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Once considered an inert filler of the bone cavity, bone marrow adipose tissue (BMAT) is
now regarded as a metabolically active organ that plays versatile roles in endocrine
function, hematopoiesis, bone homeostasis and metabolism, and, potentially, energy
conservation. While the regulation of BMAT is inadequately understood, it is recognized as
a unique and dynamic fat depot that is distinct from peripheral fat. As we age, bone
marrow adipocytes (BMAds) accumulate throughout the bone marrow (BM) milieu to
influence the microenvironment. This process is conceivably signaled by the secretion of
adipocyte-derived factors including pro-inflammatory cytokines and adipokines.
Adipokines participate in the development of a chronic state of low-grade systemic
inflammation (inflammaging), which trigger changes in the immune system that are
characterized by declining fidelity and efficiency and cause an imbalance between pro-
inflammatory and anti-inflammatory networks. In this review, we discuss the local effects
of BMAT on bone homeostasis and the hematopoietic niche, age-related inflammatory
changes associated with BMAT accrual, and the downstream effect on endocrine
function, energy expenditure, and metabolism. Furthermore, we address therapeutic
strategies to prevent BMAT accumulation and associated dysfunction during aging. In
sum, BMAT is emerging as a critical player in aging and its explicit characterization still
requires further research.
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INTRODUCTION

All tissues are affected by aging, but diseases that weaken the skeleton constitute the most prevalent
chronic impairments in the United States (1–3). Skeletal diseases and related conditions are of grave
concern among the aging population as they have the potential to significantly compromise
systemic and local functions and diminish quality of life. The increase in bone marrow adiposity
(BMA) over a lifetime is thought to be a major contributor to age-associated chronic conditions
such as osteoporosis, osteoarthritis, and cancer (4–7). Qualitative studies have reported changes in
the bone marrow (BM) of humans since 1882 when Ernest Neumann recognized aging resulted in
trabecular bone loss and most of the BM consisted of adipose tissue (8). Since then, studies in both
rodents and humans have validated that aging is associated with a significant increase in bone
marrow adipose tissue (BMAT) (9, 10) with a concurrent decline in bone mineral density (11). Over
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the years, considerable advancements have been made related to
BM imaging and BMAT quantification in humans and rodents.
In humans, quantitative magnetic resonance imaging (MRI) and
spectroscopy (MRS) allows for noninvasive monitoring of
BMAT development and expansion (12–15). This compares to
osmium tetroxide and contrast enhanced computed
tomography, considered the gold standard in rodents, which
provides both volumetric and spatial quantification of BMAT
(16). Notwithstanding the advances in methodologies, BMAT
represents an understudied aspect of adipocyte biology. Distinct
from peripheral adipose tissue, BMAT displays a unique
response to physiological changes (i.e., aging, exercise, cold
exposure, nutritional variations like high-fat diet and fasting)
(17–20). Furthermore, given its unique location, BMAT directly
influences mechanisms of bone remodeling, hematopoiesis, and
inflammation within the BM microenvironment (21, 22).

In general, aging is associated with impaired tissue
regeneration that is congruent with increased BMA and an
inflammaging phenotype. Inflammaging is characterized by
unresolved and uncontrolled inflammation and a dysfunctional
immune response that exacerbate the aging process and age-
related chronic diseases (23, 24). Furthermore, this process is
believed to exacerbate the decline in the regenerative capacity of
the skeleton (25) by affecting bone marrow stromal cell (BMSC)
proliferation, frequency, and fate determination (25). With
recent evidence supporting BMAT as an endocrine and
paracrine organ capable of local regulation of the BM
microenvironment, it is important to further understand the
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relationship between bone marrow adipocytes (BMAds) and the
observed inflammaging phenotype in aging.
THE EFFECTS OF BMA ON BONE
MARROW STROMAL CELLS AND
HEMATOPOIETIC STEM CELLS

