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An imbalance between pro-oxidative and antioxidative cellular mechanisms is

oxidative stress (OxS) which may be systemic or organ-specific. Although OxS

is a consequence of normal body and organ physiology, severely impaired

oxidative homeostasis results in DNA hydroxylation, protein denaturation, lipid

peroxidation, and apoptosis, ultimately compromising cells’ function and

viability. The thyroid gland is an organ that exhibits both oxidative and

antioxidative processes. In terms of OxS severity, the thyroid gland’s

response could be physiological (i.e. hormone production and secretion) or

pathological (i.e. development of diseases, such as goitre, thyroid cancer, or

thyroiditis). Protective nutritional antioxidants may benefit defensive

antioxidative systems in resolving pro-oxidative dominance and redox

imbalance, preventing or delaying chronic thyroid diseases. This review

provides information on nutritional antioxidants and their protective roles

against impaired redox homeostasis in various thyroid pathologies. We also

review novel findings related to the connection between the thyroid gland and

gut microbiome and analyze the effects of probiotics with antioxidant

properties on thyroid diseases.
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1 Introduction

Cellular redox homeostasis depends on a dynamic

equilibrium between prooxidant production and its

elimination. Reactive oxygen species (ROS), together with

reactive nitrogen species (RNS), represent the most important

prooxidants whose excessive accumulation leads to oxidative

stress (OxS) and molecular damage (1, 2). ROS are molecules

with an oxygen atom, and unpaired electrons are primarily

generated as by-products of ATP synthesis in mitochondrial

respiratory chains (1) or during inflammation (3, 4). The

concentration of ROS determines their physiological role (5).

When present at low concentrations, ROS are involved in

signaling processes essential for normal cellular functions (6,

7), whereas high ROS concentration leads to DNA, lipid, and

protein damage and apoptosis (8).

ROS are crucial in thyroid function because they are

essential in the initial stages of thyroid hormone synthesis

during iodide oxidation (9). Also, the process whereby thyroid

peroxidase (TPO) catalyzes thyroxine (T4) and triiodothyronine

(T3) during its synthesis in thyroid follicles involves ROS (10).

In addition, thyroid hormones affect the mitochondrial activity

and modulate ROS production (10). The dependence of normal

thyroid function on ROS implies that the thyroid is continuously

exposed to ROS and, thus, particularly sensitive to oxidative

damage (10). Therefore, to protect the integrity of the thyroid, it

is mandatory that the thyroid antioxidant defence system

effectively regulates and balances ROS production and

elimination (11, 12).

Aerobic organisms have evolved multiple antioxidant and

repair systems for protection against OxS. Enzymes that

decompose ROS, such as catalase (CAT), superoxide

dismutase (SOD), glutathione peroxidase (GPx), and

glutathione reductase (GR) provide the primary antioxidant

defence (5, 7, 8, 13). In contrast, ROS-induced damage repair

systems eliminate damaged cells through autophagy and

apoptosis processes (14, 15). However, the capacity of intrinsic

antioxidant systems is not always sufficient to prevent damage

caused by excessive accumulation of ROS. Thus, non-enzymatic

mechanisms based on the action of molecules with antioxidant

properties such as glutathione (GSH), thioredoxin, coenzyme

Q10, and exogenous antioxidants, including various

polyphenolic compounds, ascorbic acid, tocopherol retinol,

and b-carotene, that may also support antioxidant systems are

essential. The use of nutritional antioxidants as supplementary

substances that delay and/or prevent the oxidation of cellular

components has shown the potential to protect human organs,

including the thyroid gland, against oxidative damage by

reinforcing the body’s antioxidant defence and increasing total

antioxidant capacity (5, 16, 17).

Recently, a search for natural nutritional antioxidants from

biological resources has gained substantial attention. Of
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particular interest are probiotics which represent live non-

pathogenic microorganisms that can restore microbial balance

in the gastrointestinal tract upon appropriate administration

(18). Evidence demonstrates that probiotic bacteria exert

significant antioxidant effects in vitro and in vivo (19–22), and

the connection between the thyroid gland and gut microbiome is

well-established. Furthermore, it has been documented that

dysbiosis, an imbalance in gut microbiota, is associated with

impaired thyroid function and pathogenesis of thyroid disorders

such as Hashimoto’s and Graves’ disease (23). In this review, we

discuss the protective role of exogenous nutritional antioxidants

in the context of various thyroid disorders. We also review novel

findings related to the connection between the thyroid gland and

gut microbiome and analyze the effects of probiotics with

antioxidant properties on thyroid diseases.
2 Search strategy

We searched MEDLINE and PubMed for all English and non-

English articles with English abstracts published between 1977 and

2022. The leading search terms were: oxidative stress, reactive

oxygen species, thyroid disease, nutritional antioxidants, thyroid-

gut axis, gut microbiome, and antioxidant probiotics. The search

retrieved original peer-reviewed research articles, which were

further analyzed, focusing on the role of nutritional antioxidants

in thyroid diseases. We specifically focused on including the most

recent findings published in the past five years.
3 Oxidative stress

Oxidative stress is a disbalance caused by excessive

production of prooxidant substances such as ROS and RNS

and/or the antioxidant systems working inefficiently (14, 24, 25).

ROS include superoxide anion, hydroxyl radical, and hydrogen

peroxide, which are produced in vivo primarily by the

mitochondrial respiratory chain during aerobic metabolism

(26). RNS family includes peroxynitrite, generated via a

reaction between nitric oxide (NO) and superoxide, and

nitrosoperoxycarbonate, generated via a reaction between

peroxynitrite and carbon dioxide. Under physiological

conditions, ROS plays a vital role in maintaining cellular

homeostasis by regulating the endogenous antioxidant pool

(27–30) and participating in host defence and hormone

synthesis (31, 32). In thyrocytes, ROS production is essential

for their functional role (33) since TPO-mediated hormone

synthesis depends on the action of dual oxidases (DUOX),

enzymes responsible for H2O2 production (34). However,

when ROS and RNS are present in excessive amounts and/or

in the form of highly reactive free radicals such as superoxide

anion and hydroxyl radical, they oxidize susceptible
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biomolecules such as membrane lipids, cellular proteins, and

nucleic acids, leading to disruption of normal cellular functions

(35). Lipid peroxidation is a process in which oxidants such as

free radicals or non-radical species attack lipids containing

carbon-carbon double bond(s), especially polyunsaturated fatty

acids (PUFAs) (36). The main lipid peroxidation products are

hydroperoxides, such as propanal, hexanal, 4-hydroxynonenal,

and malondialdehyde (MDA) (37). Phospholipids, cholesterol,

and glycolipids are also targets of potentially lethal peroxidative

modifications (38). ROS can also cause damage to DNA by

oxidizing nucleoside bases (39). For example, guanine oxidation

produces 8-oxo guanine (8-oxoG), which may lead to G-T or G-

A transversions if unrepaired. The guanine and deoxyguanosine

oxidation products 8-oxoG and its nucleotide 8-oxo-2′-
deoxyguanosine (8-oxodG) are ROS-mediated DNA lesions

considered the most significant biomarkers for oxidative DNA

damage (40). Oxidized bases are usually recognized and repaired

by the base excision pathway (BER). Still, when they co-occur on

opposing strands, BER can lead to the generation of double-

stranded DNA breaks (41). ROS accumulation also induces

mitochondrial DNA lesions, strand breaks, and DNA

degradation (42). In addition, increased ROS levels are

responsible for protein oxidation that can rapidly contribute to

the augmentation of OxS by directly affecting cell structure, cell

signaling, and essential enzymatic metabolic processes. Several

modes of ROS-mediated protein oxidation are reported,

including metal-catalyzed oxidation, oxidation-induced

cleavage, amino acid oxidation, and the conjugation of lipid

peroxidation products (43).

