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Dipeptidyl peptidase-4 (DPP4) is a ubiquitously occurring protease involved in various
physiological and pathological processes ranging from glucose homeostasis,
immunoregulation, inflammation to tumorigenesis. Recently, the benefits of DPP4
inhibitors as novel hypoglycemic agents on bone metabolism have attracted extensive
attraction in many studies, indicating that DPP4 inhibitors may regulate bone
homeostasis. The effects of DPP4 on bone metabolism are still unclear. This paper
thoroughly reviews the potential mechanisms of DPP4 for interaction with adipokines,
bone cells, bone immune cells, and cytokines in skeleton system. This literature review
shows that the increased DPP4 activity may indirectly promote bone resorption and inhibit
bone formation, increasing the risk of osteoporosis. Thus, bone metabolic balance can be
improved by decreasing DPP4 activities. The substantial evidence collected and analyzed
in this review supports this implication.
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1 INTRODUCTION

The human dipeptidyl peptidase-4 (DPP4) is a cell surface glycoprotein widely expressed in various
tissue compartments, including the lymph gland, the biliary tract, the kidneys, the liver, the
intestinal system, and bone marrow (1, 2). It is a member of the serine peptidase/prolyl
oligopeptidase family, which possesses enzyme functions and selectively cleaves off the
penultimate alanine, proline, or serine in the N-terminus start site. Confirmed substrates for
DPP4 in vivo included many incretins and cytokines (3, 4). In addition, DPP4 was previously known
as the T-cell activation antigen cluster of differentiation-26 (CD-26). It has been known for playing a
complex role in non-enzyme–dependent functions by acting as costimulatory proteins in immune
cells such as T cells, monocytes, and dendritic cells. Functionally, it is involved in multiple
physiological processes and pathologies ranging from glucose homeostasis, immunoregulation,
inflammation to tumorigenesis.
n.org May 2022 | Volume 13 | Article 8569541

https://www.frontiersin.org/articles/10.3389/fendo.2022.856954/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.856954/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.856954/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:xijieyu@hotmail.com
https://doi.org/10.3389/fendo.2022.856954
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.856954
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.856954&domain=pdf&date_stamp=2022-05-02


Yang et al. Dipeptidyl Peptidase 4 and Bone Metabolism
Over the past decade, it has aroused public concern for its
pleiotropic actions on bone metabolism. First, as a new oral
hypoglycemic drug, DPP4 inhibitors might promote bone
formation and inhibit bone absorption in addition to
possessing practical hypoglycemic effects, reducing the risk of
osteoporosis and fracture (5–9). Second, cells in the bone
microenvironment, such as osteoclasts, bone marrow adipose
tissue (BMAT), and immune cells, would secrete DPP4 (10–12).
Third, the substrates of DPP4 are distributed on bone cells, bone
immune cells, and cytokines in the skeleton system (3, 4).
Therefore, it can be speculated that DPP4 may directly or
indirectly regulate bone metabolism. This study reviews the
regulation mechanisms of DPP4 on bone energy metabolism,
bone immunity, and bone remodeling, aiming to provide a new
target for the treatment of osteoporosis.
2 STRUCTURE AND FUNCTIONS OF DPP4

2.1 Molecular Properties and Forms
DPP4/CD26 is a dimeric 240-kDa glycoprotein composed of two
120-kDa subunits and coded by a gene on chromosome 2q24.3
(13). DPP4 can be divided into two different forms: either as a
soluble form (sDPP4) in circulation or a membrane-bound form
(mDPP4) anchored to a cellular surface (14). mDPP4 consists of
three domains with 766 residues, including a six–amino acid N-
terminal cytoplasmic domain, a 22‐residue hydrophobic
transmembrane domain, and an extracellular domain. The
extracellular domain includes the cystein-rich region,
glycosylated-rich region, adenosine deaminase (ADA)–binding
region (340–343 a.a.), fibronectin-binding region (469– 479 a.a.),
and c-terminal DPP4 catalytic sites (507–766 a.a. with active
catalytic sites at 630, 708, and 740) (Figure 1). mDPP4 is widely
expressed on the surface of epithelial, endothelial, stromal,
preadipocytes, mature adipocytes, embryonic stem cells,
hematopoietic stem cells, hematopoietic progenitor cells, and
immune cells (11, 15–23) in different tissues and organs, such as
the liver, gut, adipose tissue, and bone marrow (1, 2). sDPP4
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contains 727 residues without a cytoplasmic domain, a
transmembrane domain, and flexible region (24). sDPP4 is
considered as the hydrolyzed form of mDPP4, which is widely
present in serum, saliva, cerebrospinal, seminal fluid, and bile
and has fully enzymatically active (25, 26). The protease
responsible for generating sDPP4 is unclear. The different
physiological function between sDPP4 and mDPP4 is not
well known.