BMA and BMSC Potential
As we age, our capacity for tissue repair and regeneration in
response to injury declines (Figure 1). Accordingly, bone repair
is delayed and impaired as well. BMSCs are the foundation of
bone regeneration by serving as the progenitor cells of
osteoblasts as well as of adipocytes (26, 27). In addition,
BMSCs support proliferation and differentiation of
hematopoietic stem cells (HSCs), promote HSC engraftment in
animal models, and can decrease inflammation under normal
conditions (28). However, aging affects BMSCs through intrinsic
and extrinsic factors. Intrinsically, BMSCs accumulate DNA
damage, reactive oxygen species (ROS), and damaged proteins
that may promote aging (29). Extrinsically, the composition of
the BM niche and the growth factors and cytokines that are
secreted into the local environment change with age (29)
(Table 1). In particular, the increase in BMAds may disrupt
the microenvironment structure and alter the fate of BMSCs.
Age-related bone loss has thought to be driven in part by a
decline in BMSC proliferation and function as well as
FIGURE 1 | With age, the accumulation of bone marrow adipocyte (BMAd)-derived factors influences mechanisms of bone remodeling, hematopoiesis, and
inflammation, which triggers a cascade effect within the bone marrow (BM) microenvironment. Aging is associated with increased bone marrow adiposity
(BMA) and decreased bone mineral density. These classic characteristics of aging result from adipsin priming bone marrow stromal cells (BMSCs) towards
adipogenesis and adipocytes (including pre-adipocytes in aged mice) secreting the pro-osteoclastic factor, RANKL. Adipocytes also secrete adiponectin
and pro-inflammatory cytokines that skew hematopoietic stem cell differentiation towards the myeloid lineage, which is observed in the chronic inflammatory
state of aging (inflammaging). In the BM, this pro-inflammatory microenvironment leads to senescence-associated secretory phenotype (SASP) factors
decreasing BMSC potential and functionality. This figure was created using BioRender.com.
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increased commitment of BMSCs to adipogenic lineages (48).
At the cellular level, the BMSC pool in the BM niche shows a
biased differentiation towards adipogenesis at the cost of
osteoblastogenesis in aging (48). Despite their regenerative
capabil it ies , BMSCs were shown to have decreased
differentiation potential when exposed to inflammatory
environments (49). Josephson et al. revealed that skeletal stem/
progenitor cell (SSPC) frequency significantly declined with
increased age, and this directly correlated to a longer fracture
healing time in a human cohort (25). Using in vivo and in vitro
models, the authors recapitulated reduced bone healing
commonly associated with advanced aging. SSPCs cultured
with 52-week-old serum began to express pro-inflammatory
cytokines (elevated IL-1a, TNF-a, RELA expression),
illustrating the declined SSPC number and function were
negatively affected by the cytokine milieu associated with age
(25). The expansion of BMAT, which is known to actively
produce pro-inflammatory factors, likely exacerbates this
effect (45).

Adipogenesis and Bone Loss
Aging studies have shown increased BMAT coincides with
decreased bone mass, suggestive of a link between bone
formation and BMA. The general understanding is a common
progenitor cell undergoes adipogenesis at the expense of
osteogenesis (27, 48, 50, 51). For example, it has been shown
that upregulation of PPARg promotes the differentiation
of BMSCs into adipocytes while repressing osteoblast
differentiation. In aging, the increased expression of PPARg in
the BM leads to enhanced adipogenesis and reduced osteogenesis
(9). In addition to expression, post-translational modification of
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PPARg, particularly acetylation, is also critical to this lineage
determination (19, 52) thus, PPARg is appreciated as a
critical lineage-switching regulator. However, this bifurcated
differentiation path between adipocytes and osteoblasts has
remained poorly understood, despite the elucidation of PPARg
expression in the BM. Recent studies have delineated
mesenchymal progenitors to their bi-lineage differentiation
stages and characterized non-proliferative, adiponectin-
expressing BMAd precursors, termed MALPs (marrow
adipogenic lineage precursor) (53). These are thought to
secrete a number of factors that can drive bone loss such as
RANKL. Upon maturation, BMAT is responsible for the release
of adipokines and free fatty acids that potentially interfere with
bone formation (19, 52). For example, adipsin is among the
group of adipokines released by BMAT expansion that has been
shown to retroactively affect BMSC differentiation by priming
these cells toward adipogenesis (19).

