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Background:Considered a significant risk to health and survival, type 1 diabetes

(T1D) is a heterogeneous autoimmune disease characterized by hyperglycemia

caused by an absolute deficiency of insulin, which is mainly due to the

immune-mediated destruction of pancreatic beta cells.

Scope of review: In recent years, the role of immune checkpoints in the

treatment of cancer has been increasingly recognized, but unfortunately, little

attention has been paid to the significant role they play both in the

development of secondary diabetes with immune checkpoint inhibitors and

the treatment of T1D, such as cytotoxic T-lymphocyte antigen 4(CTLA-4),

programmed cell death protein-1(PD-1), lymphocyte activation gene-3(LAG-

3), programmed death ligand-1(PD-L1), and T-cell immunoglobulin mucin

protein-3(TIM-3). Here, this review summarizes recent research on the role

and mechanisms of diverse immune checkpoint molecules in mediating the

development of T1D and their potential and theoretical basis for the prevention

and treatment of diabetes.

Major conclusions: Immune checkpoint inhibitors related diabetes, similar to

T1D, are severe endocrine toxicity induced with immune checkpoint inhibitors.

Interestingly, numerous treatment measures show excellent efficacy for T1D

via regulating diverse immune checkpoint molecules, including co-inhibitory

and co-stimulatory molecules. Thus, targeting immune checkpoint molecules

may exhibit potential for T1D treatment and improve clinical outcomes.

KEYWORDS
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1 Introduction

Type 1 diabetes mellitus (T1D), which is regarded as an

autoimmune disorder driven by T cells, causes a lack of insulin

and exogenous insulin dependency as a result of the destruction of

the patient’s islet cells by T cells (1–3). Despite exogenous insulin

therapy representing an effective therapeutic strategy, the high

morbidity and mortality of T1D cannot be ignored (4). Residual

islet cells, which have received little attention, are still able to

achieve glycemic control and reduce chronic inflammation, so

immunomodulatory therapies targeting islet cells may be crucial

for maintaining residual islet cells as the focus switches from

exogenous insulin to endogenous insulin (5, 6). At the same time,

the phase of remission (also known as honeymoon, partial

remission, or PR) is increasingly being described as a phase of

glycemic control and temporary recovery of islet b-cells that may

occur after approximately 3 months of insulin therapy in T1D (7).

PR may last 6-9 months, with a probability of occurrence of 35-

43%, and this phase is likely to have a profound impact on the

prognosis of T1D (8). Although the exact timing and mechanism

of PR are not yet clear, there is still much research on how to

personalize immunotherapy at this stage, such as the latest FDA

approval of teplizumab, which is the first immunomodulator

shown to significantly delay disease progression in high-risk

individuals before a clinical episode (9–11).

It has been suggested that the absence of co-suppressive

immune checkpoint ligands (e.g. PD-L1, HLA-E, CD86, and

Gal-9) in b-cells in PR can significantly affect the development of

T1D (12–14). Immune checkpoints (ICPs) are a series of

molecules expressed on the surface of Treg cells and other

immune cells that prevent the body from over-activating to

the detriment of its normal cells (15). In early studies, immune

checkpoint inhibitors (ICIs) (e.g. anti-CTLA-4, anti-PD-1, anti-

PD-L1) were investigated in combination with ICPs, and ICPs

could be used in the treatment of tumor immune escape through

immune checkpoint blockade(ICB) therapy (15, 16). For T1D,

activating the expression of ICPs to protect pancreatic islet b-
cells from T-cell attack may have the potential to reverse early-

onset T1D or to improve prognosis (9, 17, 18). ICPs can also

protect human islet-like organ transplants from T-cell attack,

induce antigen-specific immune tolerance and reverse early-

onset hyperglycemia in bioengineered b-cells (6, 18).

Notwithstanding, due to their endocrine toxicity, improper use

of ICIs may raise the chance of developing T1D, and ICIs-

induced diabetes mellitus, or ICI-associated diabetes, appears to

be distinct from T1D, although this has to be proven by

additional research (19–23). Interestingly, there is also

evidence suggesting that T1D can affect the therapeutic effect

of ICIs on tumors by altering the activity of ICPs (24).

The individual immunological checkpoints and co-

regulators linked to autoimmune diabetes will be reviewed and

discussed in detail in this study. Future research may be able to

pinpoint ways to avoid T1D by examining the processes and
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pathways of ICPs to delay its onset or lessen its severity (25, 26).

