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Diabetes, a disease characterized by hyperglycemia, has a serious impact on the lives and
families of patients as well as on society. Diabetes is a group of highly heterogeneous
metabolic diseases that can be classified as type 1 diabetes (T1D), type 2 diabetes (T2D),
gestational diabetes mellitus (GDM), or other according to the etiology. The clinical
manifestations are more or less similar among the different types of diabetes, and each
type is highly heterogeneous due to different pathogenic factors. Therefore, distinguishing
between various types of diabetes and defining their subtypes are major challenges
hindering the precise treatment of the disease. T2D is the main type of diabetes in humans
as well as the most heterogeneous. Fortunately, some studies have shown that variants of
certain genes involved in monogenic diabetes also increase the risk of T2D. We hope this
finding will enable breakthroughs regarding the pathogenesis of T2D and facilitate
personalized treatment of the disease by exploring the function of the signal genes
involved. Hepatocyte nuclear factor 1 homeobox A (HNF1a) is widely expressed in
pancreatic b cells, the liver, the intestines, and other organs. HNF1a is highly
polymorphic, but lacks a mutation hot spot. Mutations can be found at any site of the
gene. Some single nucleotide polymorphisms (SNPs) cause maturity-onset diabetes of
the young type 3 (MODY3) while some others do not cause MODY3 but increase the
susceptibility to T2D or GDM. The phenotypes of MODY3 caused by different SNPs also
differ. MODY3 is among the most common types of MODY, which is a form of monogenic
diabetes mellitus caused by a single gene mutation. Both T2D and GDM are multifactorial
diseases caused by both genetic and environmental factors. Different types of diabetes
mellitus have different clinical phenotypes and treatments. This review focuses on HNF1a
gene polymorphisms, HNF1A-MODY3, HNF1A-associated T2D and GDM, and the
related pathogenesis and treatment methods. We hope this review will provide a
valuable reference for the precise and individualized treatment of diabetes caused by
abnormal HNF1a by summarizing the clinical heterogeneity of blood glucose
abnormalities caused by HNF1a mutation.
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INTRODUCTION

According to the International Diabetes Federation (IDF), there
were approximately 463 million adults with diabetes worldwide in
2019. The incidence is increasing, and this value will reach 700
million in 2045 (1). Diabetes has become a considerable public
health problem that substantially impacts society and the families
of patients (2). The disease is currently divided into four categories:
type 1 diabetes (T1D), type 2 diabetes (T2D), gestational diabetes
mellitus (GDM) and other special types of diabetes mellitus (3).
The clinical manifestations of the different types of diabetes are
similar, which greatly hinders the classification of the disease (4).
Moreover, there is heterogeneity in the clinical phenotypes of the
disease under the same type, which makes the clinical diagnosis of
the diabetes type more difficult (4). Correctly diagnosing the type of
diabetes is essential for precise treatment. The high heterogeneity of
diabetes blurs the classic distinction between diabetes types.
Interpreting the heterogeneity has become a major focus in
diabetes research. It is necessary to establish a more accurate
classification of diabetes. This will enable the precise and
personalized treatment of diabetes, including the provision of
more appropriate care, the development of hypoglycemic drugs,
and the prevention/treatment of complications.

The most common types, i.e., T1D, T2D, and GDM, are
multifactorial syndromes related to various gene effects and
environmental factors (5). Two rare types, i.e., neonatal diabetes
mellitus (NDM) and maturity-onset diabetes of the young
(MODY), are caused by a single gene mutation (5, 6). MODY is
a type of monogenic diabetes characterized by early-onset (age of
diagnosis is usually before 25), autosomal dominant inheritance,
no autoimmune process or insulin resistance, retention of
endogenous insulin secretion, and no dependence on insulin
(7). It is estimated that MODY accounts for approximately 1-
2% of all diabetic cases (7). The pathogenesis of T2D and GDM is
unclear. T2D is the most important type of diabetes and accounts
for more than 90% of the total number of diabetic patients (3).
Studies have shown that some monogenic diabetes genes are
involved in T2D, with some variants significantly increasing the
risk of T2D (8). T2D and GDM have solid genetic factors.
Monogenic diabetes provides a good resource for elucidating
the pathogenesis and developing personalized care for T2D and
GDM. Substantial progress has been made in the research and
development of hypoglycemic drugs targeting monogenic
diabetes. This has provided the inspiration to further explore
the pathogenesis and develop personalized treatments for T2D by
studying the monogenic diabetes genes.

Hepatocyte nuclear factor 1a (HNF1a or HNF1A), also known
as the MODY3 gene, is the pathogenic gene for MODY3
(7).Common types of HNF1a mutations cause MODY3. Other
mutations do not cause MODY3 but significantly increase the risk
of T2D, while others increase the risk of GDM. Hyperglycemia in
MODY3 is caused by single-gene abnormalities. Unlike the
pathogenesis of MODY, a large number of basic and clinical
experiments show that T2D and GDM result from genetic and
environmental factors. These two factors interact with each other to
promote the occurrence of T2D or GDM. Why do different
HNF1a mutations cause different types of diabetes? Answering
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these questions may improve our understanding of diabetes and
advance the precise treatment of diabetes. In this review, we first
summarize and discuss the relationship between HNF1a gene
polymorphisms, MODY3, T2D, and GDM. We then explore the
mechanism of hyperglycemia caused by HNF1a mutation by
discussing the role of HNF1a in the islets and liver. Finally, we
explore the reason why different HNF1a mutations can lead to
different types of diabetes by analyzing the protein structure and
function. We hope our review will facilitate a more comprehensive
understanding of hyperglycemia caused by HNF1a mutation and
will be useful for accurate diagnosis and treatment of diabetes,
especially the hyperglycemia caused by HNF1a.
POLYMORPHISM OF HNF1A GENE

Human HNF1a is located at q24.31 on chromosome 12 (9) and
is a widely expressed tissue-specific transcription factor (10). In
the liver, HNF1a regulates numerous liver-specific genes and
participates in the metabolism of glucose, fat, and other
substances (11–13). In the pancreas, HNF1a controls many
pancreatic-specific genes involved in b-cell maturation, growth,
and insulin secretion (14–16). The HNF1a gene has a large
number of polymorphisms with no specific mutation hotspots,
and 894 variants are listed in the Exome Aggregation
Consortium (ExAC) database. In total, 1231 variants can be
queried from Genome Aggregation Database (gnomAD) (17).
These variants range from the HNF1a promoter to the 3’
untranslated region (UTR), including missense, translocation,
nonsense, splice mutation, in-frame amino acid deletion,
insertion, duplication, or partial and whole gene deletion (17).