Excessive ROS accumulation is an important factor in the

pathogenesis of different diseases. For instance, an elevated ROS

production by the respiratory chain is observed in obesity as a

response to metabolic overload caused by excess macronutrients

and increased substrate availability (44). Mitochondrial

dysfunction and endothelial reticulum stress contribute to

metabolic perturbances in the adipose tissue of obese patients

(45). Consequent ROS accumulation leads to cell damage and

pathogenesis of inflammatory and cardiovascular diseases (46).

Furthermore, mitochondrial ROS acts as signaling molecules

mediating pro-inflammatory cytokines’ production, further

reinforcing the connection between OxS and inflammation (47).

Several enzymatic and non-enzymatic defence mechanisms

that guard cells against free radical damage have been identified

in different cellular localizations, including mitochondria,

plasma membrane, endoplasmic reticulum, peroxisomes, and

cytosol. For example, enzymes SOD, Cat, and GPx, and

transition-metal binding proteins, such as transferrin, ferritin,

and ceruloplasmin, inactivate free radicals (48). Three forms of

SOD are known in mammals: cytoplasmic SOD (SOD1),

mitochondrial SOD (SOD2), and extracellular SOD (SOD3)

(49). SOD belongs to a group of metalloenzymes that catalyzes

the dismutation of superoxide anion to hydrogen peroxide and
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molecular oxygen, while Cat decomposes hydrogen peroxide to

water and molecular oxygen (50). In high H2O2 levels, GPx also

participates in detoxification by converting lipid peroxides to the

corresponding alcohols. Hydrosoluble molecules with free

radical scavenging properties such as ascorbic acid, albumin,

bilirubin, urates and thiols, liposoluble coenzyme Q10, and

vitamin E interfere with the lipid peroxidation by neutralizing

the free radicals. In particular, liposoluble scavengers in cellular

membranes have high diffusion rates, enabling them to abolish

the radical chain reactions by immediately converting them into

more stable and less reactive molecules (46). Additional defence

mechanisms that reconstruct damaged molecules involve using

specific phospholipase that removes peroxidized fatty acids,

allowing the reacylation of damaged molecules (51, 52).
4 General overview of
thyroid diseases

Thyroid hormones have a considerable impact on the

cellular oxidative stress processes which is ascribed to their

role in cellular metabolism and oxygen consumption (53).

Thyroid hormones are produced by thyroid gland, released

into circulation, and transported to all organs and cells where

they exert their effect. An important role in production of

thyroid hormones has hypothalamic-pituitary-thyroid axis.

Hypothalamus production of thyrotropin-releasing hormone

(TRH) stimulates anterior pituitary gland to secrete thyroid-

stimulating hormone (TSH), which affects thyroid gland and

leads to production of thyroid hormones. Thyroid gland mainly

produces T4, a prohormone which needs to convert to T3 to

become biologically active. T4 comprises about 80% of secreted

thyroid hormones, while the other 20% is T3. Increased plasma

values of thyroid hormones in circulation activate negative

feedback loop and inhibit release of TSH (54, 55).

Thyroid hormones exhibit profound metabolic effects

characterized by an increased rate of both catabolic and

anabolic reactions, resulting in an overall acceleration of the

basal metabolism which is associated with increased oxygen

consumption, respiratory rate, energy expenditure, and heat

production (56). In addition, altered thyroid hormones levels

may cause changes in the number and activity of mitochondrial

respiratory chain components which represent the principal

cellular site of ROS production, ultimately leading to changes

in the cellular redox environment and increased ROS generation

(57, 58). For instance, it has been reported that hypothyroidism-

induced dysfunction of the mitochondrial respiratory chain is

associated with increased production of free radicals (59) Thus,

excess TSH in hypothyroidism may modulate oxidative stress

processes (60) by augmenting the accumulation of ROS that

result from both increased generation of free radicals and

diminished capacity of the antioxidative defense systems.
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Hypothyroidism is associated with an increased risk of

atherosclerosis due to its metabolic effects (61, 62). It is

commonly accompanied by hyperlipidemia which results from

a disbalance between the rates of fatty acids’ synthesis and

degradation and is characterized by elevated total cholesterol

and low-density lipoprotein-cholesterol (LDL-C), thus

providing the substrate for ROS-mediated lipid peroxidation

(63–66). Interestingly, products of lipid peroxidation may

further increase overall cellular oxidative stress by facilitating

the generation of free radicals through the formation of adducts

with proteins, which increases direct free radical-induced

protein oxidation (67).

In thyroid diseases, metabolic disorders associated with low-

grade inflammation can also lead to an increased oxidative stress

(68). For instance, chronic low-grade inflammation observed in

Hashimoto’s thyroiditis causes endothelial dysfunction which

represents an early step in the development of atherosclerosis.

Endothelial dysfunction is characterized by the reduction of

bioavailability of NO, resulting in impaired endothelium-

dependent vasodilation (69) and increased oxidative stress

(70). However, it should be mentioned that there is still no

consensus in the literature regarding the connection between

hypothyroidism and oxidative stress. Some studies report

increased oxidative stress in hypothyroidism while other

suggest that hypometabolic state that is prevalent in

hypothyroidism may protects tissues from oxidative damage.