This article will also provide a summary of some of the benefits

of using ICPs to treat secondary T1D as well as some possible

clinical uses for ICPs.
2 Tregs cells in T1D

Regulatory T cells (Tregs), also known as Foxp3+Tregs, are a

class of suppressor T cells associated with the induction and

maintenance of immune tolerance (27). When measured in

peripheral blood using CD25 (the alpha chain of the IL-2

receptor) as a Tregs marker, a reduced number of T1D was

found compared to the normal group (28). However, there was

no change in Treg number by FOXP3 expression-defined Tregs

peripheral blood frequency, and observation of the phenotype of

Treg intercompartment in T1D patients also revealed no

significant size change, pointing to the hypothesis that the

major alteration of Treg in T1D is not numerical but rather its

function (29, 30). Loss of Treg function has been attributed to

pathways known to be critical for optimal Treg inhibitory

function pathways, including the IL-2 and T cell receptor

(TCR) pathways. A recent clinical study attempting to treat

T1D using low-dose IL-2 in combination with Treg found a

significant effect on Treg function maintenance while also

neglecting the amplification of NK or CD8 T cells, which may

be ameliorated by modification of IL-2 in the future (31). Tregs

can be produced by three pathways: thymus-derived nTregs,

peripheral in vivo-induced pTregs, and in vitro-induced Tregs,

and inhibit the immune response function of APCs mainly

through cellular contact, where receptors such as PD-1 or

CTLA-4 on their surface will competitively bind ligands such

as PD-L1/PD-L2, CD80/CD86 on antigen-presenting cells

(APCs). Reduced function of Tregs leads to the development

of T1D, with IL-10-induced chronic systemic hypo-

inflammation state and Teff-mediated immune attack on b-
cells, which will lead to the development of T1D (32, 33).

Clinical trials using Treg have shown improved but not as

promising results as expected, with only a few clinical studies

showing that higher levels of Tregs and IL2 appear to improve

endogenous insulin secretion in T1D, and the exploration of

insulinogenic-specific Tregs in the immune response of patients

with T1DM needs to continue in-depth (34–37). Therefore, how

to use Tregs to target the autoimmunity against islet b cells that

occurs in T1D has become a hot topic in scientific research (38,

39). In many studies using a mouse model of autoimmune

diabetes, the use of IL-2 to modulate Treg was found to reduce

interferon production by pancreatic infiltrating T cells, increase

beta-cell numbers, and mitigate other immune therapies that

interfere with Treg homeostasis and prevent disease (40–42). As

research progresses, the mechanisms involved will be uncovered

and more precise therapeutic modalities that do not produce off-

target effects will be proposed (Figure 1).
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2.1 Treg-cell transplantation

In earlier studies, nTregs were found to promote beta-cell

regeneration through autologous transplantation, and patients

could reduce the amount of exogenous insulin needed to

maintain normal blood glucose levels (43). These studies point

to the protective effect of Tregs on the islets, and the prolonged

honeymoon period and reduced insulin dosage exhibited by

patients confirm the effectiveness of Tregs (44, 45).

Mechanistically, defects in Tr1 cells would lead to

autoimmune diseases, that IL-10 prevents islet destruction and

clinical symptoms of T1D through the production of cytokine

pathways such as IFN-g or IL-17, and early intervention of IL2,

which can aid in the induction or maintenance of Foxp3, helps

to re-establish the proper immune environment and slow down

or even reverse the pathological process of T1D (33).
2.2 Induction of Tregs cells

In recent years, research has increasingly focused on

increasing Tregs levels through stimulation of other cell

subpopulations, cytokine interactions, or pharmacological

treatments (46, 47). One way to increase Tregs is by
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stimulating other cell subsets using tolerogenic dendritic cells

(DCs), which have an anti-inflammatory phenotype and can be

induced by infusion of pathogenic DCs, or by using DCs to

induce Tregs to proliferate in vivo and in vitro (48, 49). It has

been demonstrated that the relay transfer of DCs exposed to

GM-CSF to naive mice leads to a significant delay in Foxp3+ T

cell expansion and T1D onset. GM-CSF acts mainly on DCs and

leads to the expansion of Foxp3+ Tregs, thus delaying the onset

of T1D in NOD mice, and this inhibition may be mediated by

enhanced IL-10 and TGF-b1 production (50). As for drugs, liru1

dexamethasone, vitamin D3 and rapamycin; or exposure to

CTLA-4 membrane receptors and oligonucleotides exerted a

slowing of the decline in b-cell function and improved HbA1c in

recent-onset T1D (46, 48, 51).
2.3 Islet transplantation

Islet transplantation is an experimental treatment for T1D.

