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The relationship between obesity and neurocognitive consequences is complex. Here we
investigated associations between body mass index (BMI) and subsequent changes in
brain structures, cognitive changes, and the onset of dementia after adjustment of a wide
range of potential confounding variables using a large prospective cohort data of UK
Biobank. After correcting for confounding factors, higher BMI was associated with greater
retention in visuospatial memory performance (decline in error numbers) [beta = -0.019
(CI:-0.027~-0.016), N = 39191], increase in depression tendency scores [beta = 0.036
(0.027~0.045)] as well as decreased risk of incident dementia [increasing BMI by 1 is
associated with HR of 0.981 (CI:0.969~0.992), N = 398782], but not changes in fluid
intelligence or reaction time. Whole brain multiple regression analyses (volumetric
analyses: N = 1253, other analyses: N = 1241) revealed positive associations between
BMI and subsequent changes in regional gray matter volume (rGMV) in multiple areas,
regional white matter volume changes in widespread white matter (WM) tracts, fractional
anisotropy changes in several tracts, and intracellular volume fraction (ICVF) and
orientation dispersion (OD) in widespread areas, and isotropic volume fraction (ISOVF)
in a few areas, and negative associations between BMI and subsequent changes in rGMV
in the bilateral medial temporal lobe areas, mean, axial and radial diffusivity, and ISOVF in
widespread areas. These results are mostly consistent with the view that less BMI
precedes greater neurocognitive aging or atrophy, with a few exceptions including OD
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findings and the rGMV finding of the medial temporal lobes as most of significant
longitudinal associations of higher BMI were opposite to those seen in higher age and
dementia. Future epidemiological studies should consider separating effects of higher BMI
itself from potential confounders.
Keywords: BMI, brain structures, dementia, cognitive functions, longitudinal
INTRODUCTION

Obesity is one of the major health problems in modern society;
2.1 billion people are obese or overweight (1). Obesity promotes
co-morbid diseases (2) and reduces life expectancy by a few years
(3). Specifically, obesity is strongly associated with an increased
risk of cardiovascular diseases and stroke (2).

On the other hand, the relationship between obesity and risk
of developing dementia and long-term cognitive changes are
more complex. Meta-analyses of longitudinal studies have
reported contradicting findings regarding the risk of dementia
in obese subjects. For instance, one meta-analysis concluded that
obesity in middle age (35-65 years) is associated with increased
risk of dementia later in late life (4), But more recent studies with
huge sample size showed, that obesity in both middle age and old
age was associated with a lower risk of later onset of dementia (5–
7). As for cognitive functions, studies either found the
associations of greater BMI in the middle and late life and
subsequent decline in cognitive decline or failed to show them
(8). But one study showed that accounting for effects of
education level and occupation and background substantially
weaken such associations (9). In addition, obesity has a
relationship with affective state, and Luppino et al. (10)’s meta-
analysis showed that obesity is associated with an increased risk
of subsequent depression and that there is a reciprocal
relationship between obesity and depression.

Numerous neuroimaging studies of BMI and obesity have been
performed. Meta-analyses of cross-sectional studies support that
obesity or high BMI are associated with less gray matter volume in
the medial prefrontal cortex and left temporal pole (11), a decrease
in the hippocampal region of interest (ROI) volume (12), and
decline in gray matter (GM) ROI volumes and increase in white
matter (WM) ROIs’ volumes (13). Cross-sectional studies of
microstructural properties measured by diffusion tensor imaging
(DTI) revealed that BMI is associated with lower fractional
anisotropy (14) and lower mean diffusivity in the GM area of
the dopaminergic system (15).

However, these studies have not clarified the relationship
between BMI and longitudinal changes in the microstructural
properties of brain. In addition, the relationship between BMI
and subsequent changes in regional GM volume (rGMV) and
regional WM volume (rWMV) have not been clarified using
voxel-by-voxel analyses that adjusted for brain structures at the
baseline. The purpose of this study is to elucidate these issues.
Additionally, in this study, we used the UK Biobank data, which
is rich in both sample size and type, to evaluate whether higher
BMI is associated with lower subsequent cognitive decline and
n.org 2
lower risk of dementia simultaneously, after adjusting for
sufficient potential confounding variables.

We set two opposing hypotheses: our first hypothesis was
higher BMI would be assoc iated with subsequent
neuroprotective changes. Specifically, we hypothesized lower
BMI would be associated with the subsequent changes in brain
structures that are seen in aging and dementia (e.g., decline
rGMV, rWMV, FA, ICVF increase of MD/AD/RD/ISOVF) (16,
17). The second hypothesis is the opposite. These two hypotheses
are based on conflicting evidence of previous neurocognitive
studies of obesity and BMI as introduced above.
METHODS

Participants
The present study used data from the UK Biobank, which was
obtained from a prospective cohort study of a middle-aged
population in the United Kingdom and the procedures of
which have been described elsewhere (http://www.ukBiobank.
ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf).
Approval for these experiments was obtained from the North-
West Multi-center Research Ethics Committee (reference
number: 11/NW/0382) and written informed consent was
obtained from each participant. Briefly, the participants went
to one of twenty-two assessment centers throughout the UK for
data collection, with baseline data obtained from 502,505
participants. Our study included data for this cohort obtained
at the first assessment visit (2006-2010), the first imaging data
collection visit, which corresponded to the third assessment visit
(2014-present), and the follow-up visit for imaging data
collection, corresponding to the fourth assessment visit (2019-
present). The study schema is presented in Figure 1.

This research was conducted using the UK Biobank resource
under application number 56726. Following analyses were
conducted from the data of subjects whose all dependent and
independent data was available.