Thyroid diseases are considered the most commonly

reported endocrine diseases in clinical practice, followed by
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lipid and carbohydrate disorders (71–73). The primary thyroid

condition that affects thyroid functionality presents as

hyperthyroidism or hypothyroidism (Figure 1.). Thyroid

dysfunction could manifest fully (clinically) or latently

(subclinically). Based on duration, thyroid dysfunction could

be persistent or transitional (73–75). The natural history of

thyroid disorders can negatively affect the morphology and

function of target tissues if left untreated or improperly treated

(55, 73, 76). Thus, the leading causes of death in patients with

thyroid dysfunctions are the consequences of atherosclerosis

acceleration and the worsening of pre-existing cardiovascular

and central nervous system diseases (77, 78). Such endpoints

depend on pronounced OxS and diminished antioxidant defense

systems at the molecular level (79–81).
5 Thyroid diseases and OxS

Different thyroidopathies have been shown to cause

increased ROS production and evident OxS-induced damage

to thyroid cells. This relationship is reciprocal since thyroid

conditions can worsen OxS and increase ROS production,

exacerbating oxidative damage. Thyroid hormones increase

ROS release in the mitochondrial respiratory chain (25, 82,

83). Hypothyroidism contributes to OxS through an inefficient

antioxidant defence system, opposite to hyperthyroidism, where

increased ROS production promotes OxS and oxidative damage

of thyroid cells (Figure 1) (46). According to published research,
A

B

FIGURE 1

Thyroid gland’s response to oxidative stress in: (A) physiological and (B) pathological conditions. Biorender.com was used to generate part of the Figure.
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preventive dietary antioxidant therapy may partially correct the

redox imbalance, making it a viable method for preventing the

onset of many chronic thyroidopathies (25).
5.1 Thyroid dysfunctions and OxS

5.1.1 Hypothyroidism
Even in its subclinical form, hypothyroidism reduces

antioxidant system activity, which promotes OxS, causing

oxidative damage and altered lipid metabolism in thyroid cells

(25, 46, 84). MDA, a by-product of ROS-induced lipid

peroxidation, has also been found in higher serum

concentrations in hypothyroid patients (79). Even though

levothyroxine considerably reduces lipid peroxidation, the

serum MDA levels never reach the levels seen in healthy

individuals (85). In addition, accumulated oxygen free radicals

in thyroid cells may inhibit TPO function and interfere with the

synthesis and secretion of thyroid hormones, causing

hypothyroidism (34, 86).

5.1.2 Hyperthyroidism
ROS generation is increased by hyperthyroidism (87). The

increased intracellular ATP consumption, increased tissue oxygen

consumption and oxidative phosphorylation, overexpression of

adrenergic receptors, and a decrease in antioxidant defensive

mechanisms are the mechanisms of free radicals overproduction

that favour OxS in hyperthyroid patients (46). In addition,

patients with hyperthyroidism have increased rates of lipid

peroxidation compared to euthyroid people, which is a sign of

oxidative damage to membrane lipids (82). The link between

hyperthyroidism and deteriorating OxS is suggested by the

positive association between thyroid hormones and MDA, TSH,

and GSH (83).
5.2 Thyroid disorders and OxS

5.2.1 Nodular goitre
OxS promotes thyroid cell proliferation (88, 89). Elevated

MDA levels were observed in tissues collected from patients with

toxic and non-toxic multinodular goitre, accompanied by

reduced activity of SOD, GPx, and selenium content compared

to adjacent, healthy thyroid tissue. Tissues of benign thyroid

nodules show significantly reduced total antioxidant status

(TAS) and reduced oxidative stress index (OSI) (90). The

presence of elevated OxS parameters in toxic multinodular

goitre and decreased plasma GPx and GR activities were also

demonstrated (91). These findings suggest an impaired redox

balance and antioxidant defence in patients with toxic thyroid

nodules and nodular goitre.

Additionally, rare loss-of-function germline mutations of

Kelch-like ECH-associated protein 1 (KEAP1) could be detected
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in nodular goitre leading to Nrf2 pathway activation that favours

transcription of cytoprotective and antioxidant enzymes (92).

The thyroid nodule size may change in both directions over

time. The decrease in the size of thyroid nodules may result from

supplementation with extracts of plants with antioxidant and

anti-inflammatory properties (93).
5.2.2 Autoimmune thyroid diseases
5.2.2.1 Hashimoto thyroiditis

By interacting with TPO and thyroglobulin (TG) and

promoting immunogenicity by altering their morphology and

function, NADPH-oxidases (NOXs) involvement in the

production of hydrogen peroxide (H2O2) regarding thyroid

hormone synthesis may be related to the pathophysiology of

AITD (86, 94, 95). More specifically, it has been demonstrated

that an increase in ROS encourages the cleavage of TG into

smaller fragments, which exposes the immune system to novel

epitopes and intensifies the autoimmune response (96). OxS

indicators are significantly higher when Hashimoto thyroiditis is

associated with thyroid dysfunction. According to certain

studies, the markers of worsened OxS in patients with

Hashimoto thyroiditis were closely related to the levels of TG

or TPO antibodies (25, 97–99).

Because it increases ROS production and lowers antioxidant

levels, excessive iodine consumption is considered an additional

risk factor for developing AITD. In people with Hashimoto

thyroiditis, anti-TPO antibodies depend on GSH levels and

exhibit an inverse correlation (89, 100). Additionally, there is a

favourable association between total oxidative status (TOS) and

OSI and both antibodies (anti-TG and anti-TPO). Reduced GSH

levels seem to be a decisive factor in OxS activation and the

development of Hashimoto thyroiditis (101, 102). Additionally,

it has been demonstrated that elevated TOS and OSI parameters

may precede the development of hypothyroidism in

autoimmune thyroiditis and may serve as indicators of thyroid

cell injury (101–103). Areas with lower-selenium soil have been

linked to increased Hashimoto thyroiditis in humans (104).

Also, genetic interactions between minor alleles in the

selenoprotein S gene (SELENOS) and the nuclear factor

erythroid 2-related factor 2 gene (NFE2L2) increase chronic

thyroiditis incidences (105).
5.2.2.2 Graves’ disease

The most typical cause of hyperthyroidism is Graves’ disease

(GD). Its natural history appears to be heavily influenced by

oxidative DNA damage. Untreated GD sufferers were shown to

have much more DNA damage than patients with toxic nodular

goitre and healthy people (106). The highest level of OxS

markers was recorded in hyperthyroid GD patients, especially

ones with relapsing disease (107, 108). Although both

thiamazole and propylthiouracil effectively restore ROS and

the antioxidative defence systems, some authors evidenced
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propylthiouracil as more efficacious (109). The unique

mechanism of how OxS leads to GD is disrupting self-

tolerance. The thyroid-stimulating antibodies (TSAb) present

in GD are engaged in oxidation processes. As the markers of OxS

show a positive correlation with TSAb, it may indicate that these

variables may be involved in the breakdown of redox balance

(110). In patients with GD, activating the nuclear factor

erythroid 2–related factor 2 (Nrf2) pathway may help restore

thyroid function (105).

5.2.3 Thyroid cancer
Increased production of ROS has been shown to favour

cancer development (111). However, ROS can also trigger cell

senescence and death, acting as an anti-tumorigenic agent (112).