Although mutations have been observed in all exons, they are
most often detected in exons 2 and 4 (Figures 1, 2). Among them,
the mutation of exon 4 (p291fsinsc) is the most common (18). In a
study of 414 different mutations in 1247 families carrying the
HNF1a gene, the most common mutations were missense
mutations (55%), frameshifts (22%), splice sites (9%), promoter
region mutations (2%) and deletions (1.2%) (19). The mutations
caused by these SNPs are as follows: 1) The mutation is located in
the exon region and causes the substitution of an amino acid in
HNF1a, resulting in a missense mutation (20). 2) The mutation is
located in the exon region and causes abnormal shear in the
HNF1a transcript (20). For example, although no RNA has been
obtained from patients to prove this hypothesis, a synonymous
mutation in HNF1a (c.1623 G > A, p.Gln541Gln) involving the last
nucleotide of exon 8 was predicted to affect RNA splicing (21).
3)Mutations located in intron regionsmay generate new splice sites,
resulting in pseudoexons (22, 23). 4) The mutation may be located
in the promoter region, resulting in reduced gene expression (20).
ASSOCIATION BETWEEN HNF1A
POLYMORPHISM AND MODY3

HNF1A-MODY3 is characterized as familial diabetes (9, 24).
Hyperglycemia usually becomes evident and deteriorates during
March 2022 | Volume 13 | Article 829565
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puberty or early adulthood. Approximately 25% of HNF1A-
MODY patients have typical polydipsia, polyuria, polyphagia,
and emaciation symptoms in the initial stage, but most patients
have none of the above clinical manifestations and only present
elevated postprandial blood glucose, usually without ketosis (24,
25). Such patients usually show mild osmotic symptoms
(polyuria and polydipsia) or asymptomatic postprandial
hyperglycemia, without ketosis or ketoacidosis at age 6-25 (26).
However, the clinical symptoms of HNF1A-MODY are very
different. The clinical characteristics of HNF1A-MODY differ
between and within families, which complicates the diagnostic
process. In addition, different MODY3 patients exhibit great
heterogeneity in the first-line use of sulfonylureas and the
occurrence of complications. Therefore, we hope to provide
some valuable information for MODY3 diagnosis, accurate
treatment, and early intervention for other carriers of the same
mutation in the same family before the occurrence of relevant
clinical symptoms by summarizing some significant clinical
features of MODY3.

Clinical Heterogeneity in MODY3
Thus far, hundreds of distinct HNF1a SNPs have been found to
cause MODY3 (Figure 1 and Supplementary Table 1). The
genetic diversity of MODY3 leads to heterogeneity in the
MODY3 clinical phenotype. However, environmental factors
also contribute to the clinical heterogeneity of MODY3. The
main clinical heterogeneities in MODY3 are listed below.
Frontiers in Endocrinology | www.frontiersin.org 3
Family History
As a case of autosomal dominant inherited disease, MODY3
patients usually have a family history of diabetes (9, 27, 28).
Some studies suggest that the probability of a family history of
MODY3 is more than 20 times higher than that of T1D (29).
However, some MODY patients may lack a family history of
diabetes, possibly due to the following factors (1): the probability
of new HNF1A-MODY mutations may be more frequent than
expected, and (2) the family members of the patients were not
diagnosed because of mild clinical symptoms and signs (29, 30).

Age of Onset
Comparing the age of diabetes induced by HNF1a mutation in
the literature revealed the age of onset of diabetes was generally
10-16 years (Table 1). This finding may be attributed to the high
genetic penetrance of the HNF1a mutation and is consistent
with previously reported conclusions. It has been reported that
63% of carriers are younger than 25 years, 79% are younger than
35 years, and 96% are younger than 55 years (39). The average
age of an HNF1A-MODY diagnosis is 14 years, and the disease is
rarely diagnosed in children under 10 years old (40). This finding
is consistent with our statistical data (Table 1).

The location of the mutation determines the age of diagnosis
of abnormal blood glucose. As shown in Supplementary Table 1
and Table 1, the SNPs that cause MODY3 are concentrated in
exons 1, 2, and 4, with relatively few SNPs in exons 8-10.
Bellanne-Chantelot C et al. reported that patients with exon 8-
10 mutations were diagnosed with HNF1A-MODY3 8 years later
than those with exon 1-6 mutations (41). We found that patients
with mutations affecting the dimerization domain or the DNA
binding domain had a lower onset age (Table 1 and Figure 1).
Patients with truncated mutations had a lower onset age than
those with missense mutations. The above findings may indicate
that the DNA binding region of HNF1a plays a more important
role in regulating blood glucose, and the domain that forms a
dimer plays the second most important role.

An individual’s genetic background and environment may
also affect the onset age of HNF1A-MODY3. For example,
intrauterine exposure (mutation inherited by the mother and
hyperglycemia during pregnancy) can lead to an early onset age
of less than 12 years (25). There are also differences in the age of
onset with the same SNP. For example, a survey of MOD3 in
Britain uncovered five diabetes patients in three generations of
the same family with the R54X genotype (34, 35). Among them,
the proband and his brother, mother, and grandmother were
diagnosed with diabetes at puberty, while their uncle carried the
same SNP and was only diagnosed with T2D at the age of 29
(24). Another family from China also exhibited a difference in
the onset age of diabetes with R54X SNPs (35). The daughter was
diagnosed with MODY3 at the age of 19, while the mother was
first diagnosed with T2D at the age of 27. Among the above six
R54X carriers (Table 2), 50% were first diagnosed with diabetes
before the age of 25 years, which conforms to the standard age of
diagnosis for MODY3. However, 50% of the diagnoses occurred
at an age over 25, but all occurred before the age of 30. Therefore,
HNF1a may play decisive roles in the development of abnormal
blood glucose, but personal living habits, including eating, daily
FIGURE 1 | The structure of HNF1a protein and the SNPs associated with
MODY3 or T2D. The SNPs in blue often cause MODY3. The SNPs in red
often cause T2D.
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life, physical exercise, and other genetic factors that can cause
abnormal metabolism, also play a role. Therefore, although a
single HNF1a gene mutation is the cause of MODY3,
environmental factors also play a role in its pathogenesis.