BMI Measurement
Body weight was measured using Tanita BC418MA scales.
Height was measured using a Seca height measure. BMI was
calculated from measured height and weight.

Sociodemographic and Lifestyle
Measurements Used as Covariates
Self-reported gender data was used. From the database, the
neighborhood-level socioeconomic status at recruitment
June 2022 | Volume 13 | Article 824661
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(cov1), education level at recruitment (cov2), household income
(cov3), current employment status (cov4), metabolic equivalent
of task hours (MET) (cov5), number in household (cov6),
current tobacco smoking level (cov7), current alcohol drinking
level (cov8), use of statin (cov9), the diagnosis of diabetes
(cov10), ethnicity (white or not)(cov11), length of TV viewing
(cov12) are included as covariates. For additional details, refer to
the Supplementary Methods section.
Cognitive Measures
Cognitive measures were administered at all visits. Briefly, tests
were administered through a computerized touch-screen
interface at each assessment center. In this study, we used data
of visuospatial memory performance, fluid intelligence and
reaction time.

Visual short-term memory consists of the basic mechanisms
for retention and manipulation of visuospatial information not
already present in the environment, and is an important function
for orientation and navigation in the environment, and
organization and retention of visuospatial representations of
the visuospatial world (18, 19). Fluid intelligence refers to the
basic processes involved in reasoning and other cognitive
activities that require minimal prior learning, culture, or
education. Fluid intelligence involves various cognitive
activities and is typically measured by nonverbal reasoning,
despite the importance of ability to solve abstract reasoning
problems (20).
Frontiers in Endocrinology | www.frontiersin.org 3
Visuospatial memory was measured by the “pairs-matching’
task. In this test, participants were asked to memorize the
positions of six card pairs, and then match them from memory
while making as few errors as possible. Scores on the pairs-
matching test are number of errors that participants made and
therefore, higher scores reflect poorer cognitive functions. Fluid
intelligence was evaluated using verbal numerical logic and
reasoning-type questions. Reaction time was measured using a
timed symbol matching test.

Other than with measures of cognitive tests, depressive
symptoms were measured by the 4-item Patient Health
Questionnaire-4 (PHQ-4) (21). For more details and
information of reliabilities and validities of these cognitive
measures, see Supplementary Methods.

Structural Magnetic Resonance Imaging
(MRI) Acquisition and Preprocessing for
Structural Analyses
MRI imaging data was obtained during the third and fourth
assessment visits. Images were obtained from three imaging
centers equipped with identical scanners (Siemens Skyra 3T
running VD13A SP4 with a Siemens 32-channel RF receive
head coil, Munich, Germany).

For all preprocessing and analyses of imaging data, a
computer with an Intel, Xeon, processor E5-1620 v4CPU,
Windows 10 Pro Workstations OS, and 64 GB memory
was used.
FIGURE 1 | A schema of the analyses of this study and its association with UK Biobank.
June 2022 | Volume 13 | Article 824661
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T1-weighted structural images were used for voxel-based
morphometry analyses. We used Statistical Parametric
Mapping 12 (SPM12) on MATLAB 2019b for this procedure.
Images were segmented and segmented GM and WM were
normalized using the diffeomorphic anatomical registration
through exponentiated lie algebra (DARTEL) procedure,
modulated, smoothed (8 mm full width at half maximum
(FWHM), and the resultant maps representing rGMV and
rWMV analyzed. For details, see Supplementary Methods.

We used metrics related to DTI and neurite orientation
dispersion and density imaging (NODDI) (22) to measure
microstructural properties of the brain. DTI can evaluate
following measurements: (a) Mean diffusivity (MD): the
amount of water molecule diffusion regardless of direction, (b)
axial diffusivity (AD): water molecule diffusion parallel to the
tract within the voxel of interest, (c) radial diffusivity (RD): the
magnitude of water diffusion perpendicular to that tract, (d)
fractional anisotropy: the level of anisotropy of water diffusion.
NODDI can evaluate following measurements: (A) The
intracellular volume fraction (ICVF): neurite compartment
density, as verified by histology in animal experiments (23),
(B) isotropic volume fraction (ISOVF): the extracellular free
water diffusion as well as the interstitial and cerebrospinal
fluids (CSF), orientation dispersion (OD) index: the spread of
fibers within an intracellular compartment. By combining these
metrics with information on volumetric measures, brain
structural changes can be comprehensively evaluated.

The normalization of DTI and NODDI images was
performed based on a previously validated protocol (24). We
used SPM8 (see Supplementary Methods for the rationale for
using SPM8) on MATLAB 2009b for this procedure. Briefly,
diffusion images using the information of MD and FA, and
modified DARTEL procedure which took account the FA signal
distribution within WM areas (to align images and tracts within
WM areas), were used to normalize all DTI and NODDI images
as well as regional GM density (rGMD), regional white matte
density (rWMD) and regional cerebrospinal fluid maps (rCSFD).
Then, all normalized FA images were masked by a WM tissue
probability (> 0.99) map mask to limit images to WM areas then
smoothed (6 mm FWHM), while other DTI and NODDI images
were masked by a mask of GM + WM tissue probability (sum >
0.99) map to limit images to GM and WM areas, and then
smoothed (8 mm FWHM). For more details on these procedures,
refer to the Supplementary Methods.