Disturbed genomic integrity induces oxidative genetic damage,

DNA oxidation, the activation of proto-oncogenes, and the

inactivation tumour suppressor genes leading to proliferative

effects and mutagenesis (12, 113, 114). According to Krohn et al.,

DNA damage, a precursor to tumorigenesis, is thought to be

caused by OxS (115). Resultant oxidative DNA base lesions have

the potential to mutate some genetic material, which would

impair the integrity of the genome by preventing transcription

and replication and by generating mutagenesis (116). The

oxidized form of guanine, 8-oxo-2′-deoxyguanosine (8-oxo-

dG), is a valuable marker of oxidative DNA damage during

carcinogenesis (116, 117). When compared to matched normal

thyroid tissue, both benign (human follicular adenomas, or

FTAs) and malignant (follicular (FTC) and papillary thyroid

carcinoma (PTC)) lesions were found to have elevated nuclear

levels of 8-oxo-dG (118) which most likely reflects the

detrimental effects of prolonged exposure to chronic OxS seen

during thyroid cancer (113, 118).

According to an analysis of the redox balance, sera

antioxidant levels were lower in thyroid cancer patients than

in healthy controls, and OxS marker sera levels in thyroid cancer

patients were significantly higher than in the control samples

(119). In addition, high concentrations of MDA in blood were

detected in thyroid cancer patients, which unequivocally

indicated reduced blood antioxidative capacity (120, 121).

A disturbed balance between serum OxS and antioxidant

defence system markers is typically encountered in thyroid

cancer patients compared to healthy individuals (119, 120,

122, 123). The ineffective defence mechanism cannot

neutralize ROS overproduction in thyroid cancer cells, leading

to OxS (122). A significant difference in GPx activity and MDA

levels was seen between the thyroid cancer patients before and

after thyroidectomy in a study examining the change in OxS

markers. Although thyroidectomy dramatically improved the

oxidative status in favour of antioxidants, lipid peroxidation

levels remained much more significant than in healthy thyroid

people (25, 121, 124). Also, PTC patients exhibit a worse

oxidative profile than patients with autoimmune thyroid
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disease and higher oxidative process rates than healthy

individuals (125). Moreover, thyroid cancer risk was observed

to be higher in obese people, and female patients with type 2

diabetes mellitus (T2DM) are more likely to have the extra-

glandular invasion of PTC than male T2DM patients (126, 127).

In PTC and anaplastic thyroid carcinoma, somatic KEAP1

and NFE2L2 mutations activating the Nrf2 pathway were

discovered (128, 129). Although the significance of such

pathway activation in thyroid tumours is still unclear, it may

help cancer cells survive (105, 130). In addition, tumour tissue

exhibit a higher quantity of ROS, which was linked to the

decreased expression of selenium antioxidant proteins in

cancer cells compared to healthy cells (122). Furthermore,

compared to normal thyroid tissue, antioxidant catalase

expression was significantly reduced in human thyroid

tumours (131). These results show oxidant/antioxidant system

in thyroid cancer tissue is imbalanced (12, 132).
6 Nutrition and OxS

Proper nutritional intake is mandatory for overall well-being

and better human health. However, dietary habits have an

impact on human health and can lead to the development of a

variety of disorders and diseases. The most prevalent diet in the

world is the Western-style diet, characterized by an increased

intake of refined food with a high caloric index and an increased

amount of sugars and salt, while the intake of vegetables, fruits,

and fish is reduced (133). Negative consequences of nutritional

habits associated with a Western-style diet may lead to

inflammation and production of free radicals (134) through

the secretion of numerous pro-inflammatory molecules such

as interleukin (IL)- 6, IL-1b, IL-8, and C-reactive protein (CRP),

leading to the development of autoimmune disorders either

directly, due to inflammation or disturbed immune balance, or

indirectly due to increased fat depositions and the development

of obesity. Obesity has the most severe consequences since it is

associated with systemic inflammation, hypertension, and

hypercholesterolemia, which represent conditions that increase

the risk of developing cardiovascular disease and T2DM.

It is believed that the state after taking a meal (postprandial

state) is pro-inflammatory and pro-oxidative, and the type of food

mainly consumed affects the occurrence of OxS. As mentioned

earlier, the increased intake of proteins (processed, red meats),

sugars, salt, saturated and trans fat, and refined carbohydrates,

which are characteristic of the Western-style diet, leads to the

development of many diseases, which have their basis in the

occurrence of OxS (135). Furthermore, a diet based on an

increased intake of carbohydrates and fats leads to increased

production of free radicals, directly affecting mitochondrial

metabolism. Also, animals fed a high-fat diet have been shown to

have increased OxS and dysfunctional mitochondria (136).
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To reduce the development of obesity, cancer, diabetes, and

cardiovascular diseases, WHO recommended a diet that

includes an increased intake of fruits, vegetables, nuts, fish,

and unsaturated fatty acids. This type of diet is represented in

certain coastal regions of the world and has received the popular

nameMediterranean diet. The natural antioxidants, as a result of

proper nutritional habits, provide indirect protection by

decreasing the production of cytokines and reducing OxS (134).

Numerous exogenous antioxidant molecules (nutritional

antioxidants) have been shown to play an important role in

excessive ROS accumulation in organisms. Here we will discuss

several nutritional antioxidants with a confirmed protective

antioxidant role. For instance, monounsaturated fatty acids

(MUFA) such as oleic acid that are present in high amounts in

olive oil and certain nuts decrease ROS production and exert

protection against OxS (137). In addition, oleic acid showed

anti-inflammatory effects by decreasing obesity and cytokine

production and reducing cardiovascular mortality (134). The

anti-inflammatory actions of MUFAs are based on their ability

to counteract the effects of long-chain saturated fatty acids on

hepatocytes, which include reducing endoplasmic reticulum

stress, restricting lipotoxicity induced by accumulation of

saturated fatty acids, decreasing ROS production, and

inhibiting nuclear factor-kB (NF-kB) transcription factors by

binding peroxisome proliferator-activated receptor g (PPARg)
and G-protein coupled surface receptor 120 (GPR120) (138). In

vitro, MUFA has shown the ability to induce the expression of

the adiponectin gene via PPARg activation, which would result

in decreased production of pro-inflammatory molecules such as

IL-6 and tumour necrosis factor (TNF)-alpha (139)

Polyunsaturated fatty acids, such as omega-3 fatty acids (n-3

PUFA), are mostly found in eggs, nuts, and fish, whereas omega-

6 fatty acid (n-6 PUFA) is predominantly present in sunflower

and other vegetable oils. The ratio of n-3 PUFA/n-6 PUFA is of

the utmost importance since its disbalance may activate pro-

inflammatory pathways (140) n-3 and n-6 PUFA exert opposite

effects on the immune system, whereas n-3 PUFA have an anti-

inflammatory effect while n-6 PUFA induces a pro-

inflammatory action (141). The anti-inflammatory effects of n-

3 PUFA are based on their ability to decrease endogenous

concentrations of ROS and expression of NF-kB and promote

activation of genes involved in antioxidant protection.