As an experimental procedure, islet transplantation can only be

performed as part of a clinical trial permitted by the U.S. Food

and Drug Administration (FDA). Patients undergoing

transplantation are often required to take long-term

immunosuppressive drugs, which can be extremely harmful,
FIGURE 1

The regulatory roles of T cells in autoimmune reaction (created with Biorender).
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and implantation-related foreign body reactions (FBR) often

induce necrosis of the transplanted islets and lead to failure of

glycemic control. The use of valproic acid (VPA) in short-chain

fatty acids was shown to successfully protect islet grafts, prolong

islet graft survival after islet transplantation, and increase IL-4-

producing CD4 and Treg cell populations in NOD receptors,

and VPA-induced Treg differentiation from juvenile CD4 and

Treg cells by increasing the expression of transcription factor

STAT5 and histone 3(H3) acetylation. CD4 and Treg cells.

However, the hepatotoxicity, hyperammonemia, weight gain,

and insulin resistance side effects of VPA cannot be ignored. To

avoid this, the authors observed the same effectiveness of in situ

transplantation using in vitro VPA-induced regulatory T cells,

which also prolonged islet transplantation survival (52).

However, a recent study has attempted to prepare a series of

amphoteric-coated core-shell microcapsules (including carboxy

betaine methacrylate [CBMA]-coated gelatin methacrylate

[GelMA] [CBMA-GelMA], sulfobetaine methacrylate [SBMA]-

coated gelMA [SBMA-GelMA] and methacrylic acid

phosphorylcholine [MPC]-coated gelMA [MPC-GelMA]) and

demonstrated their effectiveness in preventing protein

adsorption, cell adhesion and inflammation in vitro (53).
3 ICP, ICI, and T1D

3.1 ICP and ICI in T1D

With the rise and wide application of immunotherapy in the

field of tumor treatment, ICP and ICI have become research

hotspots. ICP, immunosuppressive small molecules on the

surface of T lymphocytes, prevent T cells from being

overact ivated by inhib i t ing T ce l l ac t ivat ion and

downregulating immune responses, thereby protecting normal

tissues from accidental injury, which is equivalent to installing a

brake function on T cells (54, 55). With their flexible regulation

of the duration and magnitude of physiological immune

responses, ICPs play an indelible role in maintaining

autoimmune homeostasis and immune tolerance (22).

Common immune checkpoints include cytotoxic T

lymphocyte-associated protein-4 (CTLA-4), programmed

death-1 (PD-1) and T cell immunoglobulin and mucin

domain-containing protein 3 (Tim-3) (56, 57). ICPs negatively

modulate the immune response by binding to their ligands, such

as PD-1 and PD-L1, but also thereby increase the potential for

tumor immune evasion (58). Normally expressed on chronically

activated T cells in peripheral tissues, PD-1 is also expressed on

pancreatic islet cells. PD-1 transmits negative signals to T cells

by binding to the ligand PD-L1 or PD-L2, thereby promoting the

suppression of immune responses (59–63). Blocking the PD-1/

PD-L1 pathway accelerated the risk of diabetes in non-obese

diabetic (NOD) mice. But conversely, increasing the expression
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of PD-1/PD-L1 or using drugs to restore the PD-1/PD-L1

pathway reversed the course of diabetes in mice (64–66). In

normal populations, the surface of islet cells expresses PD-1 for

self-protection, and the surface of T cells also helps islet B cells

expressing PD-1 bypass the immune response through ICP (62,

67). Furthermore, interferon is also a major regulator of PDL1

expression in human pancreatic b cells (68). In early

pancreatitis, depending on the regulation of signal transducer

and activator of transcription 1 (STAT1) and STAT2 genes, IFN-

a can greatly increase the expression level of PD-L1 in

pancreatic islet B cells (69, 70). During islet inflammation,

PDL1 expression in b-cells is upregulated by a mechanism

thought to be induced by type I and type II IFNs (12, 68).

This suggests that pancreatic islet b-cells try to downregulate the
immune response by upregulating PDL1, thus avoiding further

tissue damage. However, if the PD-1/PDL1 pathway is blocked,

it will break immune tolerance, and, ultimately, lead to the

development of T1D (71, 72). This was confirmed in animal

experiments in NOD mice: higher levels of PDL1 were detected

in B cells that survived the immune attack, and high levels of

PDL1 were also found to reduce the incidence of diabetes in

NOD mice (73, 74).