Psychological and Non-Whole Brain
Imaging Data Analyses
Psychological and non-whole brain imaging data were analyzed
using Predictive Analysis Software, version 22.0.0 (SPSS Inc.,
Chicago, IL, USA; 2010). Multiple regression analyses were used
to investigate the associations between BMI at the first
assessment visit and changes in cognitive variables from the
first assessment visit to the third assessment visit after correcting
for confounding variables. The change of each measured variable
from the first to the third assessment visit was used because the
second assessment contained less data for psychological analyses
Frontiers in Endocrinology | www.frontiersin.org 4
than the third. The dependent variables for each multiple
regression analysis were the change in scores for (A) reaction
time, (B) fluid intelligence, and (C) depressive symptoms from
the first assessment visit to the third assessment visit. The
independent variables were sex, age at the first assessment visit,
interval days between the first assessment visit and the third
assessment visit, the number of times subjects underwent tests
for this project at the time of the third assessment visit, cov1 –
cov12 values at the first assessment visit, and BMI at the first
assessment visit.

Cox proportional hazards models were used to examine the
relationships between BMI and dementia of all causes. All-cause
dementia was ascertained using hospital inpatient records and
linkage to death register data. For more details, see
Supplementary Methods. Subjects who had been diagnosed
with dementia at the time of the first assessment or who self-
reported dementia or cognitive impairment at the first
assessment were removed from analysis. Subjects who reported
dementia in the self-report but did not have a diagnosis dementia
in either their hospital inpatient records or death register data
were also removed from analysis. The time scale considered
spanned from the time of the first assessment visit and until 28
February 2018. Covariates were sex, age at the first assessment
visit, values of cov1 – cov12 at the first assessment visit, BMI at
the first assessment visit, and reaction time at the first assessment
visit (fluid intelligence data was not available for a majority of
subjects). For these analyses, we treated BMI as a categorical
variable and separated 30>x (obesity), 30≧x>25 (overweight),
25≧x>18.5 (normal), and 18.5≧x (underweight), as has been
widely performed in the field.

For psychological analyses, results with a threshold of P < 0.05
that were corrected for false-discovery rates (FDRs) using the
two-stage sharpened method (25) were considered statistically
significant. This correction was applied to results of the four
analyses mentioned above that treated the BMI as a continuous
variable. The statistical threshold of uncorrected p < 0.05 was
used for all post-hoc and supplemental analyses as the
supplementary analyses are confirmatory.

Imaging Data Analysis
Our study employed a voxel-by-voxel multiple regression
analysis that adjusted confounding imaging variables, such as
baseline-imaging measurements and tissue concentrations, at
each voxel.

Statistical Parametric Mapping 5 (SPM5) and its extension
software, the biological parametric mapping tool (BPM; www.
fmri.wfubmc.edu) (26), on MATLAB 2008b were used for the
statistical analysis of imaging data. Longitudinal whole brain
multiple regression analyses were used to look for associations
between BMI and post-experiment brain images (rGMV,
rWMV, and DTI and NODDI images) using the data from the
third assessment visit as a baseline and data from the fourth
assessment visit at follow-up. This is because imaging data was
available only from the third and fourth assessment visits.

In rGMV and rWMV analyses, the independent variables
were sex, age at the third assessment visit, the number of interval
June 2022 | Volume 13 | Article 824661
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days between the third and fourth assessment visits, values of
cov1 – cov12 at the third assessment visit (except for cov1 and
cov2, which refer to values at recruitment), head size ratio at the
third assessment visit (calculated using UK Biobank output),
BMI at the third assessment visit, and the imaging measurement
at each voxel during the third assessment visit. Effects of
baseline-imaging measurement (which corresponds to the third
assessment visit, Figure 1) were corrected for on voxel-by-voxel
basis using BPM. The dependent variable at each voxel was the
value of the follow-up image made during the fourth assessment
visit. The p and t values were the same when baseline outcome
measurements were included as independent variables regardless
of whether the outcome measurement at the follow-up assessment
or the difference between the baseline and follow-up outcome
measurements were used as dependent variables. The results of
longitudinal analyses were thus interpreted as the associations
between BMI at baseline and the changes in each imaging
parameter between baseline and follow-up measurements. For
DTI and NODDI images, analyses were performed in a similar
manner to rGMV and rWMV analyses except that rWMD and
rCSFD images of the third and fourth assessment visit (baseline and
follow-up) were included as covariate images to correct for the
effects of tissue probabilities ofWMandCSF. The sets of covariates
used in each analysis are summarized in Table 1.

For rGMVand rWMVanalyses, only voxels with a signal intensity
of >0.10 for all subjects were included for whole brain analyses. FA
imageanalysiswas limited toareasofWMtissueprobability>0.99and
other DTI and NODDI image analyses were limited to areas of GM+
WM tissue probability > 0.99 (see Supplementary Methods for a
description of mask creation procedures).
Frontiers in Endocrinology | www.frontiersin.org 5
Multiple comparison corrections were performed using the
FDR approach (27). Areas that surpassed the extent threshold
(28) based on a cluster determining threshold of P < 0.05 were
corrected for FDR as described in our previous study (29). The
sets of continuous voxels were treated as single clusters, as
were the cases of result presentation in SPM. Adding to voxel-
level corrections for multiple comparisons, cluster wise
corrections for multiple comparisons were also considered
to exclude the results of tiny areas among extensive areas
of significance.

The descriptions in this subsection were largely reproduced
from another study of ours that used the UK Biobank data
(Takeuchi and Kawashima, submitted).
RESULTS

Basic Baseline Data
Basic psychological data for all participants at the first
assessment in this project is provided in Supplementary
Table 1. Simple correlation coefficients of the associations
between BMI and psychological variables used as covariates in
following multiple regression analyses were all <0.25 in both the
baseline assessment of psychological analyses and imaging
analyses. These results exclude the concern of the
multicollinearity in following multiple regression analyses.