Resveratrol (3,4′,5-trihydroxy-trans-stilbene) is a natural

polyphenol nonflavonoid compound primarily found in grapes,

red wine, berries, and peanuts. It has been shown that long-term

treatment with reservatrol prolongs lifespan and reduces OxS

(142). In addition, resveratrol was shown to possess cardiovascular

protective capacity (143–145) and exhibit antidiabetic, anti-

inflammatory, and antioxidant effects (146–150), as well as the

ability to suppress the proliferation of a variety of tumour cells

(151, 152). Also, resveratrol positively affects obesity, reducing

triglycerides and glucose levels. The anti-inflammatory effects

resulting from using resveratrol can be seen in the reduction of
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increased levels of interleukin and TNF in obese mice (15). The

antioxidant effects of resveratrol were confirmed in many studies.

For example, resveratrol significantly inhibited ROS production

by polymorphonuclear leukocytes treated with formyl methionyl

leucyl phenylalanine (153) and reduced OxS markers like glycated

albumin levels in serum and 8-hydroxyguanosine in urine in

stroke-prone spontaneously hypersensitive rats (154). Due to its

lipophilic nature, resveratrol can bind to lipoprotein particles,

which seems crucial for its antioxidant effects (155). Resveratrol

consumption increases plasma antioxidant levels and decreases

lipid peroxidation (156). It also reduces intracellular ROS and

prevents LDL oxidation in endothelial cells (157) by inhibiting

lipoxygenases (158). The mechanism by which resveratrol

prevents LDL oxidation is based on its ability to chelate copper

and scavenge ROS (159).

Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-

heptadiene-3,5-dione) is a natural polyphenol derived from the

rhizomes of the herbs from genus Curcuma, particularly from

Curcuma longa (turmeric), Curcuma amada, Curcuma zedoaria,

Curcuma aromatic and Curcuma raktakanta. (160–162). It has

multiple positive effects on the organism, acting as an

antioxidant and decreasing inflammation. Using macrophages,

Lin et al. showed that curcumin treatment increased levels of

SOD and Cat while decreasing levels of ROS (163). The anti-

inflammatory effect of curcumin is most likely associated with its

ability to inhibit cyclooxygenase-2 (COX-2), lipoxygenase

(LOX), and inducible nitric oxide synthase (iNOS) (164). In

addition, curcumin positively affects body weight and glucose,

increases GPx activity (165), and decreases FFA, triglycerides,

and cholesterol concentrations in diabetic rats (15).

Berberine (5,6-dihydro-9,10-dimethoxybenzo [g]-1,3-

benzodioxolo [5,6-a] quinolizinium) is a plant alkaloid found

and derived from numerous families of plants, such as

Annonaceae, Menispermaceae, Papaveraceae, Ranunculaceae,

etc. (166). Barberine has been shown to have numerous

positive effects such as decreasing cholesterol levels and

reducing weight and adipose tissue in obese mice. In addition,

berberine decreases obesity- and diabetes-related inflammation

(167). In the atherosclerotic mouse model, berberine activating

the adenosine monophosphate-activated protein kinase

(AMPK) signaling pathway decreases OxS (15, 168). Ma et al.

(169) showed diabetic animal models administered berberine

activates the Nrf2 pathway and decreases OxS.

It is important to mention micronutrients with antioxidant

properties, such as vitamins. Since the body cannot synthesize

sufficient amounts of vitamins, it is necessary to take them

through food or supplements. Vitamin E acts as a regulator of

cellular metabolism, and its deficiency leads to anaemia,

dysregulation of energy metabolism, irregular mitochondrial

function, and tissue damage resulting from increased lipid

peroxidation (16). Vitamin D deficiency affects muscle

function and leads to irregular cardiovascular function. Also, a

lack of Vitamin D is connected with disrupted mitochondrial
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function and thus increased inflammation and OxS (16).

However, it should be emphasized that an increased intake of

vitamins has the opposite effect, increasing OxS. For example, it

is well known that vitamin C has antioxidant properties; it reacts

with ROS creating a product with poor reactivity that does not

have detrimental effects. On the other hand, vitamin C may

undergo the Fenton reaction, in which a highly reactive free

radical is formed (170).
7 Nutritional antioxidants and
thyroid disease

7.1 Trace elements

7.1.1 Iodine
An average adult body contains around 15 to 20 mg of iodine

located predominantly in the thyroid gland, which performs an

essential role in synthesizing thyroid hormones. In addition to

being a component of the thyroid hormone, iodine can act as an

antioxidant and antiproliferative agent (171). Its uptake is

mediated by the sodium/iodide symporter (NIS), expressed in

thyroid cells and extrathyroidal tissues, including the stomach

and salivary glands. The iodine content in food is determined by

its amount in the soil. Since seafood and seaweed are rich sources

of iodine, a diet based on high seafood consumption is sufficient.

Likewise, fortifying salt and milk products with iodine ensures

an adequate amount of dietary iodine (172, 173). Although

iodine deficiency was associated with goitre and thyroid

nodules, PTC appears to be more common in areas with high

iodine intake, which points to the complex relationship between

iodine intake and thyroid disease (174). For instance, excessive

iodine intake is associated with a transient reduction of thyroid

hormone synthesis for approximately 24 hours after ingestion,

known as the Wolff-Chaikoff effect (175). In patients with

autoimmune thyroid disease or on anti-thyroid drug therapy,

increased iodine intake can induce hypothyroidism, whereas, in

patients with diffuse nodular goitre or latent Grave’s disease, it

can cause hyperthyroidism (176).

7.1.2 Zinc
Zinc is regarded as an antioxidative trace element because it

is a co-factor of the enzyme SOD, which scavenges free radicals.

Zinc is essential for normal thyroid function since it is required

for the activity of enzyme 1,5′-deiodinase which catalyzes the

conversion of T4 to T3. In addition, zinc plays a vital role in the

thyroid hormones’ metabolism by regulating thyrotropin-

releasing hormone (TRH) and TSH synthesis and modulating

the structures of essential transcription factors involved in

synthesizing thyroid hormones (177, 178). Zinc deficiency

affects the thyroid gland by impairing TRH, TSH, T3, and T4

synthesis. In animal studies, free levels of T3 and T4 were
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reduced by approximately 30% (179), and a similar trend was

observed in studies of human subjects. Hypothyroid patients

often present with reduced levels of zinc. In a study designed to

evaluate zinc metabolism in patients with thyroid disease,

plasma and erythrocyte zinc concentration and urinary zinc

excretion were investigated in hypo- and hyperthyroid patients

(180). The mean concentration of plasma zinc in hypothyroid

patients was lower than that of healthy control subjects, whereas

no statistically significant differences were observed in plasma

zinc values between hyperthyroid patients and control subjects.

