, the R package “heatmap” and K-M curve analysis were

used to detect critical features among age, gender, grade, T stage,

N stage, and M stage in low- and high-risk groups.
Evaluation of tumor infiltration and
immune response

The single-sample GSEA was conducted to perform the

association between risk groups and immune cells, and

immune functions, with parameters as follows: kcdf=

‘Gaussian’, method=ssgsea, and ranking=TRUE (19). The

correlation coefficients between risk scores and immune

infiltration cells and immune checkpoints were presented in a

heatmap. Then, the composition of 22 infiltrating immune cells

was established by R package “CIBERSORT” in different risk

groups (20). The Wilcoxon rank-sum test analyzed the

expression of immune checkpoints in risk groups.
Functional enrichment analysis

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway functional enrichment were

used to explore potential biological functions between low-

and high-risk groups through R package “cluster Profiler.” The

hallmarks and KEGG of gene set variation analysis (GSVA) were

also selected (21), with the threshold value as follows:

Permutations: 1000 times, and P<0.05.
Prediction of drug response

The genomics of drug sensitivity in the cancer database was

used to predict the responses to some chemotherapy drugs

between low- and high-risk groups through R package
Frontiers in Endocrinology 04
“pRRophetic,” with the threshold of half-maximal inhibitory

concentration (IC50) (22).
Cell culture

The normal hepatic cell (LO2) and HCC cell line (HepG2

and 7721), were donated from the First Hospital Affiliated to

Anhui Medical University. Furthermore, the DMEM with high-

glucose (HyClone) and 10% fetal bovine serum (VivaCell,

Shanghai, China) were treated to these cells in 5% CO2, 37°C.
Quantitative real-time polymerase
chain reaction

Total RNA was extracted from different cells through the

TRIzol reagent. The complementary DNA (cDNA) was obtained

from reverse transcription using PrimeScript™ kit. Then, as a

quantitative reagent, the SYBR Green qPCR Mix was applied to

test the gene expression of the prognostic signature. The results

were calculated as the 2−DDCt method. All primer sequences are

illustrated in Supplementary Table 2.
Analysis of immunohistochemistry

The exp r e s s i o n o f p r o t e i n wa s d e t e c t e d b y

immunohistochemistry in normal and HCC tissues. In the HPA

database, we explored the image of 5-glycosylation-related

genes protein expression in “tissue” and “pathology” of

modules (23). Patients and the images of serial numbers are

included in this research. All images were rejudged by two

pathologists. Regents are as follows: B3GAT3: Atlas Antibodies

Cat#HPA051328, RRID : AB_2681444, dilution: 1:130; CAD:

Atlas Antibodies Cat#HPA069341, RRID : AB_2686125,

dilution: 1:500; Atlas Antibodies Cat#HPA012820, RRID :

AB_1848478, dilution: 1:25; Atlas Antibodies Cat#HPA003162,

RRID : AB_1078937, dilution: 1:15.
Statistical analysis

The R software (version 4.1.2) was used for statistical

analyses and visualization in this research. Qualitative data are

expressed as percentages. The t test or ANOVA analysis was

used for normally distributed data of two or more groups, and

the chi-square test or Fisher’s test was used for other data. The

differences in survival between risk groups were conducted by K-

M analysis with a log-rank test. The ROC curve was used to

evaluate the efficiency of the signature. P< 0.05 was defined as

statistically significant.
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Results

Identification of glycosylation-related
genes, functional modules, and
molecular subtypes