Longitudinal Psychological Analyses
For psychological data analyses, we used the data from the first
and third assessment visits. The mean age of participants was
TABLE 1 | Sets of covariates and how they are used in each analysis.

Analyses for cognitive measures Analyses for
dementia

Analyses for imaging measures

Age 〇(1st visit) 〇(1st visit) 〇(3rd visit)
Sex 〇 〇 〇

Intervals between
assessments of outcome
measures

〇(those between 1st and 3rd visits) × 〇(those between 3rd and 4th visits)

Neighborhood-level
socioeconomic status

〇(1st visit) 〇(1st visit) 〇(1st visit)

Education level 〇(1st visit) 〇(1st visit) 〇(1st visit)
Household income 〇(1st visit) 〇(1st visit) 〇(3rd visit)
Current employment status 〇(1st visit) 〇(1st visit) 〇(3rd visit)
Physical activity level (MET) 〇(1st visit) 〇(1st visit) 〇(3rd visit)
Number in household 〇(1st visit) 〇(1st visit) 〇(3rd visit)
Current tobacco smoking level 〇(1st visit) 〇(1st visit) 〇(3rd visit)
Current alcohol drinking level
(unit)

〇(1st visit) 〇(1st visit) 〇(3rd visit)

Use of statin 〇(1st visit) 〇(1st visit) 〇(3rd visit)
Diagnosis of diabetes 〇(1st visit) 〇(1st visit) 〇(3rd visit)
Ethnicity 〇 〇 〇

TV viewing length 〇(1st visit) 〇(1st visit) 〇(3rd visit)
Outcome measure at baseline 〇(1st visit) - (exclusion of

dementia at
baseline)

〇(3rd visit, at each voxel)

Others Number of times subjects underwent tests for this
project at the time of the third assessment visit

Reaction time (1st

assessment)
Head size ratio (3rd visit),
rWMD, rCSFD (3rd and 4th visits, at each voxel) in DTI
and NODDI analyses, except the FA analysis
June 2022 | Volume 13 | Article 824661
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56.5 years old [standard deviation (SD): 8.0, range: 37-73] at the
first assessment, with a mean interval of 3,273.9 days (SD: 642.1,
range: 1,400-5,043 days) for participants who were in both
assessments. After correcting for confounding variables,
multiple regression analyses revealed that greater BMI at the
first assessment visit was significantly associated with a greater
increase in the depressive tendency, and greater increase in
performance of visuospatial memory task (greater decline in
number of errors before completion in the correctly ended trials),
but not with change in performance of fluid intelligence tasks or
in reaction time (Table 2). Statistical values and the number of
subjects in each analysis are provided in Table 2.

Prospective Analysis of Dementia
A total of 398,782 participants were included in this analysis.
Among these, 1,593 cases of dementia were observed. Cox
proportional hazard models in which BMI were divided into
four categories variables [underweight (N=1994), normal
(N=132014), overweight (N=170876), obese (N=94898)]
revealed compared with subjects who were obese at baseline,
the risk of subjects with overweight at baseline [hazard ratio
(HR): 1.025, 95% confidence interval (CI): 0.904 – 1.162, p =
0.699], but subjects who were normal at baseline (HR: 1.260, 95%
CI: 1.096 – 1.448, p = 0.001) and subjects who were underweight
at baseline (HR: 2.296, 95% CI: 1.316 – 4.007, p = 0.003) showed
significantly higher risk of incident dementia (Figure 2). When a
continuous variable of BMI was used instead of categorical
variable in this analysis, BMI was significantly and negatively
associated with risk of incident dementia (p = 0.001, increasing
BMI by 1 is associated with HR of 0.981 (CI:0.969-0.992)).

Longitudinal Brain Imaging Analysis
Data from the third and fourth assessments were used for brain
imaging data analysis. Participants’mean age was 62.1 years (SD:
7.1, range 46-79) at the third assessment, mean BMI was 26.3
(Sd:4.2, Range: 13.4-50.6) and the mean interval between the
third and fourth assessment visit was 822.1 days (Sd: 42.1, Range:
733-965 days) for 1253 participants (underweight:13,
normal:512, overweight:517, obese:211) whose data was used in
rGMV and rWMV analyses. Other characteristics of participants
analyzed in imaging analyses at the third assessment were
provided in Supplementary Table 2 . The number of
participants in DTI and NODDI analyses was 1241.

A whole brain multiple regression analysis using VBM
analysis revealed significant positive associations between BMI
at the third assessment and changes in rGMV from the third to
the fourth assessment in the left cerebellum, left inferior/middle
temporal gyrus, and right angular/occipital gyrus. It also revealed
significant negative associations between BMI and rGMV change
Frontiers in Endocrinology | www.frontiersin.org 6
in the bilateral areas around the medial temporal lobe
(Figures 3A, B and Supplementary Table 3). BMI was also
positively associated with rWMV changes in the widespread
areas, mainly in the WM areas around the bilateral insula, medial
temporal lobes, bilateral striatum, orbitofrontal cortex, and the
left lateral prefrontal and temporal lobes (Figure 4A and
Supplementary Table 4).

Also, the positive associations between BMI and FA changes were
found in several areas, of the left corona radiata, left internal capsule,
and bilateral cerebellum (Figure 4B and Supplementary Table 5).