Insulin
The basal insulin level and insulin response to corresponding
high glucose stimulation differ among patients with HNF1A-
MODY3. Byrne MM et al. found that some patients with
MODY3 had normal fasting blood glucose, while others had
very high fasting blood glucose (42). Compared to those with
normal blood glucose, the basal insulin secretion of the MODY3
patients was lower, but their insulin secretion increased in
response to high-glucose stimulation; some patients showed a
limited change, while others patients showed a decrease (42).
This finding may indicate that HNF1a plays a direct role in
regulating insulin secretion in islet b cells in response to high
glucose or other stimuli. The difference may be a result of
different mutations in HNF1a.
Frontiers in Endocrinology | www.frontiersin.org 4
Glycosuria
Patients with HNF1a mutations may exhibit glycosuria;
however, not all HNF1A-MODY patients do. Some studies
have found that diabetes accounts for approximately 30-40% of
all HNF1A-MODY patients (40, 43). For example, a study
involving 11 HNF1A-MODY patients in Japan found that
about 36% of HNF1A-diabetic patients experienced renal
dysfunction (43). Another survey by Amanda Stride et al. also
showed similar results (40). These authors found that 38% of
mutation carriers developed glycosuria (40) 2 hours after oral
glucose. Glycosuria in MODY3 may be caused by an impaired
renal tubular transport of glucose and reduced glucose
reabsorption in the proximal renal tubules (40, 44, 45). The
renal glucose threshold of glucose reabsorption is low.

The renal glucose threshold of HNF1A-MODY patients is
lower than that of healthy individuals with positive urine glucose,
likely because HNF1a regulates the expression of the glucose
transporter sodium-glucose cotransporter 2 (SGLT2) in the
kidney because HNF1a can bind the promoter region of
A B

DC

FIGURE 2 | Comparisons of the HNF1a SNPs causing MODY3 with the HNF1a SNPs causing T2D. (A) Location within the promoter and 10 exons, (B) Location within
the functional domains of HNF1a protein, (C) Location within DNA-binding domain of HNF1a protein, (D) Location within transactivation domain of HNF1a protein.
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SGLT2 (46). In general, HNF1a needs to form a dimer to
regulate the transcriptional expression of its target gene (11,
47). Both HNF1a and HNF1b are the most common
transcription factors in the HNF transcription factor family
and play important roles in the pancreas, liver, and kidney
(10). These factors often form heterodimers (48). It has been
reported by several groups that all diabetic patients with HNF1b
mutations exhibit renal dysfunction (43, 49, 50). These research
Frontiers in Endocrinology | www.frontiersin.org 5
results imply that HNF1b plays a more dominant role in the
kidney than HNF1a.

We found that HNF1a SNPs related to glycosuria were
mainly concentrated in the dimer domain and DNA binding
domain of HNF1a (Table 3), indicating that HNF1a regulates
the transcription of genes that control the renal glucose threshold
along with other transcription factors, likely by forming a dimer
with HNF1b to regulate the genes involved in glucose transport
TABLE 2 | The clinical characteristics of two R54X variants from different countries.

Pedigree Kindred/Generation Subject Sex Relation Age at Diagnosis BMI Treatment Ref

A family from U.K. I: 2 F Grandmather Adolescence NA Insulin (34)
II: 1 F Mother 18 25.2 Insulin
II: 2 M Mother’s brother 29 NA NA
III: 1 M Proband 14 29.7 Insulin
III: 2 M Brother 17 21.6 Insulin

B family from China I: 1 F Mother 27 NA sulphonylurea (gliclazide) (35)
II: 1 F Proband 19 22 insulin,glybenclamide
March
 2022 | Volume 13 | Article 82
NA, Not available.
TABLE 1 | Comparison of the onset ages of diabetes caused by different MODY3 associated SNPs.

Location Nucleotide Change at DNA Level Mutation Age of Onset of the Subject (Yrs, range) BMI Ref

Genomical DNA Codon

Promoter Promoter g.-58A>C HNF4a binding site 22/23 NA (31)
Exon 1 47 c.140G>A p.G47E 12 NA (32)
Exon 1 48 c.142C>A p.E48K 12 NA (33)
Exon 1 54 c.160C>T p.R54X 14-29 21.6-29.7 (34, 35)
Exon 1 103 c.307G>A p.V103M 25 23.6 (36)
Exon 1 107 c.319C>G p.L107I 23.5 ± 5.8 (6/2) 25.3 ± 3.5 (37)
Exon 2 112 c.335C>T p.P112L 9.9 20.3 (38)
Exon 2 114 c.340C>T p.R114C 21 22.6 (36)
Exon 2 128 c.383T>C p.I128N 16 21.2 (27)
Exon 2 131 c.392C>T p.R131W 10-20 NA (32)
Exon 2 143 c.427C>T p.H143Y 7 21.5 (27)
Exon 2 171 c.511C>G p.R171G 21 18.2 (36)
Exon 2 171 c.511C>T p.R171X 11-26 NA (32)
Exon 3 196 c.587_590delCCAA T196fsdelCCAA 31 NA (32)
Exon 3 229 c.686G>A p.R229Q 21-36 NA (32)
Exon 3 235 c.703G>C p.E235Q 23 20.8 (36)
Intron 3 Intron c.714-1G>A IVS3−1G>A 24 NA (32)
Exon 4 241 c.721T>G p.C241G 12 NA (33)
Exon 4 245 c.733G>C p.G245R 25 25.5 (36)
Exon 4 263 c.788G>A p.R263H 17 16.3 (36)
Exon 4 263 c.787C>T p.R263C 13-27 NA (32)
Exon 4 271 c.812G>A p.R271Q 14 16.6 (36)
Exon 4 271 c.811C>T p.R271W 16 NA (32)
Exon 4 276 c.827C>A p.A276D 24 NA (32)
Exon 4 291 c.873delA Pro291fsdelA 12 NA (33)
Exon 4 291 c.8743elC P291fsinsC 6-54 NA (32)
Exon 5 349 c.1047C>G p.H349Q 23 24.2 (36)
Exon 6 379 c.1136-1137delT P379fsdelT 13 21.4 (27)
Exon 6 379 c.1136-1137delCT P379fsdelCT 11-20 NA (32)
Exon 7 445 c.1333_1334delAG S445fsdelAG 12–13 NA (32)
Exon 7 447 c.1340C>T p.P447L 18 22.1 (27)
Exon 7 447 c.1340C>G p.P447L 17 NA (32)
Exon 7 487 c.1460G>A p.S487N 20 18.9 (36)
Exon 8 531 c.1592G>C p.S531T 35 NA (32)
Exon 9 559 c.1677^1678insA A559fsinsA 19 22.9 (27)
NA, Not available.
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or reabsorption in the kidney. However, this hypothesis is only
our speculation and needs to be further confirmed via
by experiments.