A total of 365 patients with HCC who had follow-up data

were included in the study. Combined with glycosylation-related

genes, we identified DEGs in the TCGA cohort, including 152

upregulated genes and 7 downregulated genes. The volcano map

and heatmap visualize the differences between HCC tissues and

adjacent non-tumor tissues (Figure 2A, Supplementary
Frontiers in Endocrinology 05
Figure 1A). To investigate the functional modules of

glycosylation-related genes in HCC, we first conducted

clustering dendrograms to detect the outliers of 365 HCC and

50 normal tissues by WGCNA. There were no outliers among

these tissues (Supplementary Figure 1B). The weighted value b
was scheduled as 9, which emerged as a good consistency in a

scale-free network (Figure 2B, Supplementary Figure 1C). We

identified seven functional modules, including the blue module

(27 genes), yellow module (8 genes), green module (8 genes),

brown module (10 genes), red module (6 genes), turquoise

module (31 genes), and gray module (101 genes) (Figure 2C,

Supplementary Figure 1D). Among them, it was found that the
B C

D E F

G H I

A

FIGURE 2

Identification of glycosylation-related differentially expressed genes (DEGs), functional modules, and molecular subtypes. (A) Volcano plot of 201
glycosylation-related DEGs in hepatocellular carcinoma (HCC). (B) The distribution of the scale-free topology model fit and the trends of mean
connectivity. (C) The hierarchical clustering analysis presented similar characteristics with the same color by a dendrogram. (D) The correlation
between the trait and each module in HCC and normal tissues. (E) Non-negative matrix factorization (NMF) survey analyzed the factorization
rank, including cophenetic, dispersion, evar, residuals, rss, silhouette, and sparseness coefficients. (F) Heatmap of two clusters of HCC. Kaplan–
Meier (K-M) curves of overall survival (OS) (G) and progression-free survival (PFS) (H) in two clusters of patients with HCC. (I) The association
between clusters and immune C1, C2, C3, and C4.
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gray module had the strongest correlation between normal and

HCC tumors (r = 0.61, p = 1e-42) (Figure 2D). Therefore, the

101 genes were used as candidate genes for further analysis

(Supplementary Table 3).

NMF analysis was applied to determine the optimal

molecular subtype of 101 glycosylation-related genes in HCC.

According to the results of the NMF rank survey, the optimal k

value was identified as 2 (Figure 2E). The corresponding

heatmap suggested a definite boundary than others (Figure 2F,

Supplementary Figure 1E). Moreover, cluster 1 had a good OS

(P=0.017) (Figure 2G) and PFS (P=0.002) (Figure 2H) than

cluster 2 in patients with HCC. In Figure 2I, cluster 1 was

associated with immune C3, but cluster 2 was associated with

immune C4.
Analysis of independent prognostic
value and construction of
prognostic nomogram

To investigate the independent prognostic factors, we first

analyzed the clinical features by univariate and multivariate Cox

regression. The results suggested that the stage and risk score of

HCC patients had a higher hazard ratio with 95% confidence

interval (P<0.001) (Figures 3A, B). Then, combined with the

clinical features, we further explored the ROC curves of the stage

and risk score. In 1, 3, and 5 years, the area under the curve

(AUC) values of HCC patients were 0.777, 0.703, and 0.695 of

the risk score and 0.671, 0.679, and 0.661 of the stage

(Figures 3C–E).

In order to better predict the survival probability of HCC

patients, we made an attempt to develop a clinical application

tool. The OS probability of the nomogram in 1, 3, and 5 years

was 0.918, 0.806, and 0.702, respectively (Figure 3F). The

calibration curve indicated that the nomogram had remarkable

prediction performance and stability (Figure 3G). Afterward,

The ROC curves of nomogram identified the AUC for 1-, 3-, and

5-year HCC patients as 0.778, 0.759, and 0.779, respectively

(Figures 3H–J). Therefore, the risk score and stage were

independent factors, and the nomogram could be a reliable

nomogram for survival prediction.