Further, positive associations between BMI and ICVF, OD
change, as well as negative associations between BMI and
changes in MD/AD/RD/ISOVF were found in the similar areas
and spread widespread areas around the orbitofrontal, middle
and lateral occipital, temporal and parietal lobes, basal ganglia,
brain stem, and cerebellum (Figures 4C, D, 5C, D and
Supplementary Tables 6–8). However, significant associations
with ICVF were mostly observed in GM areas, while the
significant associations with MD/AD/RD/ISOVF were present
in both GM and WM areas. There were no significant
associations between BMI and ISOVF in the striatum. Instead,
the positive associations between BMI and ISOVF were found in
the areas of the left striatum together with the areas of bilateral
cerebellum (Supplementary Table 7 and Figure 3C).

Although the reasons were not clear, pre- to post average
changes, which correspond to changes from the third assessment
FIGURE 2 | Standardized risks of incidence of dementia according to the
BMI. Cox proportional hazards models were adjusted for potential
confounding variables.
TABLE 2 | Statistical values describing associations between BMI and longitudinal changes in psychological measures (longitudinal multiple regression analyses).

Dependent variables N Standardized beta T P (uncorrected) P (FDR)

Fluid intelligence 13409 −0.009(-0.025~0.007) −1.074 0.283 0.283
Reaction time 39782 0.009(8.437*10-5~0.018) 1.978 0.049 0.064
Visuospatial memory (number of errors) 39191 -0.019(-0.027~-0.016) -4.854 0.000001 0.000002
Depressive symptoms 38215 0.036(0.027~0.045) 7.911 2.627*10-15 1.051*10-14
June 2022 | Volume 13 | Ar
ticle 824661
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visit to the fourth assessment visit, of MD/AD/RD (decrease),
ICVF (increase), ISOVF (decrease), and OD (increase) in
widespread areas (Figures 4, 5) were different to previously
reported associations of these measures with aging (positive
associations of age with MD/AD/RD, ISOVF, and negative
associations of age with ICVF and OD) (16). However, cross-
sectional analyses revealed mostly the same association patterns
of these measures with age as those reported previously
(Supplementary Tables 5–8). However, in some imaging
measures, clusters including the brain stem often do not show
clear correlation with age unlike clusters in other areas (rWMV,
ISOVF) or show opposite correlation with age (FA), suggesting
unique properties of this area.

Effects of Diabetes
We included diagnosis of diabetes at baseline as a covariate, as
has been done elsewhere. However, since diabetes is partly
assumed to be a consequence of obesity (rather than a
confounding factor), we evaluated effects of this covariate and
how the statistical values in each analysis changes when this
diagnosis of diabetes at baseline is removed. For this evaluation,
in imaging analyses, we used total imaging variables (e.g.,
total GMV).

Diagnosis of diabetes at baseline was significantly associated
with greater reaction time, depressive tendencies, and risk of
dementia in each main analysis, but not with fluid intelligence
and total and mean imaging variables. Removing this covariate
from the analyses made the associations between BMI and
reaction time stronger (beta value changed from 0.009,
uncorrected to 0.012), but remained the status of significance
Frontiers in Endocrinology | www.frontiersin.org 7
of associations between BMI and other measures. For details, see
Supplemental Results and Supplementary Table 9, 10.

We then divided the subjects into four groups according to
the presence of overweight/obesity (BMI > 25 or not) and
presence of diabetes and compared the outcome differences by
analyses of covariance. The independent and dependent
variables coincide with those of analyses for the effects of
diabetes as described above, except that we excluded the
variables BMI and diabetes and added a variable of four
categories [based on the existence of overweight/obesity (BMI
>25) and diabetes instead. The effects of diabetes and overweight/
obesity are generally similar to those of BMI and diabetes in the
results of the analyses for the effect of BMI alone and analyses for
the effect of diabetes alone. The effect of overweight/obesity lost
significance in some brain imaging analyses, probably because of
the information loss due to dichotomous classification. In these
psychological index and brain imaging analyses, the non-
overweight/obese diabetic group did not differ significantly
from the other groups, probably due to the small sample size.
In the analysis of dementia risk, compared to the non-
overweight/obese non-diabetic group (reference), the non-
overweight/obese diabetic group showed significantly higher
risk (HR: 1.955, 95% CI: 1.345–2.843, p = 4.49 × 10−4), the
obese non-overweight/obese group showed significantly lower
risk (HR: 0.800, 95% CI: 0.713–0.898, p = 1.44 × 10−4), and the
overweight/obese diabetic group showed significantly higher risk
(HR: 1.517, 95% CI: 1.269–1.814, p = 5.0 × 10−6). These results
may indicate the increased risk of dementia based on diabetic
status outweigh the decreased risk of dementia based on
overweight/obese status (BMI > 25). For adjusted group values,
A

B

C

FIGURE 3 | Associations between BMI and subsequent longitudinal changes in brain imaging measures. (A) Positive associations between BMI and rGMV change.
(B) Negative associations between and rGMV change. (C) Positive associations between BMI and ISOVF change. (A–C) (left panels) Results are shown with a
threshold of P < 0.05 and corrections for multiple comparisons in cluster size tests with a voxel level cluster determining threshold of P < 0.05 (corrected for FDR).
(A) Regions with significant associations were overlaid on a “render” image from SPM5. (B, C) The findings were overlaid on a “single-subject T1” SPM5 image. The
color represents the strength of the T value. (Right panels) Profiles of imaging values at pre and post scans (which correspond to the third and the fourth assessment
visits) in the significant cluster of the left temporal gyrus (A), right hippocampus (B), and left basal ganglia areas (C). For all figures, the software used to present the
results was selected based on the ease of presenting the intended results. Brain images on which the results were displayed were chosen based on the default
availability in the software used and whether the brain images had brain sulci.
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incidence of dementia, and statistical values in each analysis, see
Supplementary Table 11.