Cardiovascular System
HNF1A-MODY is a type of nonketotic diabetes characterized by
progressive hyperglycemia in childhood, adolescence, and early
adulthood and has a high risk of chronic microvascular
complications (56, 57). The plasma glucose of patients
deteriorates with age, and the risk of microvascular
complications increases. In addition to the cardiovascular
burden caused by uncontrolled blood glucose, some studies
have found that some SNPs can increase the risk of vascular
and cardiac diseases, such as I27L, A98V, and S487N (57). Some
SNPs are closely related to dyslipidemia, a significant
independent risk factor for cardiovascular abnormalities (58).
This association may be related to the involvement of HNF1a in
the synthesis of liver-related lipoproteins and liver
lipid metabolism.

Some researchers reported that the incidence of
cardiovascular and microvascular complications is similar to
that in patients with T1D and T2D and is associated with poor
glycemic control (25, 56, 59). However, Babaya N, et al. reported
that the concentration of high-density lipoprotein cholesterol
(HDL-C) in HNF1A-MODY (I27L carrier) is higher than that in
normal individuals (60). HDL-C can reduce cardiovascular risk;
thus, the incidence rate of coronary heart disease in HNF1A-
MODY patients with I27L carrier may be lower than that in T1D
patients and T2D patients.

Cancer
Recent studies showed that MODY3 is a risk factor for pancreatic
cancer (61, 62). HNF1a gene mutation is related to pancreatic,
liver, and kidney tumors (63–66). It has been reported that
HNF1a mutations (p.E32 * and p.L214Q) are related to
hepatocellular tumors (67). Somatic HNF1a mutations are
found in approximately 1% to 2% of hepatocellular carcinomas
and usually occur in adenomas. HNF1a mutations increase the
risk of the malignant transformation of hepatocellular
adenomas (67).
Frontiers in Endocrinology | www.frontiersin.org 6
Treatment
HNF1A-MODY3 can cause severe diabetic retinopathy, diabetic
nephropathy, diabetic peripheral neuropathy, and other
complications (59). Therefore, early diagnosis and timely
treatment are very important for blood glucose control,
delaying the occurrence and development of complications and
improving the quality of life.

The phenotype of HNF1A-MODY is characterized by mild
nonprogressive hyperglycemia, progressive hyperglycemia, and
hyperglycemia with extra-pancreatic characteristics (25, 26). In
patients diagnosed with mild hyperglycemia, diet seems to be a
reasonable and effective treatment strategy; however, in the case
of progressive hyperglycemia, pharmacological methods should
be attempted (68, 69). The treatment of HNF1A-MODY patients
depends on their age and HbA1c level (64). Patients with HNF1a
mutations are very sensitive to the oral hypoglycemic drug
sulfonylurea (70, 71). It is speculated that this may be due to
the decreased liver clearance of some sulfonylurea derivatives in
patients with HNF1a gene mutations, resulting in an increase in
serum levels (72). The increased circulating levels of these drugs
could explain the enhanced efficacy. The response of HNF1A-
MODY patients to sulfonylureas is five times higher than that to
standard metformin (73). However, in T2D, the efficacy of the
two drugs has been demonstrated to be almost the same (73).
Sulfonylureas usually control blood glucose better than insulin
therapy in patients with HNF1A-MODY, and the fasting
hypoglycemic effect is also good (70). HNF1A-MODY patients
show obvious sensitivity to oral sulfonylurea drugs. The failure of
sulfonylurea treatment is rare and occurs in only a few patients
with the c.618G>A mutation (74). Therefore, low-dose
sulfonylurea drugs (such as 20-40 mg/day gliclazide) are
preferred for long-term treatment and should be regarded as
the first-line treatment for HNF1A-MODY (73).

However, studies have shown that patients with some variants
no longer respond to the above treatments. Patients with
p.His126Asp do not respond to sulfonylureas (low and high
doses), dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors), or
glucagon-like peptide-1 receptor agonists (GLP-1Raa), also
known as incretin analogs (75). Low-dose sulfonylurea therapy
is the first-line therapy for MODY3 but does not show special
TABLE 3 | The HNF1A SNPs associated glycosuria.

Location Nucleotide Change at DNA Level Mutation Age of Onset of the Subject (Yrs) Sex IBM Ref

Genomical DNA Codon

Exon 1 31 c.92G>A p.G31D 15 Male 15.9 (51)
Exon 1 55,56 c.161-165delGAGGG R55G56fsdelGAGGG 17 Male 24.6 (46)
Exon 1 98 c.283C>T p.A98V 5 Male NA (52)
Exon 2 142 c.425C>T p.S142F 9 Female 27.2 (46)
Exon 2 171 c.511C>T p.R171X 14 Female 20.9 (46)
Exon 3 224 c.670C>T p.P224S NA Male NA (44)
Exon 3 230-236 c.687_707del p.E230_C236del 13 Female 22 (53)
Exon 4 272 c.815G>A p.R272H NA Male NA (54)
Intron 5 Splice site c.955+2 T>A IVS5nt + 2T!A 20 Male 24.1 (46)
Exon 4 271 c.811C>T* p.R271W 15 Female NA (55)
Intron 7 Splice site c.1502-6G>A* IVS7nt-6G>A 17 Female NA (55)
March 2022 | Vo
lume 13 | A
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*This SNP was related to Renal malformations.
NA, Not available.
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sensitivity to HNF1a-related T2D (76). For example, Mexican
carriers of the HNF1a p.E508K variant have no increased
sensitivity to sulfonylureas (76).