Coinciding with the increase in BMA, often an age-related
decline in trabecular bone volume, but not in cortical bone, is
observed (9). The impaired skeletal health with aging is
accounted for not only by defective bone formation capabilities
but also by accelerated bone resorption through increased
osteoclast number and/or activity (54). In contrast to the
repressive function on osteoblasts, BMAds play a favorable role
on osteoclasts. Primary human femoral BMAds were shown to
express the pro-osteoclastogenic factor, RANKL, and through
direct cell contact mediate the differentiation of osteoclast
precursors (30, 55, 56). In murine studies, an age-dependent
increase in osteoclastogenesis was observed (57). Additionally,
RANKL expression was shown to be associated with BMAd
differentiation and with pre-adipocytes in the BM of aged mice
TABLE 1 | BMAT-derived factors and the age-associated phenotype.

Age-Related
Mechanism

Secreted Factors Associated Effect References

BMSC Potential IL-1a ↓ skeletal stem/progenitor cell number and function Josephson (25)
TNF-a ↓ osteoblastogenesis
RELA

Bone Loss PPARg ↑ adipogenesis Fazeli (9)
RANKL, ↓ osteoblastogenesis Goto 2011 (55), Hardouin (30)
Leptin, Resistin, Chemerin ↑ osteoclastogenesis Hamrick (31), Thommesen (32),

Han (33)
Adipsin -pro-inflammatory; regulates adipogenesis

-prime BMSC differentiation towards adipogenesis

Aaron (19)

Hematopoietic Cells Adiponectin -prevents progenitor expansion DiMascio (34), Naveiras (35)
↑ myeloid skewing of HSCs Pang (36), Ogawa (37)
↓ BM cellularity

Decreased Immune
Fidelity

IL-6 -can alter immune response and hematopoiesis

-inhibits B lymphopoiesis

-induces the differentiation of immunoregulatory cells like
regulatory T-cells and MDSCs

-induces macrophage migration

Tanaka (38), Udagawa (39)
IL-1, NLRP3 Kennedy (40)
CCL2/MCP-1 Wang (41), Sinha (42),
COX-2 Mahic (43), Obermajer (44)

Cellular Senescence NF-kB (pro-inflammatory gene) ↑ pro-inflammatory cytokines Miggitsch (45), Pangrazzi (23)
IL-1a, IL-1b, TGF-b (pro-inflammatory
cytokines)

↑ ROS da Silva (46)

p21, p16 (tumor suppressing genes) ↓ proliferative and differentiation capacities of
surrounding cells

Josephson (25),

CXCL1/2, CCL2/MCP-1 (chemokines) ↓ stem/progenitor cell number and functionality Kovtonyuk (47)
March 20
↓ = down-regulates/decreases; ↑ = up-regulates/increases.
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(30, 58). This creates a self-reinforcing cycle of osteoclastogenesis
and adipogenesis which leads to increased deleterious effects on
the bone architecture and increases the incidences of fractures
within the elderly (54). Furthermore, osteoblasts in aged mice (16
months old) were found to exhibit markedly impaired adhesion
to the bone surface and significantly reduced mineralization (59).
Thus, the age-associated decline in bone mass is an integrative
pathology of BMAds filling the BM cavity and their crosstalk to
bone remodeling cells.

BMA and Hematopoietic Cells
While BMAds have a defined function as regulators of bone
turnover, evidence also suggests BMAT impacts hematopoietic
activity (45, 48). Human BMAds were reported to support
differentiation of CD34+ HSCs into myeloid and lymphoid
immune cells (60). Accordingly, myelopoiesis was shown to
positively correlate with increased adipogenesis and reduced
osteoblastogenesis in the senescence-accelerated mouse prone 6
(SAMP6) mouse model, representative of advanced aging (61).
In diet-induced obese mice an enhancement in hematopoietic
and lymphopoietic BM cell populations were correlated with
increased marrow adiposity (62). In contrast, lipid-laden BMAds
were linked to the suppression of growth and differentiation of
HSCs (35, 63) and were considered negative regulators of the
hematopoietic niche (64, 65). This suppressive activity was
primarily attributed to reduced production of granulocyte-
macrophage colony-stimulating factor (GM-CSF) and
granulocyte colony-stimulating factor (G-CSF) as well as
increased secretion of neuropilin and lipocalin-2 (35, 66, 67).
Of note, BMAds are a significant source of plasma adiponectin in
mice during calorie restriction and in cancer patients receiving
radiotherapy or chemotherapy (20). Moreover, increased BMA
during aging has been negatively correlated to hematopoietic cell
function during aging through the secretion of adiponectin (20).
Adiponectin appears to positively affect multipotent stem cells
proliferation, but not more committed progenitor cells (34), a
phenomenon suspected in preserving the HSC pool while
preventing progenitor expansion (35). This ultimately
highlights the anti-inflammatory properties of adiponectin (68)
and the dynamic relationship between BMAds and the
hematopoietic niche. Overall, aging in humans and mice, a
process associated with increased BMA (69–71), induces
myeloid skewing in HSCs (36), while promoting an overall
decrease in BM cellularity (37).
AGE-RELATED BMAT EXPANSION
RESULTS IN DECREASED IMMUNE
FIDELITY AND CELLULAR SENESCENCE