Effects of Hyperlipidemia
We also evaluated how the existence of hyperlipidemia at
baseline impacts the outcome measures when added as a
covariate in addition to all the covariates in the main analyses,
Frontiers in Endocrinology | www.frontiersin.org 8
and how that addition affects the significance of the effects of
BMI on outcome measures. Since there was no available data on
blood lipid levels at baseline, we used the HES record of diagnosis
and self-reported data to define existing hyperlipidemia. As in
the supplemental analyses of diabetes, in these supplemental
imaging analyses, we used total imaging variables (e.g.,
total GMV).
A

B

C

D

FIGURE 4 | Associations between BMI and subsequent longitudinal changes in brain imaging measures. Positive associations between BMI and (A) rWMV change,
(B) FA change, (C) ICVF change, (D) OD change. (Left panels) Results are shown with a threshold of P < 0.05 and corrections for multiple comparisons in cluster
size tests with a voxel level cluster determining threshold of P < 0.05 (corrected for FDR). Areas of significant associations were overlaid on a “ch2bet” image using
MRIcron (https://www.nitrc.org/projects/mricron) and in slices (from the left) of z = -32, -22, -12, -2, 8, 18, 28 38, 48, 58, and 68. The color represents the strength
of the T value. (Right panels) Profiles of imaging values at pre and post scans (which correspond to the third and the fourth assessment visits) in the largest
significant clusters of each area.
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Existence of hyperlipidemia at baseline was significantly
associated with a significant increase of depressive tendencies
(beta = 0.024 (CI:0.013–0.035), t = 4.445, p = 9.0 * 10−6) and of
risk of dementia (HR: 1.256, 95% CI: 1.102 – 1.431, p = 0.001) in
each supplemental analysis, but did not show a tendency of
associations with other variables. Adding this covariate
(existence of hyperlipidemia) to the analyses affected the
Frontiers in Endocrinology | www.frontiersin.org 9
significance of each of associations between BMI and outcome
measures little (compared with analyses without the covariate of
existence of hyperlipidemia). For details, see Supplementary
Methods, and Supplementary Table 12.

In these analyses, the effect of hyperlipidemia at baseline on
the longitudinal change of depressive tendencies was similar to
the effects of higher BMI but its effect on the risk of dementia was
A

B

C

D

FIGURE 5 | Associations between BMI and subsequent longitudinal changes in brain imaging measures. Negative associations between BMI and (A) MD change,
(B) AD change, (C) RD change, (D) ISOVF change. (left panels) Results are shown with a threshold of P < 0.05 and corrections for multiple comparisons in cluster
size tests with a voxel level cluster determining threshold of P < 0.05 (corrected for FDR). Areas of significant associations were overlaid on a “ch2bet” image using
MRIcron (https://www.nitrc.org/projects/mricron) and in slices (from the left) of z = -32, -22, -12, -2, 8, 18, 28 38, 48, 58, and 68. The color represents the strength
of the T value. (Right panels) Profiles of imaging values at pre and post scans (which correspond to the third and the fourth assessment visits) in the largest
significant clusters of each area.
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the opposite to those of greater BMI, and unrelated to other
psychological and imaging correlates of BMI, suggesting differing
effects of BMI and hyperlipidemia.

Evaluation of the Impacts of Excluding
Subjects With Comorbidities on the Effects
of BMI on Outcome Measures
Next, we conducted two types of analyses excluding subjects with
key comorbidities. One type involved analyses excluding subjects
only subjects with cancers and other serious medical conditions.
The other involved analyses excluding subjects with major
comorbidit ies (11 types of comorbidit ies : diabetes,
hyperlipidemia, angina, heart attack, high blood pressure,
stroke, blood clot in the leg, blood clot in the young,
emphysema/chronic bronchitis, cancer, other serious medical
conditions/disabilities). The former analyses were conducted to
evaluate the effects of BMI after excluding subjects with a
possible source of underweight. The latter to observe the effects
of pure among healthy subjects without complications of obesity,
or the possible cause of underweight.

In analyses removing subjects with cancers and other serious
medical conditions/disabilities, the effects of BMI mostly did not
change, however, except on total WMV which became
insignificant. Further, the negative effects of BMI on total
ISOVF became significant. As for the results of rWMV, since
adjustment of these variables of cancers and serious medical
condition/disability (instead of subject removal) did not erase the
significance of the association between BMI and greater rWMV
preservation. This change may suggest that the effects of BMI on
total rWMV may be affected by participants with comorbidities
such as cancers and other serious medical conditions (e.g., with
one of these conditions, higher BMI tends to lead to greater
rWMV preservation). In case of ISOVF, the results may suggest,
that without these comorbidities, a higher BMI is associated with
a lower increase in ISOVF (interstitial fluids and CSF).

In analyses removing subjects with eleven types of
comorbidities, the effects of BMI on psychological measures
mostly unchanged, though the effects of BMI on visuospatial
performance slightly decreased and became marginally
significant. In case of imaging analyses, for the WMV and
ISOVF results, the same pattern of change was observed as in
the analysis excluding cancer patients. In addition, in this
analysis removing eleven types of comorbidities, the positive
effects of BMI on total rGMV became significant. These changes
may reflect that in absence of comorbidities that harm the brain
such as stroke, higher BMI is associated with greater
GMV preservation.