However, erythrocyte zinc concentration was significantly

decreased in hyperthyroid patients compared to hypothyroid

patients and accompanied by an increased urinary zinc excretion

resulting from increased muscle tissue catabolism in

hyperthyroid patients. The findings of this study suggest that

abnormal zinc metabolism commonly occurs in thyroid

dysfunctions (180) (Table 1).
7.1.3 Selenium
Selenium is an essential trace mineral whose functions in the

organism are mainly connected to its antioxidant properties

(190). Selenium is essential to antioxidant enzymes such as GPx

(183) and is involved in thyroid and immune system functions.

The thyroid gland has the highest concentration of selenium in

the body, which is predominantly stored in the thyrocytes in the

form of selenoproteins, such as deiodinases, GPx, and

thioredoxin reductases (181, 182). Adequate selenium intake is

mandatory for the normal function of thyrocytes, and selenium

deficiency is associated with the decreased synthesis of thyroid

hormones (191), increased thyroid volume, and increased

number of thyroid nodules (182, 192). Selenium has been

shown to affect T-cell differentiation and modulate the T-

helper (Th) cells’ responses. Th cells are cytokine-producing

cells that are divided into subgroups 1 and 2 depending on their

mechanisms of action; Th1 cells are involved in cell-mediated

immunity, whereas Th2 cells participate in antibody-mediated

immunity. Th1 cytokine production generally tends to exert pro-

inflammatory effects and may lead to autoimmune conditions

such as Hashimoto’s thyroiditis. Th2-induced hyperproduction

of the thyroid autoantibodies observed in In Graves’ disease

results in hyperthyroidism. Selenium deficiency has been

associated with Th2 cell response, whereas higher selenium

levels favour Th1 response (193). These findings may explain

the beneficial effects of selenium supplementation in

autoimmune thyroid diseases (181, 194), such as reduced

levels of anti-thyroid antibodies, improved thyroid structure

and metabolism, and ameliorated clinical symptoms (181,

195). Dietary forms of selenium include selenomethionine

present in plant products and inorganic selenium forms used

for supplementation (196). No indication of an increased risk of

thyroid cancer in either selenium deficiency or exogenous

supplementation has been reported (182) (Table 1).
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7.2 Natural polyphenols and alkaloids

As an antioxidant polyphenolic compound and a free radical

scavenger, resveratrol has attracted interest for the potential

treatment of thyroid diseases accompanied by increased ROS

product ion , such as auto immune thyroid i t i s and

hyperthyroidism (197). In addition, resveratrol may help treat

thyroid cancer since it can induce apoptosis of thyroid cancer

cells by increasing the abundance and phosphorylation of p53

tumour suppressor protein (p53) (198, 199). In vitro and in vivo

studies have also demonstrated that resveratrol mediates the

levels of TSH and iodide uptake in thyrocytes by decreasing NIS

expression (184). However, the observed effects also resulted in

significant proliferative action of thyrocytes; thus, resveratrol

may be a thyroid-disrupting compound and a goitrogen (184).

Currently, data from clinical studies on resveratrol’s effect on the

thyroid in humans are absent, and all literature evidence is based

on studies performed in cell cultures and animal models.

Therefore, proper randomized clinical trials are mandatory to

reach the final verdict on the potential use of resveratrol in

treating thyroid diseases.

Alkaloid antioxidant berberine was recently reported to

exert positive effects in treating GD. When supplemented in

combination with methimazole, berberine significantly altered

the microbiota composition of patients, decreasing the

abundance of the pathogenic bacteria Chryseobacterium

indologenes and Enterobacter hormaechei while simultaneously

increasing the content of the beneficial bacteria Lactococcus lactis

(185). In addition, berberine supplementation resulted in

significantly elevated enterobactin production, improving iron
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functioning and restoring thyroid function in patients with

Graves’ disease (185) (see Table 1).
7.3 Inositol

Inositol (also known as vitamin B8) is a carbohydrate

compound that is an essential component of the plasma

membrane phospholipids and has an important role in

synthesizing secondary messengers in the cells (200). Inositol

is involved in signaling hormones such as TSH, insulin, and

gonadotropins. Myoinositol (Myo), a cyclic polyol with six

hydroxyl groups, is the most abundant isoform of inositol,

mainly derived from the dietary intake of fruits, beans, and

nuts. In contrast, its endogenous production is generated either

from glucose by enzymatic reactions or by de novo catabolism of

phosphatidylinositol (PI), phosphoinositides (PIP), and inositol

phosphates (IP). Myo has a crucial role in thyroid function and

autoimmune diseases due to its regulation of thyroid hormone

synthesis by forming H2O2 in thyrocytes. Myo is involved in the

TSH signaling pathway; thus, depleted levels of Myo may cause

the pathogenesis of thyroid diseases such as hypothyroidism

(187). It has been observed that TSH levels significantly

decreased in patients with subclinical hypothyroidism, with or

without autoimmune thyroiditis, after treatment with Myo in

combination with selenium (201, 202). Studies of patients with

Hashimoto’s thyroiditis and subclinical hypothyroidism showed

that supplementation of Myo and selenomethionine significantly

decreased TSH, TPOAb, and TGAb concentrations, while

simultaneously increasing thyroid hormones levels and
TABLE 1 The role of nutritional antioxidants in thyroid function.

Nutritional
antioxidant

Role in thyroid function Reference

Iodine Essential for the synthesis of thyroid hormones
Antioxidant
Antiproliferative agent

171)

Zinc Required for the activity of enzyme 1,5′-deiodinase which catalyzes the conversion of T4 to T3
Regulator of TRH and TSH synthesis

(177, 178)

Selenium Constituent of selenoproteins
Cofactor of Gpx, deiodinases and thioredoxin reductases

(181–183)

Resveratrol Mediates the levels of TSH and iodide uptake in thyrocytes by decreasing sodium/iodide symporter expression (184)

Berberine Decreases the abundance of pathogenic bacteria in the gut
Increases the content of beneficial bacteria in the gut

(185)

Inositol Regulates thyroid hormone synthesis by forming H2O2 in thyrocytes
Involved in TSH signaling pathway

(187)

L-carnitine inhibit thyroid hormone entry into the nucleus of hepatocytes, neurons, and fibroblasts (186, 187)

Probiotics Lactobacilli and Bifidobacteriaceae supplementation increase levothyroxine availability
Reduce thyroid hormone serum fluctuation
Increase the availability of bacterial enzymes sulfatases and ß-glucuronidases that regulate iodothyronines deconjugation

(188, 189)