In a word, HNF1A-MODY is a disease with genetic and
clinical heterogeneity. However, MODY3 still has strong
common characteristics. Patients with HNF1A-MODY usually
have low high-sensitivity C-reactive protein (hsCRP) levels (77,
78). In addition, although MODY3 is a type of monogenic
diabetes, the severity can differ with different genetic
backgrounds and environmental factors. Previously, MODY3
patients were generally not overweight or obese and lacked other
risk factors for T2D, such as hypertension or dyslipidemia (79).
However, as an increasing number of people have become
overweight or obese, individuals with MODY3 may also be
overweight or obese. According to statistics, nearly 30% of
HNF1A-MODY patients in the United States are overweight or
obese, rendering the differential diagnosis between HNF1A-
MODY3 and T2D more difficult (80). Therefore, although
some clinical guidelines for MODY3 diagnosis exist, HNF1A-
MODY3 patients often fail to meet all diagnostic criteria or are
misdiagnosed with T1D or T2D.
ASSOCIATION BETWEEN HNF1A
POLYMORPHISM AND T2D

Studies have found that some HNF1a SNPs do not cause
MODY3 bu t i nc r e a s e th e su s c ep t i b i l i t y t o T2D
(Supplementary Table 1). A large-scale association analysis of
a group of people mainly of European ancestry showed that the
T2D susceptibility loci existed near HNF1a (81). Moreover,
SNPs related to T2D are closely related to race. The p.E508K
variant was found only in T2D patients in Mexico (82). The rare
p.A98V allele may be associated with T2D in the Caucasian
population (83). However, the p.A98V allele does not appear to
be associated with T2D in Asian populations (84). Among them,
the most famous locus is G319S. The G319S polymorphism of
HNF1a is positively correlated with the high prevalence of T2D
in Canadian Aborigines (85, 86).

Gene sequencing revealed that the G319S mutation in
HNF1a was associated with an increased incidence rate of
T2D in the Oji Cree ethnic group in Canada. The specific and
positive predictive values of G319S carriers suffering from T2D
before the age of 50 were 97% and 95%, respectively (87). G319S
is associated with a distinct form of T2D characterized by onset
at an earlier age, higher postprandial plasma glucose, and lower
body mass index (BMI) (85). In patients with T2D, compared to
those with G319/G319, the BMIs of individuals with S319/S319
and S319/G319 were significantly lower, and postprandial blood
glucose was significantly higher (85). In nondiabetic individuals,
the plasma insulin of S319/G319 heterozygotes was significantly
lower than that of G319/G319 homozygotes (85). A lower BMI
coupled with the decrease of insulin secretion before the onset of
diabetes is the pre-diabetic physiologic state of individuals with
HNF1A-T2D. This group is different from those with other types
of T2D caused by other genes. The latter group is often generally
Frontiers in Endocrinology | www.frontiersin.org 7
obese and has a high BMI with insulin resistance before obvious
diabetes. Moreover, smoking appears to increase the risk of
diabetes in HNF1a G319S carriers (88). G319s is located in
HNF1a transactivation sites, which are rich in proline II
domains (Figure 1), with changes in conserved glycine
residues. The function of the protein carrying the G319S
mutation was found to be impaired in vitro (87), and the
transcription ability was reduced by approximately 50% (88).
However, this mutation did not affect DNA binding or protein
stability. There is no evidence that the mutant protein has a
dominant-negative effect. The G319S mutation affected the
transcriptional shear of HNF1a. Two abnormal transcripts and
an alteration in the relative balance of normal splicing products
were produced by the G319S variant (89). Two abnormal
transcripts present only in the G319S cells included premature
termination codons resulting from the inclusion of seven
nucleotides from intron 4 or the deletion of exon 8. A novel
isoform lacking the terminal 12 bases of exon 4 was increased
compared with that in control cell lines and human pancreatic
tissue. The combination of the reduced activity of the G319S
protein and abnormal splicing transcripts may increase the
susceptibility to diabetes.

HNF1A-SNPs associated with T2D only increase the risk of
T2D. Obvious T2D requires other factors, such as genetic and/or
environmental factors. An interesting example can be found in
stories of a new HNF1a variant c.539C >T (p.Ala180Val) in two
families in Norway (90). There was an obvious difference in the
probability of T2D between these two families (90). p.Ala180Val
is a mutation that affects highly conserved amino acid residues in
proteins. The HNF1a mutant p. Ala180Val does not cause
MODY3 but may increase the risk of T2D. This variation was
found to be completely separate from diabetes in one family
(family A), but the data did not support its role as a pathogenic
factor of MODY3. In the other family (family B), there was no
clear genotype/phenotype correlation. Two diabetic patients and
one individual with normal plasma glucose levels in this family
were homozygous mutation carriers. In family A, the mutation
carriers had similar metabolic syndromes, including obesity,
diabetes, hypertension, and dyslipidemia. Moreover, the
nonmutation carriers in the family were overweight or obese,
although they had normal blood glucose levels, but they were as
overweight or obese as the family members carrying the
mutation. Genetic factors may be related to the metabolic
abnormalities in family A. Therefore, it can be speculated that
HNF1a p.Ala180Val could lead to a certain degree of b cell
dysfunction; however, it does not cause significant glycemic
abnormalities. The genetic background of family A associated
with metabolic abnormalities increased insulin resistance in the
HNF1a p.Ala180Val carriers, leading to marked diabetes. In
contrast, family B members did not present with obesity or
metabolic syndrome, but some female mutation carriers had a
history of GDM. Therefore, we can speculate that p.Ala180Val
can increase the susceptibility to hyperglycemia but cannot lead to
obvious diabetes. Under the influence of additional stress, such as
other genetic factors responsible for obesity or pregnancy,
p.Ala180Val carriers develop peripheral insulin resistance or
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permanent impairment in b cellular function, resulting in marked
diabetes. The difference between the two families may be due to
the accumulation of the higher-risk variant for T2D in family A.
Overall, lifestyle and environmental factors may also play a role in
the phenotypic differences.