Immune checkpoint inhibitors work by inhibiting the “off-

duty” signal from tumor cells, restoring the immune system to

function normally, and then attacking the tumor cells. ICIs block

the binding of the ICP to its ligand, to overcome the inhibitory

effect, unleash the suppressive function, and reactivates the

specific immune function of T lymphocytes against cancer (75,

76). After the binding of PD-1 expressed on the surface of T cells

to the ligand is inhibited, those self-reactive T cells that target

islet cells are activated to attack their islet cells, and the islet cells

are destroyed, resulting in decreased insulin secretion (63). Anti-

PD-1 drugs induced PD-1 reduction may also activate

autoimmune T cells, leading to autoimmune inflammation

targeting pancreatic islet cells (67, 77, 78). In summary, with

PD-1/PD-L1 inhibitors, the expression level of PD-L1 on B cells

will be greatly reduced, which makes B cells lose their armor

against autoimmune attacks. With continued loss of cells, T1D

will be the inevitable result. And such events may be more

frequent in individuals with susceptibility genotype, HLA

haplotypes for example (62, 79).
3.2 Immune checkpoint inhibitor-
induced type 1 diabetes (ICIT1D)

When the suppressive effects of T cell immunity are

removed, T cells become hyperactivated, and the body mounts

an autoimmune response, leading to a unique set of immune-

related adverse events (irAEs) (80–83). IAE often affects the

endocrine system and results in a variety of endocrine disorders,

including hypophysitis, thyroid dysfunction, insulin deficiency
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diabetes, PAI, etc (21, 84). Relatively speaking, immune

checkpoint inhibitor-induced type 1 diabetes (ICIT1D) is a

comparatively rare type of adverse reaction with the incidence

of ICIT1D equaling 1% (54, 85). However, ICIT1D induces life-

threatening diabetic ketoacidosis (DKA) without timely

treatment in about 38% to 71% of patients and may serve as a

high-risk factor for adrenal crisis (86, 87).

Understanding the pathogenesis of ICIT1D plays an

important role in its prevention and treatment (Figure 2).

ICIT1D can be divided into four distinct entities: acute

autoimmune insulin−dependent diabetes, the clinical

presentation of type 1 diabetes, the complication of

autoimmune pancreatitis, and autoimmune lipoatrophy, the

first of which is most frequently reported (60, 88). ICIT1D

usually manifests as a rapid, sustained, severe drop in insulin, C-

peptide, and blood glucose levels, with a higher age of onset,

faster progression, and less antibody positive compared with

traditional T1D (25, 86, 89–91). Immunological characteristics

indicate that patients with ICIT1D have humoral and cellular

autoimmunity, and some patients may have islet autoantibodies,

providing evidence for the involvement of autoimmune

mechanisms (26, 62, 92). Based on a colossal number of case

studies, more than three-quarters of all ICIT1D cases are

associated with treatment with PD-1 inhibitors. Combined use

of PD-1 and CTLA-4 inhibitors accounted for 17%, PD-L1

inhibitors for 6%, and very few were associated with CTLA-4

monotherapy (3%) (25, 63, 89, 91, 93).
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4 Potential clinical application of
immune checkpoint molecules
in T1D

Although T1D is considered one of the annoying side effects

induced by immune checkpoint inhibitors, immune checkpoint

molecules exhibit the potential as a therapeutic maneuver for

T1D control (20, 89, 94). In general, inhibition of autoreactive

lymphocyte populations is considered an effective therapeutic

strategy for the treatment of autoimmune diseases including

T1D, but its clinical application is limited due to the massive

suppression of lymphocytes involved in normal adaptive

immunity (17, 95, 96). Therefore, targeted inhibition of

pathogenic lymphocytes associated with autoimmune diseases

generated considerable clinical interest (97, 98). Unlike most

existing immune suppressants, inhibition of T-cell stimulation

via blocking specific signaling molecules focuses on activated

lymphocytes and preserves normal adaptive immunity (97).

Immune checkpoint molecules perform as a strong immune

regulator of self-tolerance and autoimmunity and regulate the

response of various immune cells, including T cells, natural killer

cells, dendritic cells, innate lymphoid cells, macrophages, and

myeloid cells, and specific immune checkpoint mechanisms also

participate in pathological processes of T1D (99–101). A recent

cohort study also showed that higher levels of circulating

immune checkpoint molecules, especially CD137/4-1BB and
FIGURE 2

The roles of the PD-1/PD-L1 pathway in ICI-induced T1D.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1090842
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ding et al. 10.3389/fendo.2022.1090842
PD-1, may serve as prognostic biomarkers for new-onsets T1D