TRH, thyrotropin-releasing hormone; TSH, thyroid stimulating hormone; GPx, glutathione peroxidase; H2O2, hydrogen peroxide.
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restoring euthyroid state in patients with autoimmune

thyroiditis (203, 204). In addition, the combined treatment

with Myo and selenomethionine was found to have an

ameliorating effect on nodular thyroid disease by promoting a

significant reduction of thyroid nodules size and number and

regression of their stiffness (205). Additional in vitro and in vivo

studies are required to investigate the mechanism of this effect

and the potential use of Myo, alone or in combination with

selenomethionine, as a novel clinical treatment for the general

management of autoimmune thyroiditis and thyroid

nodules (Table 1).
7.4 L-carnitine

L-Carnitine (3-Hydroxy-4-(trimethylazaniumyl) butanoate)

is a biological compound that is ubiquitous in mammalian
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tissues and fluids where it is required for b-oxidation of fatty

acids by facilitating their transport in the form of acyl-carnitine

esters across the mitochondrial inner membrane (206). In

addition, L-carnitine possesses significant antioxidant

properties reflected in its ability to scavenge superoxide anion

radical and hydrogen peroxide and chelate metal ions such as

ferrous ions (207). L-carnitine was shown to positively impact

cardiac function through reduced oxidative stress, inflammation,

and necrosis of cardiac myocytes (208). As much as 75% of L-

carnitine comes from the dietary intake of red meat and dairy

products (Table 2), whereas only 25% is generated by

endogenous biosynthesis. Muscles are the main reservoir of

carnitine, storing 95% of the total amount of 120 mmol

present in the adult human body (209)

The anti-thyroid effect of L-carnitine is based on its ability to

inhibit thyroid hormone entry into the nucleus of hepatocytes,

neurons, and fibroblasts (186, 210). As a result, rather than being
TABLE 2 Classification of nutritional oxidants with protective roles against oxidative stress in thyroid diseases and their naturally occurring
sources.

Nutritional antioxi-
dant

Natural source

Vitamins

Vitamin E Plant oils (wheat germ, sunflower, safflower, and soybean oil), nuts (almonds, peanuts), sunflower seeds, fruits, and vegetables

Vitamin D Cod liver oil, salmon, swordfish, tuna fish, sardines, egg yolk, beef liver, dairy and plant milk fortified with vitamin D

Vitamin C Citrus fruits (oranges, lemon, grapefruit), kiwi, strawberries, vegetables (bell peppers, tomatoes, broccoli, cabbage, cauliflower, white
potatoes)

Inositol (vitamin B8) Fruits (cantaloupe, citrus fruits), fibre-rich foods (beans, brown rice, sesame seeds, corn, wheat bran), nuts (almonds, peanuts)

Trace elements

Iodine Seafood, seaweed, iodized table salt, dairy, eggs, chicken, beef liver

Zinc Seafood, meat

Selenium Brazil nuts, seafood, meat

Monounsaturated fatty acids (MUFA)

Oleic acid Olive and almond oil, nuts (hazelnuts, pecans, almonds)

Polyunsaturated fatty acids (PUFA)

Omega-3 fatty acids Seafood, nuts and seeds (flaxseed, chia seeds, and walnuts), plant oils (flaxseed oil, soybean oil, and canola oil)

Omega-6 fatty acids Vegetable oils (sunflower, corn, and grapeseed oil), nuts (walnuts, pine nuts)

Polyphenolic compounds

Resveratrol Grapes, red wine, berries, peanuts

Curcumin Rhizomes of the herbs from genus Curcuma (Curcuma longa (turmeric), Curcuma amada, Curcuma zedoaria, Curcuma aromatic and
Curcuma raktakanta)

Alkaloids

Berberine Plants (Annonaceae, Menispermaceae, Papaveraceae, Ranunculaceae)

Biological compounds

Carnitine Red meat, dairy products
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a direct inhibitor of thyroid gland function, it acts as a peripheral

antagonist of thyroid hormone action (186). The first controlled

clinical trial demonstrating the beneficial effects of L-carnitine in

reducing elevated thyroid hormone circulating levels was

conducted in 50 women receiving TSH-suppressive (L-T4)

therapy for cytologically benign thyroid nodules (210). L-

carnitine supplementation was shown to be effective in

reversing and preventing symptoms of hyperthyroidism (210).

Consequent studies showed that severe forms of GD-related

hyperthyroidism, including thyroid storms, may be effectively

treated with L-carnitine (211–213), which may be partly

explained by increased levels of thyroid hormones deplete the

tissue deposits of L-carnitine (214). Interestingly, decreased

concentration of L-carnitine was also found in the skeletal

muscles of hypothyroid patients (215), suggesting that L-

carnitine depletion in skeletal muscles may contribute to

myopathy associated with either hypothyroidism or

hyperthyroidism. A recent study demonstrated that L-carnitine

supplementation might alleviate fatigue symptoms in

hypothyroid patients (216). Further clinical studies are

required to establish the usefulness of L-carnitine

supplementation in hypothyroidism (see Table 1).
7.5 Probiotics

Probiotics are live non-pathogenic microorganisms with

beneficial health effects for their hosts (217). Probiotics

regulate the composition of the intestinal microbiota, stimulate

humoral and cellular immunity; decrease the frequency and

duration of diarrhoea; and eliminate harmful metabolites in the

colon, such as ammonium and procancerogenic enzymes. In

addition, certain probiotic strains possess antioxidant activity

and may reduce damage caused by OxS (218). Probiotics

improve metabolic diseases such as obesity and diabetes by

modulating intestinal microbiota composition (219–221).

Furthermore, the oxidative stress in patients with T2DM can

be ameliorated by multispecies probiotics (222).

Probiotic bacteria possess their antioxidant defence systems,

such as enzymes SOD and Cat, and can chelate metal ions, such

as ferrous and cupric ions, preventing them from catalyzing

oxidation (19, 22, 223). In addition, probiotics can stimulate the

host’s antioxidant defence systems and increase the activity of

antioxidant enzymes (224). For instance, intact cells and cell-free

extracts of Bifidobacterium animalis 01 can scavenge hydroxyl

radicals and superoxide anion in vitro, whereas in vivo, they

increase the antioxidative enzyme activity (20). Lactic acid

bacteria strains can defend against peroxide radicals,

superoxide anions, and hydroxyl radicals (225, 226). Human

studies have shown elevated SOD and GPx activities, and

improved total antioxidant status in T2DM patients

supplemented with Lactobacillus acidophilus La5 and

Bifidobacterium lactis Bb12 (227). Lactobacillus rhamnosus
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supplementation was shown to exert significant antioxidant

protection in conditions of increased physical stress (228). In

addition, probiotics produce various antioxidant metabolites,

such as GSH and folate. Lactobacillus fermentum strains, E-3 and

E-18, contain very high levels of GSH (226), which can, together

with selenium-dependent GPx, eliminate hydroxyl radicals and

peroxynitrite (229).