Low-dose sulfonylurea therapy is the first-line therapy for
MODY3 but does not show special sensitivity to T2D. For
carriers of HNF1a variants that may cause T2D, dietary
treatment is the first recommendation.
ASSOCIATION BETWEEN HNF1A
POLYMORPHISM AND GDM

GDM is a common complication of pregnancy that has adverse
effects on the short-term and long-term health of women and
their children (91). Approximately 2-5% of pregnant women
develop GDM during pregnancy, and the incidence rate has
significantly increased over the past 10 years (92). GDM is
diagnosed when any degree of glucose intolerance occurs
during pregnancy for the first t ime. GDM is also
heterogeneous diabetes, with varying degrees of diabetes
caused by b cell dysfunction (92). When pancreatic b cells can
no longer compensate for the increased insulin resistance during
pregnancy, they show varying degrees of glucose intolerance.
Although the pathogenesis of the disease is still largely unknown,
GDM is considered the result of an interaction between genetic
and environmental risk factors. Age, obesity, and a high-fat diet
are some important nongenetic factors (93).

Many studies have found that HNF1a SNP increases the risk
of GDM. HNF1a is one of the pathogenic genes of GDM in
Danish women. The sequencing of 354 Danish GDM patients
revealed five diabetes-susceptible variants of HNF1a in seven
HNF1a mutation carriers (94). Only those with the Gly288fs*
variant were diagnosed with diabetes before the follow-up period
and received insulin treatment. The remaining HNF1amutation
carriers were not diagnosed with diabetes before the follow-up
period. p.A98V was associated with significant impairment of
serum insulin and C-peptide secretion during an oral glucose
tolerance test in previously GDM-free glucose-tolerant women
(95). The p.I27L polymorphism of HNF1a seems to increase the
risk of GDM in Scandinavian women (96). The p.I27L gene was
found to increase GDM by increasing insulin resistance in
Turkish women (97). In Scandinavian women, the p.I27L
polymorphism of HNF1a also increased the risk of GDM (96).
The p.I27L TT genotype was associated with an increased risk of
preeclampsia in patients with GDM by increasing blood pressure
and urinary protein (97). No difference in weight was observed
compared to non-diabetic pregnant women with HNF1a
mutation during the entire pregnancy.

Pregnant women with HNF1a mutation may develop GDM
due to islet dysfunction. Pregnancy is a significant source of
stress for women, which leads to the increase of insulin demand.
If the need for insulin cannot be met, GDM will gradually
develop. Dyslipidemia during pregnancy increases the risk of
pregnancy complications. The lipid profile has a strong genetic
Frontiers in Endocrinology | www.frontiersin.org 8
determinant. In 2017, Xiaojing Wang et al. found that the total
cholesterol levels of pregnant women carrying the T alleles of
rs1169309 in the HNF1a gene were elevated, which could
significantly increase the risk of GDM (98). Insulin resistance
may also be involved in the occurrence of GDM.

Compared with other gene mutation carriers, GDM HNF1a
mutation carriers exhibit a significant reduction in hsCRP
expression (94). hsCRP is encoded by the CRP gene, which has
an HNF1a transcription factor-specific binding site (65, 99).
SNPs in HNF1a have been associated with CRP levels in
different populations (100, 101). The expression of hsCRP in
GDM patients is higher than that in HNF1A-MODY patients
(84). This finding indicates that GDM caused by HNF1a results
in the same susceptibility to diabetes as the T2D variant, but
insufficient penetrance leads to clinical MODY.

Dyslipidemia in pregnancy increases the risk of pregnancy
complications. Therefore, pregnant women who are HNF1a
gene mutation carriers should pay special attention to their
health management and consume a reasonable diet during
pregnancy. If HNF1a mutation carriers have hyperglycemia
during pregnancy, they should not be treated with
sulfonylureas and need to be treated with insulin.
MECHANISM OF ABNORMAL BLOOD
GLUCOSE ASSOCIATED WITH HNF1A
GENE POLYMORPHISM

HNF1a is expressed in embryonic development, infancy, and
adulthood. Moreover, the expression distribution has strong
tissue specificity, mainly concentrated in the tissues responsible
for metabolism, such as the pancreas and liver. Through
transcriptomics and antibody-based proteomics, the analysis of
human tissue-specific expression showed that the expression
level of HNF1a varies in human tissue and controls the
transcriptional expression of many genes in the tissue (102).
According to incomplete statistics, HNF1a can bind at least 106
target genes in the pancreas (103), which may explain why the
mutation location of the HNF1a gene determines the age of
diabetes onset. The above results indicated that HNF1amay play
varied and important roles in the tissues. Below, we focus on the
possible mechanism of HNF1a for glucose homeostasis in the
pancreas and liver.

Functions in Pancreas
Maintain the Mature b Cell Function
The dysfunction of mature b cells is the main reason for the
hyperglycemia caused by HNF1a. Basal insulin secretion and
insulin production corresponding to high glucose stimuli are the
basic functions of mature b cells. MODY3 patients have insulin
secretion disorder, and the islet secretion function gradually
declines as the disease worsens (104). Fasting insulin and
glucose-stimulated insulin secretion were found to be
abnormal in 40 HNF1a mutation carries from Britain and
France (105). The insulin sensitivity was elevated in these
individuals as well as the proinsulin to insulin ratio. The
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results indicated that HNF1a mutation directly altered basal
insulin secretion, rather than glucose sensing insulin secretion.
However, a recent islet study of a 33-year-old patient with
MODY3, who was misdiagnosed with T1D for 17 years, found
that HNF1a causes insulin deficiency diabetes by affecting
glucose-stimulated insulin secretion (106). The two results
were different, possibly due to different HNF1a variants. In
addition, G319S carriers reportedly showed a decrease in
insulin secretion before diabetes appeared (85). This indicated
islet dysfunction also exists in HNF1A-T2D patients. Therefore,
we think HNF1a plays very important and different roles in basal
insulin secretion and insulin production corresponding to high
glucose stimuli. In order to better study the role of HNF1a in b
cell dysfunction, it is necessary to compare the islet function of
HNF1a mutants with different degrees of clinical severity to
identify the domain of HNF1a involved in the secretion of basic
insulin and the domain involved in the secretion of insulin
stimulated by high glucose.