and risk factors for the growth of an additional autoimmune

disease (102). Considering the above characteristics, what

follows in the passage reviews the possible therapeutic

implications in T1D via regulating immune checkpoint

molecules (Figure 3), including co-inhibitory molecules

(Table 1) and co-stimulatory molecules (Table 2), especially

CTLA-4, PD-1, LAG3, and TIGIT, which seems to be considered

as pivotal regulatory molecules with excellent clinical

application value.
4.1 Co-inhibitory molecules

CTLA-4 belongs to the immunoglobulin-related receptor

family that is involved in multiple aspects of T cell immune

regulation and peripheral tolerance and is considered to be one

of the non-HLA genetic markers for T1D susceptibility (128–

131). Due to a homolog structure to CD28, CTLA4 proteins

share common ligands with CD28(CD80 and CD86) and even

have higher affinity to CD80 and CD86 (132, 133). Therefore,

CTLA4 proteins negatively regulate CD28-mediated T-cell co-

stimulation (133, 134). Based on these characteristics, CTLA4-
Frontiers in Endocrinology 06
immunoglobulin (Ig), namely abatacept, selectively blocks CD28

co-stimulation and defends against potentially autoreactive T

cells, thereby preventing T1D (7, 103, 132). Serr et al. have

reported that sub-immunogenic vaccination with strong

agonistic insulin mimetope efficiently suppresses effector T

cells via inducing human insulin-specific Foxp3+ Treg with

upregulated Foxp3, CTLA4, IL-2Ra and TIGIT expression,

which provides a potential new drug target for prevention of

islet autoimmunity of T1D (104).

PD-1(CD80), one member of the immunoglobulin

superfamily, negatively regulates immune responses and

mediates immune tolerance, impact on disease progression

and aetiology of T1D (135–137). PD-1 deficiency specifically

accelerates the development of subacute T1D in NODmice (136,

138, 139). Downregulation of PD-1/PD-L1 on CD4+ and CD8+

T cells in patients with T1D is dynamically recovered in partial

remission but decreased again after the partial remission phase

(140, 141). Thus, the above-mentioned results suggest that PD-

1/PD-L1 may be a potential target for T1D therapy. An anti-PD-

1 immunotoxin selectively targeting and depleting PD-1-

expressing cells delays disease onset in mouse models of

autoimmune diabetes (97). Genetically engineered PD-L1-

overexpressing platelets also suppress autoreactive pancreatic
FIGURE 3

The treatment measures for T1D via regulating T cells. The blue rectangles represent co-inhibitory molecules while the yellow rectangles
represent co-stimulatory molecules (created with Biorender).
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T-cell activity and reverse diabetes in novel hyperglycemic NOD

mice (17). PFK15 treatment has been reported to increase the

expression of PD-1 and LAG-3(lymphocyte-activation gene 3)

on CD4 T cells and prevent the development of diabetes via

inhibiting glycolysis utilization of diabetogenic CD4 T cells and

reducing T cell responses to b cell antigen (105, 106). Low-
Frontiers in Endocrinology 07
molecular-weight dextran sulfate reduces the incidence of

diabetes and even reverses diabetes in early-onset diabetic

NOD mice, at least partly via increasing PD-1 expression in T

cells, reducing interferon-gCD4 and CD8 T cells, and enhancing

the number of FoxP3 cells (107, 108). Intralymphatic injection

of aluminum-formulated glutamic acid decarboxylase
TABLE 1 The roles of treatment measures regulating co-inhibitory molecules for T1D.

Treatment measures Related mechanisms Ref.

CTLA-4

CTLA4-Ig Selectively block CD28 co-stimulation and defend against potentially autoreactive T cells. (7,
103)

sub-immunogenic vaccination with
strong agonistic insulin mimetope

Suppress effector T cells via inducing human insulin-specific Foxp3+ Treg with upregulated Foxp3, CTLA4,
IL-2Ra, and TIGIT expression.

(104)

PD-1

anti-PD-1 immunotoxin Selectively target and deplete PD-1-expressing cells. (97)

Genetically engineered PD-L1-
overexpressing platelets

Suppress autoreactive pancreatic T-cell activity and reverse diabetes in novel hyperglycemic NOD mice. (17)

PFK15 Increase the expression of PD-1 and LAG-3 on CD4 T cells, inhibit glycolysis utilization of diabetogenic
CD4 T cells and reduce T cell responses to b cell antigen.

(105,
106)

Low-molecular-weight dextran sulfate Increase PD-1 expression in T cells, reduce interferon-gCD4 and CD8 T cells, and enhance the number of
foxp3 cells.

(107,
108)

Intralymphatic injection of aluminum-
formulated glutamic acid decarboxylase
(GAD-alum)

Delay the progression of T1D with immunomodulatory effects including increased PD-1+ CD69+ cells in
both CD8+ and double negative T cells.