Decreased Immune Fidelity
With aging, inflammaging is thought to be a major contributor to
the decline in fidelity and efficiency of the immune system. The
immune system waxes and wanes in response to stimuli. A
decline in immunocompetency or the capacity for a normal
functioning immune system with aging can increase
Frontiers in Endocrinology | www.frontiersin.org 4
susceptibility to infections, decrease the number of T- and B-
cells as myelopoiesis occurs (the process in which innate immune
cells develop from myeloid progenitor cells), and increase the
prevalence of autoimmune diseases (47). Gasparrini et al.
analyzed cytokines produced by BMAT and found 53 proteins
upregulated in aging (72), one of which they identified as IL-6, a
well-known pro-inflammatory protein that can affect immune
response, hematopoiesis, and suppress bone formation (38, 39).
In vitro cultures of BMAds were shown to secrete adipocyte-
derived soluble factors that inhibit B lymphopoiesis, particularly
at the earliest progenitor stage in which differentiation into pre-
pro B-cells occurs, while simultaneously promoting the
differentiation and subsequent proliferation of HSCs towards
the myeloid lineage (73). In humans and mice (74–76), B
lymphopoiesis wanes in mid (77) and late stages of life (73, 78,
79). In mice, the decline in B lymphopoiesis has been attributed
to BMAds altering the BM stroma and/or by direct action on
hematopoietic progenitors (77–79). Kennedy et al. revealed that
BMAds induce myeloid-derived suppressor cells (MDSCs),
particularly in mononuclear cells (CD11b+Ly6C+Ly6G−), which
inhibit B lymphopoiesis by producing IL-1 (80). Additionally,
BMAds can also activate inflammasomes, such as the nod-like
receptor 3 (NLRP3), which directly inhibit B lymphopoiesis (40).
Activation of inflammasomes can stimulate thymic degeneration
(81, 82) and exert a negative effect on T-cell proliferation (83),
likely contributing to systemic inflammatory conditions
associated with advanced age.

There is growing evidence to support the involvement of
chemokines such as C-motif chemokine ligand 2/monocyte
chemoattractant protein 1 (CCL2/MCP-1) and cyclooxygenase-
2 (COX-2) in regulation of the BM microenvironment (84).
During inflammatory events, high expression of COX-2 is often
coupled with CCL2/MCP-1 upregulation (85–87). The major
COX-2 metabolite, prostaglandin E2 (PGE2), is known to induce
differentiation of immunoregulatory cells like regulatory T-cells
and MDSCs (41–44). Cox-2 inhibitors prevent CCL2/MCP-1
production by activated macrophages (88, 89). Under normal
physiological conditions, COX-2 expression in macrophages is
low but is increased in response to pro-inflammatory stimuli
(90). In fact, the COX-2 expression and PGE2 release by
macrophages were shown to be stimulated by CCL2/MCP-1
and to be important for macrophage migration (91–93). In vitro
studies using conditioned media from BMAds demonstrated that
macrophages are highly stimulated by BMAd-derived factors
and that invasiveness increases with age (94). Obesity
phenocopies aging with increased BMA, which has been
shown to induce CCL2/MCP-1 and COX-2 within the BM
(94), emphasizing a close relationship between immune
response and BMA.