HNF1a can regulate many genes involved in insulin secretion
(16, 42) and directly bind to the promoter region of the insulin
gene, positively regulating the transactivation of the latter. In
addition to directly regulating insulin transcription, HNF1a was
found to directly regulate the GLUT2 and HNF4 pyruvate kinase
genes, which are the key genes involved in cellular insulin
secretion (103). In addition, heterozygous HNF1a variations
change the expression of key enzymes involved in mitochondrial
glucose metabolism (107). In conclusion, HNF1a is an
important transcription factor for the maintenance of b cell
function, but the specific mechanism needs to be further studied.

Development and Maturation of Islets
HNF1a is involved in the development and maturation of islets.
In normal embryonic mouse pancreas, the expression of HNF1a
was detected on embryonic day 10.5 (E10.5) (108). When the
dominant negative p291fsinsc HNF1a mutation is specifically
expressed in b cells (driven by the rat Ins2 promoter), the islets
are gradually disordered with reduced cells numbers, and the
cells are dispersed in the islet (109, 110). Signs of serious cell
damage can be observed, including vacuolization, immature
secretory granules, swollen mitochondria, and expanded
endoplasmic reticulum (109, 110). Nkx6.1 is a homologous
domain transcription factor that plays a role in pancreatic
development and the maintenance of mature b cellular
function (111). Studies have shown that Nkx6 can directly
activate the expression of HNF1a (112). HNF1a in turn
directly activates the expression of MafA, which encodes
transcription factors produced later in the developing
pancreatic transcription program and is expressed only in
differentiated insulin hormone positive cells (113).

Some studies indicated that HNF1a is not limited to b cell
development and may also affect a cell development. HNF1a
whole-body knockout mice died at 6 weeks after birth with small
islets and a high a/b ratio (114). This phenomenon is consistent
with the islet results for diabetic patients with HNF1a mutation
(106). The increased a/b cell ratio may be caused by the slightly
higher quality of a cells in the pancreas of these patients. The
manifestations of cell hyperfunction, excessive glucagon
Frontiers in Endocrinology | www.frontiersin.org 9
secretion, weakened negative feedback to glucose, and
decreased intestinal glucagon effect are observed in MODY3
patients (115). In 2020, Kazuya Yamagata et al. found HNF1a
can inhibit glucagon secretion by regulating SGLT1 expression in
a cells (116). HNF1a was found to inhibit a cell characteristics
in modeling monogenic diabetes using human embryonic stem
cells through mutations in HNF1a (117).

Although further research is needed, it is clear that HNF1a
plays a role in pancreatic organogenesis, endocrine and exocrine
cell differentiation, and growth by influencing islet specific
transcription factors.

Function in Liver
In the liver, HNF1a may affect the balance of blood glucose
through regulated glucose and lipid metabolism. HNF1a directly
binds to the promoter region of the glucose 6-phosphate
transporter (G6PT) gene, the key enzyme of the glucose-6-
phosphatase (G6Pase) system, to promote the transcription of
the latter (118). Compared with HNF1a (+/+) and HNF1a (+/-)
littermates, hepatic G6PT mRNA levels and microsomal G6P
transport activity are markedly reduced in HNF1a (-/-) mice
(118). The G6Pase system is essential for the maintenance of
glucose homeostasis. Thus the HNF1a variant may cause
abnormal glucose homeostasis through the G6Pase system.
After HNF1a deletion in the liver, the expression of genes
encoding fatty acid synthetic enzymes (fatty acid synthase and
acyl-CoA carboxylase) and peroxisomal b-oxidation enzymes
(CYP4A3, bifunctional enzyme, and thiolase) increased (119).
However, the expression of the hepatic fatty acid binding protein
(L-FABP) gene decreased significantly (119). Two HNF1a
binding sites were found in the 5’ promoter region of L-FABP
by sequence analysis. Cell experiments confirmed that HNF1a
was necessary for the transactivation of L-FABP (119). We
speculated that HNF1a mutation may disrupt the balance of
the blood glucose through regulating glucose metabolism
and adipogenesis.

HNF1a also participates in the transcription of
apolipoprotein genes (120, 121). The HNF1a G319S genotype
was significantly correlated with the total plasma cholesterol,
low-density lipoprotein cholesterol (LDL-C), and apolipoprotein
(Apo) B concentration in Oji Cree individuals with T2D (122). In
Oji Cree people who did not have T2D, we found that the
HNF1a G319S genotype was significantly associated with the
plasma concentrations of HDL-C and apolipoprotein AI (123).
The phenotype was not related to plasma triglyceride or
l ipopro t e in (a ) . I 27L had a pro t ec t i ve e ff e c t on
hypertriglyceridemia in these individual samples (57). The
above studies all indicated that HNF1a plays a role in the lipid
profile of diabetic individuals. These data enhance our
understanding of the complex interactions among genes,
hyperglycemia, and cardiovascular risk factors in T2D. Some
studies have shown that a decreased expression of HNF1a
increases the risk of fatty liver, which is closely related to
insulin resistance (122, 124).

In summary, HNF1a SNPs responsible for the abnormality of
blood glucose may be caused by changes in the development,
promotion, and death of b cells, the maintenance of mature
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pancreatic function, as well as glucose and lipid metabolism in
the liver.
RELATIONSHIP BETWEEN HNF1A AND
DIFFERENT TYPES OF DIABETES

HNF1A-MODY3 is characterized by not only gene heterogeneity
but also phenotype heterogeneity. For example, the two human
variants HNF1a (P408H) and HNF1a (P409H) can be
considered different variants (125, 126). A possible reason is
that these two adjacent sites regulate the promoters of two
different HNF1A-targeted genes. This is not surprising and can
be explained by the interactions between HNF1a and different
coactivators, which are necessary for the complete activation of
different HNF1a downstream target promoters (127). The above
phenomena show that HNF1a plays many roles and is widely
involved in the strict and fine regulation of many genes
responsible for metabolism.