In addition, we investigated the relationship between the risk

score and clinical features, and the results suggested no

significant difference in the age, gender, grade, M stage, and N

stage except for the stage and T stage (Supplementary

Figures 2A–F). The heatmap manifested the association

between risk groups and clinical features, including the grade,

stage, and T stage (Figure 4A). Furthermore, the proportion of

different clinical features in low- and high-risk groups is

presented in Figures 4B–G. Interestingly, the K-M curve

demonstrated that patients in the low-risk group had a longer

survival probability than those in low-risk group under the

conditions of female, man, age > 65, age ≤ 65, G1–G2, G3–G4,
Frontiers in Endocrinology 06
M0, N0, Nx, stage I–II, stage III–IV, T1–T2, and T3–T4

(Figures 4H-O, Supplementary Figures 2G–L).
Identification and validation of
glycosylation-related signature in
patients with HCC

To quantify the prognosis of each patient, the 101 of

candidate genes were used for the glycosylation-related

signature by LASSO regression with the optimal regression

coefficient and 10-fold cross-validation (Figures 5A, B). The

risk score for the signature was as follows: risk score= 0.546 ×

expression of B3GAT3 + 0.412 × expression of CAD + 0.704 ×

expression of FKTN + 0.202 × expression of LGALS3 + 0.349 ×

expression of SLC7A11. Then, a total of 365 patients with HCC

were randomly classified into training and testing cohorts. After

excluding patients with unknown clinical information, we

presented the differences in clinicopathological characteristics

between training and testing cohorts (Table 1). According to the

median score, the patients with HCC were divided into low- and

high-risk groups. Subsequently, the scatterplot, risk curve, and

risk heatmap were applied to show risk score distribution, the

survival status, and the expression between low- and high-risk

groups in the training, testing, and total cohorts (Figures 5C–H).

It was founded that the patients in the high-risk group had

higher risk coefficients and mortality. PCA and t-SNE analysis

further verified that the risk score model had good

discrimination performance in training, testing, and total

cohorts (Figures 5I–K). To assess the predictive quality and

accuracy of the signature, the K-M survival curve was used to the

predictive ability of signature, and the results revealed that

patients in the high-risk group had a poorer OS than those in

the low-risk group in the training cohort (P< 0.001) (Figure 5L).

This result was consistent with the testing cohort (P<0.05)

(Figure 5M) and total cohort (P< 0.001) (Figure 5N).

Moreover, in the 1-, 3-, and 5-year follow-ups, the AUC values

of ROC curves were 0.794, 0.704, and 0.708 of the training

cohort (Figure 5O); 0.728, 0.694, and 0.655 of the testing cohort

(Figure 5P); and 0.777, 0.703, and 0.695 of the total cohort

(Figure 5Q), respectively.
Correlation of immune infiltration and
immunotherapy response with
prognostic signature

In Figures 6A, B, we compared the differences in immune

cells and immune functions between the low- and high-risk

groups. The score of B_cells, Mast_cells, neutrophils, NK_cells,

T_helper_cells, cytolytic_activity, and Type_II_IFN_Response

in the low-risk group were significantly higher than those in

the high-risk group. In addition, the activity of aDCs,
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Macrophages, Treg, APC_co_stimulation, MHC_Class_I, and

Parainflammation markedly increased in the high-risk group.

The CIBERSORT algorithm demonstrated a strong correlation

between the risk score and immune infiltration cells (Figure 6C).

Then, the bar plot exhibited the percentage of 22 types of

immune infiltrating cells in the low- and high-risk groups
Frontiers in Endocrinology 07
(Supplementary Figure 3A). As shown in Figure 6D, we

further explored the correlation between the risk score and

immune genes. Moreover, it was found that the expression of

immune checkpoints was significant between low- and high-risk

groups (Figure 6E). In addition, we investigated in detail the

expression of immune checkpoint inhibitors in low- and high-
B

C D E

F G

H I J

A

FIGURE 3

Independent prognostic value validation. (A) The relationship between the risk score and clinicopathological features by univariate Cox analysis.
(B) The relationship between the risk score and clinicopathological features by multivariate Cox analysis. The AUC values of the ROC curve of 1
(C), 3 (D), and 5 years (E) for the risk score and clinicopathological features. (F) Nomogram for 1-, 3-, and 5-year OS prediction. (G) Calibration
curves for 1-, 3-, and 5-year OS prediction. (H-J) The AUC values of the ROC curve of 1, 3, and 5 years for the nomogram.
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risk groups and the correlation between the risk score and

immune checkpoints (CTLA4, GPC3, HAVCR2, PDCD1,

PDCD1LG2, and PDL1). The expression of CTLA4, HAVCR2,

PDCD1, and PDL1 in the high-risk group was higher than those

in the low-risk group (Figures 6F–Q). There was also a

significant correlat ion between the risk score and

immune checkpoints.
Frontiers in Endocrinology 08
Analysis of functional enrichment