(109,
110)

LAG3

stable peptide-MHC class II complexes
(pMHCII)

Induce T cell suppression and thereby inhibit diabetes progression in NOD mice with LAG-3 deficiency. (111)

CYM-5442 Induce the expression of negative immune regulator receptor genes Pdcd1, Lag3, Ctla4, Tigit, and Btla to
inhibit the autoimmune ability of T cells

(112)

oral Salmonella-based anti-CD3 mAb
combined therapy

Immunosuppressive CD4CD25Foxp3 Treg and CD4CD49bLAG3 Tr1 cells. (113)

anti-IL-7Ra antibodies Delay T1D incidence and upregulates LAG-3, Tim-3, and PD-1 on peripheral blood CD4 and CD8 T cells
from prediabetic NOD mice.

(114)

Aire-overexpressing DCs Upregulate CD73, Lag3, and FR4 that mediate self-tolerance, and decrease CD4+IFN-g+ autoreactive T cells
in STZ-T1D mouse-derived splenocytes, which is associated with Aire-overexpressing DCs-induced T1D
prevention and delay.

(115)

Tim

Tim-3 ligand galectin-9 Enhance apoptosis of CD4+ Tim-3+ Th1 cells and downregulate Th1 immune response, and anti-Tim-3
monoclonal RMT3-23 antibody suppresses the TNF-a production and activation of DC.

(116,
117)

TIGIT

Teplizumab Increase the percentage of KLRG1+TIGIT+CD8+ T cells. (118)

soluble receptor for advanced glycation
end products (sRAGE)

Reverse RAGE ligand-induced downregulation of key genes for Treg homeostasis and activation, including
FOXP3, IL7R, TIGIT, JAK1, STAT3, STAT5b, and CCR4.

(119,
120)

Alefacept Hypo proliferative CD8 memory cells expressing exhaustion-associated markers including TIGIT and
KLRG1.

(121)

BTLA-HVEM

tDCs and multiligand-DCs Suppress the function of effector T cells and induce self-tolerance. (122)
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(GAD-alum) delays the progress ion of T1D with

immunomodulatory effects including increased PD-1+ CD69+

cells in both CD8+ and double negative T cells (109, 110).

Apart from CTLA-4 and PD-1, the next wave of co-

inhibitory immune checkpoint receptor targets, including Lag-

3, Tim-3, and TIGIT, are drawing increasing attention in

clinical application.

LAG3 is an inhibitory immune checkpoint receptor

regulating multiple immune functions, including T cell

activation and proliferation, cytokine production, and cytolytic

activity (142, 143). LAG-3 blockade promotes disease growth

and progression in autoimmune-prone models. Corresponding

to this, Jones et al. reported that T1D patients exhibited fewer

LAG-3 CD4 and CD8 T cells compared with healthy controls

(144). The interaction between LAG-3 and stable peptide-MHC

class II complexes (pMHCII) induces T cell suppression and

thereby inhibits diabetes progression in NOD mice with LAG-3

deficiency (111). Moreover, CYM-5442, a selective S1PR1

agonist, induces the expression of negative immune regulator

receptor genes Pdcd1, Lag3, Ctla4, Tigit, and Btla to inhibit the

autoimmune ability of T cells, leading to T1D prevention in the

mouse Rip-LCMV T1D models (112). Similarly, oral

Salmonella-based anti-CD3 mAb combined therapy tempts

immuno s u p p r e s s i v e CD4CD25 F o x p 3 T r e g a n d

CD4CD49bLAG3 Tr1 cells, then contributing to reversion of

new-onset T1D in NOD mice (113). Treatment with anti-IL-

7Ra antibodies for two weeks delays T1D incidence and

upregulates LAG-3, Tim-3, and PD-1 on peripheral blood

CD4 and CD8 T cells from prediabetic NOD mice (114).

Autoimmune regulator (Aire)-overexpressing DCs upregulates

CD73, Lag3, and FR4 that mediate self-tolerance, and decreases

CD4+IFN-g+ autoreactive T cells in STZ-T1D mouse-derived

splenocytes, which is associated with Aire-overexpressing DCs

induced T1D prevention and delay (115).
Frontiers in Endocrinology 08
Tim-1, Tim-3, and Tim-4 are members of the T-cell

immunoglobulin and mucin domain (Tim) molecule family in

humans, and mediate peripheral immune tolerance via

interacting with its ligands (145, 146). Compared with healthy

controls, upregulated Tim-1 and downregulated Tim-3 led to

imbalanced ratios of Tim-3/Tim-1 in T1D, in particular T1D

patients with defective islet function (147). Another research

focusing on Tregs reveals that Tim1 and Tim4 on CD4CD25 T

cells decreased in peripheral blood mononuclear cells of patients

with T1D than healthy volunteers (148). Tim-3 ligand galectin-9

enhances apoptosis of CD4+ Tim-3+ Th1 cells and

downregulates Th1 immune response, and anti-Tim-3

monoclonal RMT3-23 antibody suppresses the TNF-a
production and activation of DC, both exhibiting significant

therapeutic effects on T1D (116, 117). Although a few studies

addressing the therapeutic influence of Tim-related pathways for

T1D in the last decade, we considered Tim as a novel target

worthy of further exploration for treatment.