Cellular Senescence
Aging studies have consistently shown a strong correlation
between increased BMA and pro-inflammatory factors (18). It
has been suggested that a sustained pro-inflammatory state may
negatively impact the proliferative and differentiation capacities
of surrounding cells. This effect is referred to as the “bystander
effect” and most notably contributes to the accumulation of
March 2022 | Volume 13 | Article 853765
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senescent cells in the BM, a process that naturally occurs with
aging (46). Despite studies finding relatively low percentages
(10–20%) of senescent cells in aged BMSCs, the bystander effect
greatly impairs osteogenic capacities of non-senescent BMSCs,
likely through senescence-associated secretory phenotype
(SASP) factors (IL-1a, IL-1b, NF-kB, CXCL1/2, TGF-b, p21,
p16, CCL2/MCP-1) and the resulting inflammation (95, 96).

BMAT expansion induces pro-inflammatory cytokines,
which perpetuates the damaging effects on neighboring cells
(46). In this pro-inflammatory microenvironment, BMSCs
become senescent, resulting in decreased stem/progenitor cell
number and decreased functionality (25, 47). In addition, the
increased levels of pro-inflammatory cytokines promote ROS
within the BM, further contributing to cellular senescence (23,
45). Flow cytometry analysis by Miggitsch et al. highlighted
BMAds as a major contributor of ROS by determining higher
ROS levels within femoral BMAds compared to subcutaneous
white adipose tissue (WAT) from the thigh (45). Treatment of
both tissues with ROS scavengers, N-acetylcysteine (NAC) and
vitamin C, significantly reduced ROS levels within the BMAT
compared to the WAT (45). The role of ROS in hematopoiesis
has been well documented, thus these results demonstrate that
BMAds limit the capacity of BMSCs to support the
hematopoietic niche (97, 98).

Mimicking the potential effect of increased BMAT, Lo et al.
showed that in conditions of elevated glucose in vitro,
b-galactosidase activity and adipogenic differentiation markers
(Pparg and Fas) were notably increased while osteogeneic
markers (Runx2 and Col1a1) were decreased in BMSCs,
indicative of altered differentiation potential (99). This
hyperglycemic condition induces inflammation and senescence
through oxidant-mediated autophagy, ultimately contributing to
dysfunction of bone development and hematopoiesis in the BM
microenvironment (100). BMP-2, an established pro-
osteoblastogenic protein, can stimulate bone production in
healthy, non-senescent BMSCs. However, in senescent cells
recombinant BMP-2 upregulates pathways of inflammation,
adipogenesis, and cell apoptosis (101). In mouse models,
FOXP1, a regulator of the pro-adipogenic CEBPb/d complex in
BMAT, has been shown to attenuate senescence through
repressing p16INK4A (encoded by CDKN2A), a cell cycle
repressor that functions by inducing a G1 phase arrest (102).
Collectively, BMAds play a critical role in inducing senescence of
BMSCs, thereby determining the microenvironmental status in
the BM compartment during aging.
POTENTIAL TARGETS FOR AGE-RELATED
BONE CONDITIONS

Senolytics
Senolytics are a class of drugs that selectively induce apoptosis in
senescent cells. Studies have shown reductions in age-related
chronic inflammation led to functional restoration of bone
regeneration through decreased senescence, increased stem/
progenitor cell number, and increased osteogenic gene
Frontiers in Endocrinology | www.frontiersin.org 5
expression (25). In a pharmacological rescue experiment, Zhou
et al. showed that BMSCs from aged mice (27 months old) had
lower proliferation rates (30%) than young, 3-month-old mice
(45%) (95). Twenty-four-hour treatment with dasatinib (generic
chemotherapy; tyrosine kinase inhibitor) and quercetin
(flavonol; antioxidant and chelating abilities) increased
proliferation rates of the old BMSCs to 40% but did not affect
the proliferative rates of the young BMSCs (95, 103, 104).
Furthermore, dasatinib and quercetin treatments have been
shown to improve osteogenic capacity in the aged BMSCs and
reduce their expression of several senescence-related and
inflammation markers including p21, p16INK4A, IL-6, CXCL1
and MCP-1 (95) in multiple aged tissues (105, 106). Therefore,
clearance of senescent cells by senolytics shows promise in
improving osteogenesis of aged BMSCs and ameliorating
BM inflammation.

miRNAs
In the past few decades, microRNAs (miRNAs) have emerged as
key regulators of different aspects in development, homeostasis,
and function. However, only a handful of miRNAs have been
identified as capable of mediating adipocyte differentiation and
function (107, 108). Multiple studies have implicated a potential
role for miRNAs on post-transcriptional regulation of BMSC
differentiation and aging (109, 110). For example, mice lacking
miR-188, an age-associated miRNA found in the BM, showed
substantial protection from bone loss and BMAT accumulation
over time (109). In comparison, BMSCs transfected with miR-
183-5p mimicked reduced cell proliferation and osteogenic
differentiation and demonstrated increased cellular senescence
(111). Therefore, miRNAs represent a unique class of therapeutic
targets of bone inflammaging, given that their specific roles in the
BM during aging become elucidated.