We explored the biological functions and enriched pathways

between low- and high-risk groups. The two risk groups may be

involved in cellular division and glycosaminoglycan binding by

GO analysis (Figure 7A, Supplementary Figure 3B). KEGG
B C D E F G

H I J K

L M N O

A

FIGURE 4

The correlation of clinicopathological features with the prognostic signature. (A) The heatmap analysis between clinicopathological
characteristics and low- and high-risk groups. The proportion of different clinicopathological characteristics in low- and high-risk groups: (B)
Gender. (C) Grade. (D) M stage. (E) N stage. (F) T stage. (G) stage. The K-M survival analysis of clinicopathological factors between low- and
high-risk groups: (H) Age ≥ 65. (I) Age = 65. (J) Female. (K) Male. (L) Grade 1–2. (M) M0 stage. (N) Stage I-II. (O) T1–2 stage.
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analysis indicated that the top three pathways were human

papillomavirus infection, the PI3k-Akt signaling pathway, and

the cell cycle (Figure 7B, Supplementary Figure 3C). To further

determine the biological behaviors, GSVA was conducted to
Frontiers in Endocrinology 09
identify the hallmark process and KEGG pathway based on the

risk score. Through GSVA, the signature genes were mainly

enriched in xenobiotic metabolism, unfolded protein response,

PI3k Akt MTOR signaling, KRAS signaling, hedgehog signaling,
B

C D E

F G H

I J K

L M N

O P

A

Q

FIGURE 5

Construction and estimation of the glycosylation-related signature. (A) LASSO coefficient distribution of the glycosylation-related signature. (B)
The optimal parameter (l) selection by the cross-validation curve. The distribution and survival status of the risk score in the training cohort (C),
testing cohort (D), and total cohort (E). Heatmap of five-gene expression between low- and high-risk groups in the training cohort (F), testing
cohort (G), and total cohort (H). The PCA and t-SNE analysis in the training cohort (I), testing cohort (J), and total cohort (K). (L–N) The K-M
survival analysis between low- and high-risk groups in the training cohort (L), testing cohort (M), and total cohort (N). The AUC values of ROC
curves for 1, 3, and 5 years in the model in the training cohort (O), testing cohort (P), and total cohort (Q).
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G2M checkpoint, E2F target, and bile acid metabolism

(Figures 7C, D). The KEGG of GSVA suggested that the risk

score was positively correlated with the Wnt signaling pathway,

VEGF signaling pathway, MAPK signaling pathway, and node-

like receptor signaling pathway, while the risk score was

negatively correlated with the PPAR signaling pathway.
Frontiers in Endocrinology 10
Application of the signature in
drug sensitivity

In order to investigate the relationship between the risk score

and clinical chemotherapy, drug sensitivity analysis was used to

determine the clinical benefits of the signature for HCC. The
B

C D

E

F G H I J K
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FIGURE 6

The association of immune infiltration and immunotherapy response with the prognostic signature. (A) The infiltrating levels of 16 subtypes of
immune cells in low- and high-risk groups. (B) The expression of 13 immune functions in low- and high-risk groups. (C) The correlation
between the risk score and immune infiltration cells. (D) The expression of the immune checkpoints of low- and high-risk groups. (E) The
correlation between the risk score and immune checkpoint genes. The expression and correlation between the risk score and immune
checkpoint inhibitors: (F) CTLA4. (G) GPC3. (H) HAVCR2. (I) PDCD1LG2. (J) PDCD1. (K) PD-L1.
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IC50 values of drugs in the low-risk group were higher than

those in the high-risk group, including doxorubicin, bleomycin,

gemcitabine, bortezomib, imatinib, and paclitaxel. However,

me tho t r exa t e , r apamyc in , so r a f en i b , v o r ino s t a t ,

AKT.inhibitor.VIII, and axitinib were more sensitive to

patients in the high-risk group (Figures 7E–P). These results

could be a project for chemotherapy in patients with different

risk groups.
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Verification of signature gene by
quantitative real-time polymerase chain
reaction and immunohistochemistry