The enormous complexity of human microbiota is reflected

in the finding that adult human organisms typically contain 1014

bacteria in the gut, which is approximately ten times more

bacterial cells than the number of human cells (230), with at

least 400 different bacterial species (231). Most bacterial species

in a healthy human microbiota belong to the genera

Bacteroidetes and Firmicutes (232), whereas Actinobacteria,

Proteobacteria, Fusobacteria, and Cyanobacteria, are less

abundant (233). Furthermore, microbiota composition varies

depending on its localization in the gastrointestinal system;

therefore Bacilli class of the Firmicutes and Actinobacteria is

enriched in the small intestine, whereas the Bacteroidetes family

of the Firmicutes is predominantly present in the colon (234).

Gut microbiota in patients with thyroid diseases has a

different composition compared to the healthy controls and

typically contains a decreased content of Lactobacillaceae and

Bifidobacteriaceae. (23). The family Lactobacillacae has

important antioxidant properties and may exert protective

effects on the thyroid. (235), and its decreased content may

cause higher oxidative stress in the thyroid (23). In addition,

opportunistic pathogens in gut microbiota were shown in

patients suffering from thyroid disease (Zhang, 235). Gut

microbiota dysbiosis negatively affects the regulation of anti-

inflammatory and immune system responses and appears to be

associated with autoimmune diseases, inflammation, and some

types of cancer (189, 236, 237). For instance, thyroid cancer is

associated with the increased presence of Clostridiaceae,

Neisseria, and Streptococcus, whereas in patients with thyroid

nodules, a relative increase of Streptococcus and Neisseria

compared to healthy controls was observed (235). Increased

abundance of Neisseria has been linked to inflammatory

disorders (238). In contrast, Clostridiaceae and Streptococcus

were associated with carcinogenic effects and a higher risk of

carcinomas (239, 240), and those three seem to have a role in

thyroid carcinogenesis (23).

Probiotic supplementation has substantial beneficial effects

on thyroid hormones and thyroid function. It was demonstrated

that Lactobacillus reuteri supplementation improves thyroid

function in mice by increasing free T4 and thyroid mass (241).

Microbiota modulation by probiotic supplementation of

Lactobacilli and Bifidobacteriaceae increased levothyroxine

availability in humans and stabilized thyroid function.

Probiotics were shown to be beneficial in lowering serum

hormone fluctuations (188), partly because iodothyronines

deconjugation is regulated by bacterial enzymes sulfatases and

ß-glucuronidases whose availability could be increased by
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probiotic supplementation (189). Finally, probiotics influence

the uptake of minerals relevant to thyroid function, including

selenium, iodine, iron, and zinc, and a synergistic effect of

probiotics and trace elements on the total antioxidant capacity

was observed in vivo. Although probiotic supplementation

shows promising potential in improving thyroid function in

thyroid diseases, further human studies on the effects of

probiotics as adjuvant therapy for thyroid diseases are

required (Table 1).
8 Conclusions

Besides the impairment of cellular redox homeostasis in

thyroid gland cells, thyroid diseases significantly contribute to

systemic redox imbalance. In that way, thyroid diseases are

organ-confined and promote histological changes in distant

organs by disturbing the vital cellular pathways. Therefore, the

simultaneous treatment of thyroid diseases and substituting of

nutraceutical antioxidants could beneficially affect different

molecular mechanisms enabling the recovery of disturbed

redox balance. Se levels are lower in people with thyroid

dysfunctions, such as subclinical or overt hypothyroidism

(242). In order to determine whether Se supplementation may

impact the progression of autoimmune thyroid disease, some

trials carried out in regions where the population has a diffusely

low or borderline Se status inconsistently suggest that Se

supplementat ion may cause a decrease in thyroid

autoantibodies (243, 244). The population heterogeneity,

various Se formulations and the length of Se supplementation,

as well as different thyroid function test and Se measurement

strategies, are among the reasons for the study conclusions

inconsistency (244). The benefit of Se supplementation could

be expected in patients living in regions with low Se availability

or who have low- or sub-optimal Se levels. The supplementation

must be attentive as the reference ranges of Se blood levels are

narrow, and the risk of insufficient or toxic supplementation is

possible (245, 246).

Accumulating evidence support the existence of a thyroid-

gut axis and displays important correlations between the

composition of the gut bacteria and thyroid function.

Dysbiosis, a common finding in thyroid disorders, not only

promotes local inflammation of the intestinal membrane but

also directly affects thyroid hormone levels via its own

deiodinase activity and TSH inhibition. In addition, gut

microbiota can modulate the absorption of trace minerals,

such as iodine, selenium, and zinc, that are essential for

thyroid function, including iron. For instance, iodine

deficiency may lead to goiter, whereas high iodine intake may

induce thyroid dysfunction in susceptible patients.

Supplementation with antioxidative probiotics has shown

beneficial effects in thyroid diseases thus representing a

potential adjuvant therapy for thyroid disorders. The advances
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in the field of microbiome research envision the future

possibility of personalized treatment with probiotics that are

specifically adjusted to individual patients. Nevertheless, more

data from adequately powered human studies are required for

further evaluation of the impact of gut microbiota on thyroid

diseases and the potential for possible therapeutic interventions.
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106. Zarković M. The role of oxidative stress on the pathogenesis of graves’
disease. J Thyroid Res (2012) 2012:302537. doi: 10.1155/2012/302537
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Glossary

8-oxoG 8-oxo guanine

AMPK adenosine monophosphate-activated protein kinase

BER base excision repair

CAT catalase

COX-2 cyclooxygenase-2

CRP C-reactive protein

GD Graves’ disease

GPR120 G-protein-coupled surface receptor 120

GPx glutathione peroxidase

GR glutathione reductase

GSH glutathione

H2O2 hydrogen peroxide

iNOS inducible nitric oxide synthase

IP inositol phosphates

KEAP1 Kelch-like ECH-associated protein 1

LDL-C low-density lipoprotein-cholesterol

LOX lipoxygenase

MDA malondialdehyde

MUFA monounsaturated fatty acids

Myo myoinositol

NFE2L2 nuclear factor erythroid 2-related factor 2 gene

NF-kB nuclear factor-missingb

NIS sodium/iodide symporter

NO nitric oxide

NOXs NADPH-oxidases

OSI oxidative stress index

OxS oxidative stress

p53 p53 tumour suppressor protein

PI phosphatidylinositol

PIP phosphoinositides

PPARg peroxisome proliferator-activated receptor g

PTC papillary thyroid carcinoma

PUFA polyunsaturated fatty acids

RNS reactive nitrogen species

ROS reactive oxygen species

SELENOS selenoprotein S gene
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SOD superoxide dismutase

SOD1 cytoplasmic SOD

SOD2 mitochondrial SOD

SOD3 extracellular SOD

T2DM type 2 diabetes mellitus

T3 triiodothyronine

T4 thyroxine

TAS total antioxidant status

TG thyroglobulin

TNF tumour necrosis factor

TOS total oxidative status

TPO thyroid peroxidase

TRH thyrotropin-releasing hormone

TSAb thyroid-stimulating antibodies

TSH thyroid-stimulating hormone
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