Antioxidants
Given the positive effect of low-glucose conditions on senescent
BMSCs, methods for glucose reduction have the potential to
improve BM health through increasing mitochondrial
respiration (99). Studies have shown that restricted glucose
conditions increase the presence of antioxidant enzymes and
decrease superoxide production, highlighting a therapeutic role
for antioxidant defenses (99). An antioxidant and free radical
scavenger, apocynin, was used to establish potential inhibition of
cellular senescence, even in a senescence-accelerated mouse
model, while concurrently improving osteogenesis (112).
Similarly, treatment of aged rats with the aforementioned ROS
scavenger, NAC, displayed an improved bone phenotype (113).
Natural antioxidants have the potential to ameliorate concerns of
age-related BMAT expansion. For example, phloretin, a
flavonoid commonly found in apples, activates osteogenic gene
OPG while promoting BMAd apoptosis to promote osteoblast
differentiation, even in aged BMSCs (114). Given what we know
about the link between inflammation and aging, it is not
surprising to note that in addition to antioxidants, nonsteroidal
anti-inflammatory drugs such as aspirin have been shown to
counteract the effects of BMSCs senescence by improving cell
proliferation and osteogenic differentiation (115, 116).
March 2022 | Volume 13 | Article 853765
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Adipokines
Adipokines have the potential to regulate physiological functions
including satiety, glucose homeostasis, energy expenditure (117),
and inflammation (118). As a major regulator of the bone
marrow niche with changes during inflammation and aging,
adipokines are of great potential for future therapeutics.
Numerous cytokines such as CCL2/MCP-1 (94), IL-6, and
TNF-a (119) have elucidated roles in linking BMA with bone
loss through inflammation. Of note, existing anti-TNF-a therapy
infliximab and other TNF-a inhibitors have been shown to
prevent age-related bone loss in various conditions (120, 121).
In addition, pro-inflammatory adipokines shown to drive decline
in bone health include leptin (31), resistin (32), chemerin (33),
and adipsin (19). Among them, adipsin provides a
straightforward relationship that might be of interest
therapeutically by being produced abundantly in the BM and
directly priming BMSCs. Furthermore, adipsin is involved in the
alternative pathway (AP) of the complement system, a known
activator of inflammation in the bone marrow further
contributing to bone loss conditions (122–125). In human
studies, patients with bone-related conditions such as post-
menopausal bone loss and osteoarthritis displayed an increase
in serum adipsin levels positively associated with other pro-
inflammatory cytokines (126, 127). As such, current
pharmacological advancements including the synthesis and
pre-clinical characterization of adipsin inhibitors targeting the
AP may be of interest in addressing inflammaging and bone
loss (128).
CONCLUSION

The development of BMAT is a normal physiological process and
is arguably of importance in regulating BM microenvironment,
skeletal homeostasis, hematopoiesis, endocrine function, and
energy expenditure, and metabolism. However, extensive BMAT
accumulation that occurs with aging and in clinical conditions
Frontiers in Endocrinology | www.frontiersin.org 6
such as obesity, calorie restriction/anorexia (20, 129), and in
response to chemotherapy and irradiation treatments (130–132),
suggests that aberrant BMAT formation has pathological
implications. The increased adiposity within the BM exacerbates
age-related inflammation and contributes to reduced bone health
through physical changes in the bone matrix and defects in the
BM stroma and HSCs. Ultimately, the age-associated shift of
BMSCs toward adipogenesis promotes increased ROS, reduced
HSC potential, dysfunctional immune cell response through
increased myelopoiesis, and cellular senescence. As such,
therapeutic interventions to maintain BMAT in appropriate
quantity and quality may improve overall bone health,
inflammaging, and senescence, further contributing to increases
in life expectancy and quality of life for the elderly population.
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