Based on the five-gene signature, we first detected the

mRNA protein expression of five genes in HCC cell lines by

quantitative real-time polymerase chain reaction (qRT-PCR)

and immunohistochemistry analysis. Compared to normal
TABLE 1 The Clinicopathological Characteristics in Training and Testing Cohort.

Characteristics Total (%) Training cohort(%) Testing cohort(%) P value

Age

<=65 218 (64.69) 151 (63.98) 67 (66.34)
0.77

>65 119 (35.31) 85 (36.02) 34 (33.66)

Gender

FEMALE 107 (31.75) 72 (30.51) 35 (34.65)
0.53

MALE 230 (68.25) 164 (69.49) 66 (65.35)

Grade

G1 45 (13.35) 32 (13.56) 13 (12.87)

0.18
G2 166 (49.26) 109 (46.19) 57 (56.44)

G3 114 (33.83) 84 (35.59) 30 (29.7)

G4 12 (3.56) 11 (4.66) 1 (0.99)

Stage

Stage I 168 (49.85) 120 (50.85) 48 (47.52)

0.12
Stage II 82 (24.33) 61 (25.85) 21 (20.79)

Stage III 83 (24.63) 54 (22.88) 29 (28.71)

Stage IV 4 (1.19) 1 (0.42) 3 (2.97)

T

T1 170 (50.45) 122 (51.69) 48 (47.52)

0.03
T2 83 (24.63) 62 (26.27) 21 (20.79)

T3 74 (21.96) 49 (20.76) 25 (24.75)

T4 10 (2.97) 3 (1.27) 7 (6.93)

M

M0 258 (76.56) 181 (76.69) 77 (76.24)

0.03M1 3 (0.89) 0 (0) 3 (2.97)

MX 76 (22.55) 55 (23.31) 21 (20.79)

N

N0 247 (73.29) 175 (74.15) 72 (71.29)

0.82N1 4 (1.19) 3 (1.27) 1 (0.99)

NX 86 (25.52) 58 (24.58) 28 (27.72)
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tissues, the protein expression of B3GAT3, CAD, FKTN, and

LGALS3 was positive in HCC tissues, mainly located in

cytoplasmic/membranous (Figures 8A–D). However, the

protein expression of SLC7A11 was not retrieved, and
Frontiers in Endocrinology 12
further studies are needed. Furthermore, we identified that

the mRNA expression of B3GAT3, CAD, FKTN, LGALS3, and

SLC7A11 were upregulated in HepG2 and 7721 cell lines

(Figures 8E–I).
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FIGURE 7

Analysis of functional enrichment and application of the signature in drug sensitivity. (A) The GO analysis by a chordal graph. (B) The KEGG
analysis between low- and high-risk groups by a chordal graph. (C) The hallmark processes by GSVA analysis in five genes by GSVA analysis. (D)
The KEGG signaling pathway by GSVA analysis. The association between drug sensitivity and low- and high-risk groups: (E) Doxorubicin. (F)
Bleomycin. (G) Gemcitabine. (H) Bortezomib. (I) Imatinib. (J) Paclitaxel. (K) Methotrexate. (L) Rapamycin. (M) Sorafenib. (N) Vorinostat. (O)
AKT.inhibitor VIII. (P) Axitinib.
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Discussion

In this study, we screened 101 candidate genes and identified

two subtypes of glycosylation in HCC patients. Based on these

genes, we constructed a glycosylation-related signature and aimed

to provide an individualized clinical diagnosis and treatment

strategy for HCC patients. The prognostic value of the risk

model was confirmed and validated by systematic techniques

including PCA, t-SNE, K-M survival analysis, the ROC curve,

and multivariate Cox regression. Our findings suggested that the

risk score could be an independent factor and associated with

clinical features, hence performing stability and predictability in

the prognosis of patients with HCC. Moreover, the nomogram

exhibited an accurate score that included the risk score and

clinical parameters. The nomogram presents a score that

includes risk scores and clinical parameters to guide clinicians

in making individualized decisions.