Expressed on Treg cells, T cell immunoglobulin and ITIM

domain (TIGIT) is an inhibitory receptor that participates in the

pathogenesis of T1D (149, 150). Higher percentage and

expression levels of TIGIT are identified on CD4+CD25hi T

cells, CD4+CD25- T cells, total CD4+ T cells, and non-CD4+

cells of peripheral blood mononuclear cells from T1D patients

versus healthy controls (151). Teplizumab treatment increases

the percentage of KLRG1+TIGIT+CD8+ T cells and suppresses

disease progression to T1D in high-risk participants (118). A low

circulating level of soluble receptors for advanced glycation end

products(sRAGE) is representative of the high risk of T1D.

sRAGE trea tment rever se s RAGE l igand- induced

downregulation of key genes for Treg homeostasis and

activation, including FOXP3, IL7R, TIGIT, JAK1, STAT3,

STAT5b, and CCR4 (119, 120). Alefacept preserves

endogenous insulin C-peptide production of T1D patients to a
TABLE 2 The roles of treatment measures regulating co-stimulatory molecules for T1D.

Treatment measures Related mechanisms Ref.

CD40

CD40 knock-down DCs Improve blood glucose, glucose tolerance, weight, and IL-13 production. (123)

Carbonyl iron Decreases the expression of CD40 and CD80 on DCs to suppress antigen-presenting ability and further adaptive immune
response toward pancreatic beta cells.

(124)

OX40

OX40 agonistic antibody
(OX86)

Induce CD4+CD25+Foxp3+ Tregs and CD4+Foxp3- T cells expressing the latency-associated peptide play a synergistic role
with insulin B9:23.

(125)

ICOS

cholecalciferol
supplement

Increase 25(OH)D levels and decreases Th17 and Treg/ICOS+ percentages in the serum of healthy siblings. (126)

4-1BB

soluble CD137 Induce CD4+ T cell anergy, in turn suppressing antigen-specific T cell proliferation and IL-2/IFN-g production. (127)
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certain extent, which is related to hypo proliferative CD8

memory cells expressing exhaustion-associated markers

including TIGIT and KLRG1 (121).

Another inhibitory immune checkpoint, BTLA (B- and T-

lymphocyte attenuator)-HVEM (Herpesvirus entry mediator,

namely TNFRSF14) complex, has been drawing increasing

attention of the academic community as an important

regulator in autoimmune reactions (152, 153). A lower

expression of BTLA is identified in the peripheral blood of

patients with young-onset T1D compared with adult-onset T1D

patients (154). To explore a new therapeutic strategy, Gudi et al.

conduct engineered tolerogenic dendritic cells (tDCs) expressing

CTLA4 selective ligand and multiligand-DCs expressing a

combination of CTLA4, PD1, and BTLA selective ligands,

both of which present pancreatic b-cell antigen (BcAg). Both

two types of engineered DCs, multiligand-DCs in particular,

suppress the function of effector T cells and induce self-

tolerance, thereby delaying the progression of T1D (122).
4.2 Co-stimulatory molecules

CD40 is a member of the tumor necrosis factor (TNF)

receptor superfamily and interacts with CD40L to mediate the

interaction between B and CD4+ T cells for germinal center

responses and B cell activation (155, 156). Fully functional CD40

expression is not only required for hyperglycemia and insulitis in

T1D but also induces relatively broad T‐cell receptor repertoire

on CD40+ CD4+ cells (Th40 cells) during diabetogenesis (157).

The number of Th40 cells significantly expands in the peripheral

blood of T1D patients. Furthermore, Th40 cell levels also stratify

pre-diabetic patients into two groups, with Th40-high subjects

showing a higher percentage of disordered glucose tolerance,

CD4/CD8 double-positive population, and T1D-associated

HLA, including HLA DR4/DR4 and DQ8/DQ8 (158, 159). In

the streptozotocin-induced diabetic mice model, CD40 knock-

down DCs treatment improves blood glucose, glucose tolerance,

weight, and IL-13 production (123). Highly expressed in B cells,

To l l - l i k e r e cep to r 9 (TLR9) i s r e l a t ed to mat r i x

metalloproteinases, tissue inhibitors of metalloproteinase-1,

and CD40. B-cell-specific deletion of TLR9 near-completely

protect NOD mice from T1D development (160). Adjuvant

carbonyl iron inhibits the development of diabetes and

decreases the expression of CD40 and CD80 on DCs to

suppress antigen-presenting ability and further adaptive

immune response toward pancreatic beta cells (124).