Full details of methods and statistical values are shown in
Supplementary Methods, and Supplementary Table 13.
DISCUSSION

The present study revealed novel associations between BMI and
subsequent changes in microstructural properties of brain
measured by DTI and NODDI as well as changes in rGMV
Frontiers in Endocrinology | www.frontiersin.org 10
and rWMV with voxel-by-voxel analyses in the elderly. We
revealed positive associations between BMI and subsequent
changes in rGMV in multiple areas, rWMV changes in
widespread WM tracts, FA changes in several tracts, and ICVF
and ODI in widespread areas, and ISOVF in a few areas. We also
demonstrated negative associations between BMI and
subsequent changes in rGMV in the bilateral medial temporal
lobe areas, and MD/AD/RD/ISOVF in widespread areas. Higher
BMI was not significantly associated with greater cognitive
decline, unlike previous studies after adjusting for a wide range
of potential confounding variables, greater increase of depressive
tendencies, and lower risk of onset of dementia, consistent with
previous studies. We also newly showed higher was significantly
associated with greater relative increase (retention) of
performance of visuospatial memory task.

Mostly consistent with our first hypothesis, lower rather than
higher BMI was associated with subsequent changes in brain
structures, similar to those observed in aging and dementia.
Specifically, BMI was positively correlated with subsequent
changes in rGMV in multiple areas, rWMV changes in
widespread WM tracts, FA changes in several tracts, and ICVF
in widespread areas, and was negatively correlated with changes
in MD/AD/RD/ISOVF in widespread areas. These associations
were mostly opposite to the previously reported associations
between age or dementia and these imaging indices (16, 30, 31).
A cross-sectional analysis of the present study did indeed reveal
that higher age was associated with lower rGMV, rWMV, FA,
ICVF, and greater MD/AD/RD/ISOVF (Supplementary
Tables 3–8). Therefore, our imaging indices reveal that neural
changes in those with higher BMI is mostly contrary to what is
observed in higher age and dementia. As described in the
Introduction, a previous study showed that obesity is
associated with higher relative WMV increase in ROI analyses
(12), and another small sample study showed that obese subjects
have enlarged WMV and diet in these subjects led to WMV
reduction (however, the changes were not compared with the
control group) (32). The present rWMV analyses, as well as the
longitudinal decline in hippocampal volume, are consistent with
these studies (12, 13) and advance these previous ROI-based
findings of GMV and WMV with larger sample sizes and voxel-
by-voxel analyses. In addition, we provided new findings of
longitudinal DTI and NODDI analyses related to BMI. The
possible micro-level mechanisms behind neuroimaging
findings, and why lower BMI in late life seems to precede the
accelerated neural changes observed in aging and dementia are
unclear and we can only speculate, and such discussions were
provided in Supplementary Discussion.

Unlike other imaging indices, the positive associations
between higher BMI and subsequent OD change were in the
same direction as cross-sectional associations between age and
OD in the same areas. OD is supposed to reflects angular
variation of neurites (33) and is therefore, lower in low
crossing fiber areas such as the corpus callosum. Previous
studies have reported that the association between age and OD
differ substantially depending on brain areas, some areas show
age-related increase, while others show age-related decrease and
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yet other regions do not show clear associations with age (16). In
an animal model of Alzheimer’s disease, amyloid beta
accumulation was associated with increase of OD (34). Thus,
one possibility of the mechanisms behind characteristic patterns
of OD is high OD reflects multiple neural mechanisms and
physiological factors such as relative dendrite increases caused by
higher BMI, as well as pathological changes such as
accumulation of amyloid beta or misalignment of neural tracts
caused by aging. But these are speculations and further
investigation is required to confirm these possibilities.

Interestingly, higher BMI was associated with greater rGMV
decline in the bilateral hippocampus, which is consistent with
findings from ROI analyses in a previous study (13). Reduction
in volumetric measures in the amygdala and the hippocampus is
robustly seen in major depressive disorder (35, 36). Therefore,
the present association between BMI and subsequent specific
change of this area may be related to the association between
higher BMI and subsequent increase of depressive tendency. The
reason why the associations between BMI and these neurocognitive
changes are seen is not clear. But we provided possible mechanisms
behind these associations in Supplementary Discussion.

Unlike widespread areas of significant findings of ISOVF,
higher BMI was associated with subsequent relative increase of
ISOVF in the left striatum. Previous psychological studies
suggest that higher BMI in normal to mildly obese subjects is
associated with increased sensitivity to reward, suggesting greater
dopamine availability or higher sensitivity of the dopamine
pathway (37). Our cross-sectional study showed lower MD in
the dopaminergic system and higher BMI and dopamine
receptor density, suggesting facilitation of reward circuits in
mildly obese subjects (15). Greater relative increase of ISOVF
in the striatum may reflect some consequences of higher BMI,
such as increase of cerebral blood flow. However, cerebral blood
flow at rest data was not available in this study and future studies
need to investigate this issue.