The signature consisted of five glycosylation-related genes:

B3GAT3, CAD, FKTN, LGALS3, and SLC7A11. B3GAT3 is a

glycosyltransferase that plays a decisive role in proteoglycan

synthesis (24). The abnormal expression of B3GAT3 accelerated

the glycolytic pathway and promoted the proliferation of colorectal

cancer cells, thereby affecting the prognosis of patients (25). The

knockdown of B3GAT3 reversed the levels of epithelial–

mesenchymal transition markers in HCC cells, which could be a
Frontiers in Endocrinology 13
novel prognostic biomarker for HCC (26). CAD is amultifunctional

enzyme complex whose overactivation was associated with tumors

primarily through metabolic programming and chemotherapy

resistance (27, 28). CAD-induced pyrimidine synthesis and

ribosome production promote the rapid recall reaction of memory

Tcells (29). FKTNexpressionwascorrelatedwith carcinogenesis and

may be a key regulator of intestinal gastric cancer progression (30). A

study in HCC indicated that LGALS3 expression was related to

metastasis-related processes (31). Zhang et al. demonstrated that

LGALS3 overexpression may involve recurrence and

microenvironments in HCC (32). Moreover, SLC7A11 is a

suppressor of ferroptosis, and its overexpression is associated with

a poor prognosis in various cancers (33). SLC7A11-induced

ferroptosis can be inhibited by SHP-1/STAT3-mediated MCL1

downregulation and BECN1 binding increase in HCC (34). These

genes in our model were correlated with occurrence, recurrence,

progression, and prognoses in HCC. In addition, our experimental

results verified that the expression of five genes was upregulated in

HCCcell lines by qRT-PCRanalysis. Immunohistochemical analysis

showed that these proteins expressions were positive in HCC tissues

compared to adjacent normal tissues. Therefore, these results further

demonstrated that the signature shows a superior predictive

performance in HCC.

The phenotype and function of tumor cells can be disrupted

by effective immune responses in the tumor microenvironment.
B
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FIGURE 8

Verified protein and mRNA expression of the five-gene signature. Protein expression in HCC and normal tissues validated by the
immunohistochemistry analysis of the HPA database: (A) B3GAT3. (B) CAD. (C) FKTN. (D) LGALS3. The expression of five-gene mRNA in hepatic and
HCC cell lines experimented by quantitative real-time polymerase chain reaction analysis: (E) B3GAT3. (F) CAD. (G) FKTN. (H) LGALS3. (I) SLC7A11.
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The glycosylation process has been correlated with the tumor