OX40, also named CD134 or TNFRSF4, a member of the

TNF receptor family, serves as a co-stimulatory factor during T

cell activation and controls effector and memory T cell responses

(161–163). In T1D patients, soluble OX40 and OX40L

expression in the serum is significantly upregulated and

considered as potential indicators for disease progression,

while membrane OX40 and OX40L expression on immune
Frontiers in Endocrinology 09
cells is significantly downregulated compared with the healthy

controls (164). OX40 agonistic antibody (OX86) treatment

induces CD4+CD25+Foxp3+ Tregs and CD4+Foxp3- T cells

expressing the latency-associated peptide and reduces T1D

incidence of NOD mice, which play a synergistic role with

insulin B9:23. Interestingly, Tregs gathered from NOD mice

treated with OX86 and insulin B9:23 also prevent T1D

development when adoptively transferred into recipient

mice (125).

Inducible co-stimulator (ICOS), a member of the CD28

superfamily, is expressed on activated T cells and specifically

binds with its unique ligand ICOSL (165, 166). Children with

impaired glucose tolerance and T1D exhibit a higher frequency

of CXCR5+PD-1+ICOS+, CD4+CXCR5+, and CD4+CXCR5

+ICOS+ circulating fol l icular helper T cells (Tfh).

Interestingly, the expansion of CXCR5+PD-1+ICOS+ Tfh is

more apparent in children with two or more biochemical

autoantibodies (167, 168). Progressively reduction and

suppression of ICOS+Foxp3+ Treg cells in islets are

representing exacerbated T1D. Consistently, inhibited ICOS

pathway also correlates with T1D progression in NOD.BDC2.5

mice (169). A recent cohort study exploring the potential

association between blood serum 25 OH vitamin D(25[OH]D)

levels and Th17 and Treg, and Treg/ICOS+ levels in healthy

siblings of children with T1D reveals that Treg/ICOS+

percentages are higher in siblings with lower 25(OH)D levels

and higher genetic risk for T1D. Furthermore, cholecalciferol

supplement for 6 months increases 25(OH)D levels and

decreases Th17 and Treg/ICOS+ percentages in the serum of

healthy siblings (126). ICOS expression may also impact the

effects of co-stimulation blockade administration. For example,

higher frequencies of ICOS+ Tfh at baseline predict a poor

clinical outcome following abatacept treatment (170).

As a member of the TNF receptor superfamily, 4-1BB, namely

CD137 and TNFRSF9, is expressed on activated T cells and

interacts with CD137L, the ligand of CD137, expressed by

antigen-presenting cells (171). Interestingly, the impacts of

CD137 on T1D progression in NOD mice associate with where

it is expressed. CD137 in CD4 T cells suppresses T1D

development, while CD137 expressed in CD8 T cells promotes

disease progression (172). NOD.Tnfsf9-/- strain shows delayed

T1D progression, less insulitis, and reduced b-cell-autoreactive
CD8 T cells frequencies (173). Itoh et al. have reported that soluble

CD137 induces CD4+ T cell anergy, in turn suppressing antigen-

specific T cell proliferation and IL-2/IFN-g production, thereby

delaying progression to end-stage T1D in NOD mice (127).
5 Conclusion

ICIs block immune checkpoints and have emerged as a

valuable alternative treatment for cancers with advanced stage,

but endocrine toxicity, ICI-related DM, for example, limits their
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potential clinical application to some extent (20, 174). However,

the similarity between ICI-related DM and T1D also suggests the

potential feasibility of targeting immune checkpoint molecules

for T1D treatment, which is also supported by higher circulating

immune checkpoint molecule levels in T1D patients. Differing

from massive immune inhibitors, targeted regulation of immune

checkpoint molecules may specifically inhibit pathogenic

lymphocytes associated with T1D (17, 96). Due to numerous

co-inhibitory and co-stimulatory molecules involved in the

treatment of T1D as mentioned above, it was valuable to

explore novel therapeutic approaches regulating autoimmune-

related T lymphocytes based on these targets for the management

and treatment of T1D and may improve clinical outcomes.
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45. Marek-Trzonkowska N, Myśliwiec M, Dobyszuk A, Grabowska M,
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