The present study did not find an association between higher
BMI and subsequent cognitive decline, rather higher BMI was
associated with subsequent greater retention in visuospatial
memory performance. At first glance, the results of the present
study might not appear to be consistent with some previous
research of a much smaller sample size (>10x) than the present
study (8). This superficial discrepancy may be due to critical
confounding variables such as education level and length of TV
viewing. After adjusting for a wide range of representative
potential confounding variables, we found that higher BMI was
associated with subsequent greater retention in visuospatial
memory performance and was not significantly associated with
greater decline in fluid intelligence, although there was a trend
for an association with longer reaction time. In the present
dataset, our additional analyses revealed other than basic
covariates (age, sex, and interval), removal of education levels,
and length of TV viewing substantially strengthen the
associations between higher BMI and greater decline in fluid
intelligence (though, even in this case, higher BMI was still
significantly associated with greater subsequent retention in
visuospatial memory performance). When the education level
Frontiers in Endocrinology | www.frontiersin.org 11
is removed from the covariate, statistical values of associations
between BMI and change in performance of fluid intelligence
changed from p = 0.283 (uncorrected), beta = -0.009 to p = 0.057
(uncorrected), beta = -0.015, and further removal of length of TV
viewing changed statistical values to p = 0.001 (uncorrected),
beta = -0.027. In previous studies, even when the associations
between BMI and subsequent cognitive decline are shown, when
the model included education levels as a covariate, associations
become only marginal significant in a few measures (8).
Therefore, although our findings might not appear consistent
with previous research, the pattern of significance of the
associations between higher BMI and greater decline of higher
order cognitive functions without correcting for education
and TV viewing as well as the substantially weakened
associations after adjusting for education level, is actually
congruent with said previous study (8). And length of TV
viewing is not included as a covariate in previous studies that
have shown the associations between BMI and subsequent
cognitive decline (8). More recent studies including the study
on UK Biobank data, support an association between prolonged
TV viewing and subsequent greater cognitive decline (38–40).
Therefore, using a sample size ten time larger than previous
studies, we showed previously reported associations between
higher BMI and subsequent cognitive decline are at best
elusive and could be due to effects of unadjusted length of TV
viewing, rather than BMI itself. Similarly, removing effects of
education in the analysis of reaction time changed statistical
values of associations between BMI and reaction time change
from p = 0.048(uncorrected), beta = 0.009 to p = 0.016
(uncorrected), beta = 0.011.

In the UK Biobank cohort, the mean age of participants was
56.5 years old (SD: 8.0) at the first assessment, with a mean
interval (between the first and the third assessment) of 3,273.9
days (SD: 642.1) for participants present in both assessments
when our data for psychological analyses were obtained. In
addition, the follow-up period for prospective analyses of risk
of dementia was about 9 years in average. Age-related cognitive
decline in several domains as well as volumetric reduction of
brain GM and WM begin around or until this age (mid 50’s) (41,
42), and the incidence ratio of dementia is still relatively low
before the age of 70 (43). Therefore, certain sensitivity in the
analyses of dementia may be lost. However, the large sample size
compensates this limitation. Furthermore, numerous
representative prospective studies of dementia have been
performed using data from the UK Biobank (e.g.,44), and our
abovementioned results were also significant. Some UK Biobank
studies conduct their analyses by restricting baseline age to≧60
(e.g.,44). Even when we conducted the analyses among a sample
of subjects with baseline age >60 years old, the significance of the
main prospective analyses of dementia was not affected (P =
0.008, in the analysis treating BMI as a continuous variable). But
future studies are required to observed if there are differing
patterns in a longer follow-up period.

This study has a few limitations. First, this study is not an
intervention study. While we corrected for a wide range of
potential confounding variables, the effects of factors that could
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not be adjusted remain. Factors that drove individuals into
greater or smaller BMI, rather than BMI itself may play a key
role in forming the observed associations between BMI and
neurocognitive variables. Particularly, some suggest that lower
BMI may be a pre-clinical sign of dementia, though other studies
effectively ruled out such possibilities (6). In our multiple
regression analyses, although we adjusted the baseline variable
of outcome measures in each analysis, the possibility that low
BMI is an expression of certain underlying progressive
neurological states cannot be ruled out. Future intervention
studies may be required to consider such possibilities. In
addition, due to the design of UK Biobank, we used the 1st–3rd

visit for psychological analyses (this combination had the biggest
sample size) and 3rd–4th visit for imaging analyses (imaging data
was only available in these visits). Therefore, the age of cognitive
and imaging changes overlapped but not coincided and subjects
that were analyzed in psychological and imaging are different,
and this fact made combined analyses of psychological and
imaging data difficult. Another limitation is that in the UK
Biobank cohort, 94.6% of participants are of white ethnicity
and rest of ethnicities are highly divided. Therefore, it is difficult
to estimate the effects of the interaction between certain ethnic
differences and BMI. Particularly, it is known that BMI
classification as obese differs between Asian (BMI ≧ 25) and
Western standards (BMI ≧ 30) (45). Thus, future studies should
investigate if the effects of BMI on neurocognitive changes in the
elderly differ in Asians.

In this current study, we advanced understanding of the
effects of BMI by showing that higher BMI was mostly
associated with relative structural changes opposite to those
seen in aging processes and dementia. Previously, there were
controversies regarding whether high BMI in the elderly is
associated with the decreased risk of incident dementia, and
increased risk of subsequent cognitive decline. Higher BMI was
associated with greater retention in visuospatial memory
performance, but not associated with subsequent cognitive
decline of fluid intelligence and reaction time after adjustment
of potential confounders, but the insignificance of fluid
intelligence depends on the adjustment of length of TV
viewing and education, and insignificance of reaction time
depends on depends on the adjustment of education and
diagnosis of diabetes at baseline. Higher BMI was also
associated with lower risk of dementia, but its association was
substantially weakened when diagnosis of diabetes was not
adjusted at baseline. Voxel-by-voxel longitudinal analyses
revealed regional increases (lateral temporal, parietal areas,
cerebellum) and decreases (medial temporal areas) of rGMV.
Overall, VBM, DTI and NODDI analyses revealed results mostly
consistent with neuroprotective effects of higher BMI with the
exception of OD and some areas of ISOVF findings. Most of the
significant longitudinal associations of higher BMI were opposite
to those observed in higher age and dementia as was the case of
the association between BMI and subsequent risk of sarcopenia
(46). Future epidemiological studies should consider separating
effects of higher BMI itself, potential confounders, as well as
obesity related diseases such as diabetes. Further attention should
Frontiers in Endocrinology | www.frontiersin.org 12
be paid to the phenomenon that lower BMI in older adults
precedes the accelerated neural changes observed in the elderly.
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