Some HNF1a SNPs cause obvious MODY3, while others do
not cause MODY3 but increase the risk of T2D or GDM. These
are very interesting phenomena. By determining the underlying
mechanism of these phenomena, we may improve our ability to
individualize diabetes treatment. First, what is the difference
between MODY, T2D, and GDM? The biggest difference is the
age/time of onset. The onset age of MODY is below 25 years old,
while T2D occurs in adulthood, and the onset of GDM is obvious
diabetes in the middle and later stages of pregnancy. The earlier
the onset, the more dominant is the role of genetic factors in the
occurrence of diseases. The impact of environmental and other
physical factors is greater with later onset. In essence, pregnancy is
a stressor on the female body. The second major difference is
whether the family history is obvious. The more obvious the
family history is, the more important is the role of genetic factors.
HNF1a heterozygous mutations lead to MODY3. Since an
HNF1a allele is normal in MODY patients, it can be deduced
that the expression level of HNF1a is important in this group.
MODY plays a vital role in cell function, especially in b cells. A
lack of sufficient protein levels leads to a significant loss of function
of mutant alleles (104), and dominant negative effects caused by
interference between mutant products and wild-type forms lead to
the formation of inactive heterodimers (128). HNF1A-MODY-
related variants function through one of the above mechanisms,
i.e., a simple loss of function or a dominant-negative mechanism.
T2D and GDM are diabetes types caused by multiple factors. The
HNF1a SNP, which triggers T2D and GDM, has a certain impact
on the process of abnormal blood glucose. Therefore, we speculate
that HNF1a SNPs related to T2D or GDM partially impair the
function of the HNF1a protein.

The HNF1a protein contains the following three functional
domains: an N-terminal dimer domain, a DNA binding region
containing a nuclear localization signal, and a C-terminal
transactivation domain (Figure 1). The N-terminal dimeric
domain (residues 1-32) forms a four-helix bundle, two of which
separate the a-helix in a circle to form a dimer (129, 130).
Usually, two HNF1as form a homodimer or one HNF1a
Frontiers in Endocrinology | www.frontiersin.org 10
associates with the HNF1b transcription factor, which has a
similar structure, to form a heterodimer (47). The DNA
binding domain (DBD) of HNF1a binds reverse palindrome 5’-
gttaatnataac-3’ and forms a helix-to-helix structure (131). The
DBD includes two POU subdomains, i.e., POU-specific domain
(POUs, amino acids 91-181) and POU-homologous domain
(POUH, amino acids 203-279) (104). The amino acid positions
of DBDs differ slightly. POUs are an integral part of HNF1a and
play a vital role in maintaining protein stability (132). Comparing
the common HNF1a SNPs that cause MODY3 with those that
cause T2D, most of the former are concentrated in exon 1, 2, and
4, which encode the DNA binding region of the C-terminal
transactivation domain of HNF1a (Figure 1). The HNF1a SNP
leading to T2D is concentrated in exons 8 and 9. The above sites
of the HNF1a SNP that lead to T2D are almost outside the
proline rich activation domain II of HNF1a, which is located in
the transactivation domain.

SNP mutations may affect the function of the HNF1a protein
through the following mechanisms: 1) Affecting the ability of
DNA to bind the transcriptional regulatory region of the target
gene; 2) Affecting the transcriptional activity of HNF1a; 3)
Affecting the nuclear entry ability of the HNF1a protein; 4)
Affecting the stability of the HNF1a protein; and 5) Affecting the
expression of the HNF1a protein, especially SNPs located in the
promoter region (107, 125, 133). In 2017, Najmi et al. found that
the transcriptional activity or DNA binding ability of HNF1a
variants that cause T2D was between those of normal wild-type
protein and the HNF1A-MODY variant (134). The above
interesting study may indicate that HNF1a participates in
multiple signaling pathways involved in abnormal blood
glucose and that the HNF1a variants identified among T2D
patients may lack sufficient penetrance to drive diabetes but still
increase the susceptibility to diabetes.

In summary, the HNF1a gene is highly polymorphic, and the
clinical phenotypes caused by different SNPs may vary greatly.
Therefore, to better manage the abnormal blood glucose levels
caused by HNF1a mutations, genotype identification should be
performed to obtain detailed information concerning HNF1a.
CONCLUSION AND FUTURE
PERSPECTIVES

To date, many HNF1a SNPs have been identified and are widely
distributed in the HNF1a gene. HNF1a-associated diabetes
mellitus has larger clinical heterogeneity. Significant differences
have been found in abnormal plasma glucose caused by SNPs at
different sites. Patients with some variants do not have diabetes
throughout their lives, some with other variants show serious
hyperglycemia in childhood, while others show hyperglycemia in
their older years. HNF1a is a tissue-specific transcription factor
mainly expressed in the pancreas and liver. Hundreds of target
genes have been found in these tissues. In the pancreas, HNF1a
not only maintains the function of mature pancreatic b cells, but
also affects the development andmaturation of b cells. In the liver,
HNF1a abnormality inhibits hepatic glycogen decomposition
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and promotes lipolysis. Uncovering the mechanism underlying
why different HNF1a mutations cause different types of diabetes
will provide a theoretical basis for personalized prevention and
treatment of HNF1a-associated hyperglycemia and will also
benefit research on T2D, which is the main type of diabetes.
HNF1a may cause different forms of diabetes due to different
levels of penetrance and genetic backgrounds. These differences
have a certain correlation with the location of the SNPs. The SNP
for HNF1A-MODY is often located in the DNA binding region,
while those for T2D and GDM are located in a different region.
Functional studies have shown that the transcriptional activity or
DNA binding ability of the HNF1a variant of T2D is between
those of the normal wild-type protein and the HNF1A-MODY
variant. This finding may indicate that the HNF1a variants
identified among T2D patients may lack sufficient penetrance
to drive diabetes but still increase the susceptibility to diabetes.
Accordingly, there must be differences in the treatment of
diabetes caused by different SNPs. Low-dose sulfonylurea
therapy is the first-line therapy for MODY3 but does not show
special sensitivity to T2D. For carriers of the HNF1a variants that
may cause T2D or GDM, dietary treatment is the first
recommendation. We hope research on the pathogenesis and
drug treatments for HNF1A-T2D and GDM will progress in the
near future with studies on the function of HNF1a.
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