microenvironment further to determine the association between

immune infiltration and risk groups. We acquired many

differences between low- and high-risk groups in immune cell

infiltration by the glycosylation-related gene signature. We found

that the infiltration levels of antitumor cells were upregulated in

the low-risk group, including B_cells, Mast_cells, neutrophils,

NK_cells, and T_helper_cells. An important result of our study

is that the expression of macrophages and Tregs was more

abundant in the high-risk group. Accumulating evidence

reported that increased levels of Tregs and macrophages had a

worse prognosis for patients with HCC (35, 36). Moreover, the

expression of Type_II_IFN_Response in the high-risk group was

significantly higher than those in the low-risk group, which was

identified as a key factor in coordinating the interaction between

tumors and the immune system (37). Previous studies also

demonstrated that the level of NK cells is positively correlated

with the survival of patients with HCC (38, 39). Consistently our

GSEA analysis suggested the infiltrating level of NK cells was

increased in the low-risk group. Immune checkpoint inhibitors

show new promise in antitumor therapy, mainly by blocking

CTLA-4, GPC3, PDCD1, and PDL1 to enhance T-cell activity

(40). Our study found that the expression of CTLA4, HAVCR2,

PDCD1, and PDL1 was positively correlated with high-risk

groups. This suggested that patients with high immune

checkpoint inhibitor expression may be effective for

immunotherapy. It was reported that CTLA-4 played a key role

in maintaining self-tolerance and Treg suppression in HCC

immunity (41). Moreover, PD-L1 could be not only an

important mediator but also a critical target for antitumor

therapy in HCC (42). These results confirmed that patients in

the low-risk group were more sensitive to immunotherapy, which

was consistent with the active tumor immune microenvironment

and the high expression of immune checkpoints. Thus, the

signature could accurately evaluate the tumor immune

microenvironment and predict immune checkpoint

inhibitor efficacy.

Additional analysis of functional enrichment suggested that

the five-signature genes may be involved in the glucose

metabolic process and cell cycle regulation, such as cellular

division, glycosaminoglycan binding, and steroid hydroxylase

activity. These pathways are in line with the glycosylation

process, in which proteins or lipids are added to sugars.

Through GSEA analysis, we identified that the five-signature

genes were negatively correlated with xenobiotic metabolism,

bile acid metabolism, fatty acid metabolism, and the PPAR

signaling pathway but positively correlated with the unfolded

protein response, G2M checkpoint, E2F target, PI3k Akt MTOR

signaling, and P53 pathway. The metabolism of HCC could be

altered by the inherent glycosylation characteristics (9). In

addition, by performing drug sensitivity analysis, our study
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found that sorafenib was more sensitive to patients in the

high-risk group, while doxorubicin was more sensitive in the

low-risk group. The results confirmed the efficacy of sorafenib

and lenvatinib in patients with unresectable HCC (43).

Therefore, glycosylation may be involved in developing

resistance, and more studies are needed to explain the

underlying metabolic processes.

There are several limitations being addressed in this study.

Firstly, although we identified prognostic genes through NMF

andWGCNAmodels, the data of HCC were taken only from the

TCGA database. Secondly, this is a retrospective study, and more

multicenter, prospective studies are needed to verify the stability

and accuracy of the signature in the future. Thirdly, the

molecular mechanism of glycosylation-related genes needs to

be further explored in HCC.
Conclusion

We integrated glycosylation-related genes with bioinformatics

analysis to construct and validate a five-gene signature for the

prognosis of HCC patients. Our study demonstrated that the

signature is effective for HCC prognostic recognition,

immunotherapy response, and substance metabolism in HCC.

Future studies should further elucidate the underlying

mechanisms by which the five-gene signature regulates the

immune microenvironment and provides a basis for

immunotherapeutic strategies in HCC.
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SUPPLEMENTARY FIGURE 1

(A) The heatmap of glycosylation-related DEGs. (B) Clustering

dendrograms and trait heatmap of HCC and adjacent tissues. (C) The
glycosylation-related DEGs clustering based on TOM dissimilarity. (D) All
heatmaps obtained by NMF consensus clustering.

SUPPLEMENTARY FIGURE 2

Correlation between clinicopathological features and risk score or risk

groups. Expression of clinicopathological features in risk score: (A) Age (B)
Gender. (C) Grade. (D)M stage. (E) Stage. (F) T stage. Association between
clinicopathological features and low- and high-risk groups by K-M

survival analysis: (G) Grade 3-4. (H) M1 stage. (I) N0 stage. (J) Nx stage.
(K) Stage III-IV. (L) T3-T4 stage.

SUPPLEMENTARY FIGURE 3

Analysis the proportion of immune infiltration cells and functional

enrichment. (A) The proportion of immune infiltration cell in low- and
high-risk groups. (B) The biological functions, cellular component, and

molecular function between low- and high-risk groups. (C) The mainly
signaling pathway by KEGG analysis.
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