2.2 Multifunctional Properties
DPP4 is a member of the serine peptidase/prolyl oligopeptidase
family, which selectively cleaves the penultimate alanine, proline,
or serine in the N-terminus start site, including incretins and
cytokines. Glucagon-like peptide-1 (GLP-1), glucagon-like
peptide-2 (GLP-2), glucose-dependent insulinotropic peptide
(GIP) (3), peptide YY (PYY), and neuropeptide Y (NPY) (4)
are the most widely studied incretins. Besides the factors
mentioned above, Ou et al. (2) identified many proteins as
cleaved proteins for DPP4 from the National Center for
Biotechnology Information database and Universal
Protein Resource.

In addition, DPP4 plays a complex role in classical enzyme
functions as well as various subcellular localization and non-
enzyme-dependent functions. DPP4 performs its non-
proteolytic functions as receptor or costimulatory protein in
the fields of immunology. It is a receptor of ADA (27, 28), which
plays an important role in immune regulation as the key enzyme
for adenosine decomposition. The formation of DPP4-ADA
complex reduces local concentration of adenosine, alleviating
the inhibitory effect of high concentration adenosine on T
lymphocyte proliferation and activation (29). The DPP4-ADA
complex promotes the differentiation of primary T lymphocytes
into helper T cells and memory T cells (30). Meanwhile, DPP4-
ADA complex also plays a costimulatory role in immunological
synapse between dendritic cells and CD4+ T cells, enhancing
inflammatory response by inducing interleukin-6 (IL-6),
interferon-g (INF-g), and tumor necrosis factor-a (TNF-a)
secretion (31, 32). Furthermore, DPP4 also has costimulatory
FIGURE 1 | Schematic diagram of the human DPP4 molecule. mDPP4 consists of three domains with 766 residues, including a 6-amino acid N-terminal
cytoplasmic domain, a 22-residue hydrophobic transmembrane domain, and an extracellular domain. sDPP4 contains 727 residues without cytoplasmic domain,
transmembrane domain, and flexible region.
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function by binding to CXC chemokine receptor-4 (CXCR4)
(33), mannose 6 phosphate/insulin-like growth factor II receptor
(M6P/IGF-IIR) (34), TCR/CD3 (30), CD45 (35), caveolin-1 (36),
CARMA1 (37), and fibronectin III (38, 39). This evidence
suggests the immunomodulation function of DPP4 in different
signaling process.
3 SCIENTIFIC EVIDENCE OF THE
RELATIONSHIP BETWEEN DPP4 AND
BONE METABOLISM

3.1 The Relationship Between Serum
DPP4 Activity and BMD
A study of 744 postmenopausal Chinese women with normal
glucose tolerance showed significant lower in lumbar and
femoral neck bone marrow density (BMD) in the quartile with
the highest DPP4 activity (40). However, a 13-year follow-up
study (41) of 1,536 community-based elderly adults revealed that
there was no significant association between basal DPP4 activity
and hip BMD, lumbar spine BMD, or incidence of hip fractures.
A cross-sectional study with 147 newly diagnosed T2D showed
that elevated sDPP4 activity was positively associated with the
risk of osteoporosis/osteopenia and fracture (42). However, a
study (43) of 204 male Japanese diabetics showed no correlation
between DPP4 levels and BMD in the lumbar spine or femoral
neck. The relationship between DPP4 and BMD has been
reported to depend on BMI. Durinx et al. (44) demonstrated
that DPP4 activity was negatively correlated with spine BMD in
obese postmenopausal women, which was not found in non-
obese postmenopausal women. From the evidence mentioned
above, it prompted that the correlation between DPP4 activity
and bone metabolism might be influenced by aging and
metabolic status. Durinx et al. (44) studied 481 healthy
subjects aged between 19 and 61 years and revealed an age
related decline in DPP4 activity. Indeed, previous studies have
showed that DPP4 was a novel adipokine (45) released from
immune cells, adipose cells, and bone marrow cells, which
correspondingly indicated that sDPP4 concentrations and
activity were linked to obesity, metabolic syndrome, T2D, and
inflammatory diseases (10, 46, 47). When evaluating DPP4
activity and bone metabolism, stratified population analysis has
to be taken into account.

3.2 The Impact of DPP4 Inhibitors on Bone
Metabolism in the Pre-Clinical and
Clinical Studies
A significant number of pre-clinical studies have shown a
beneficial impact on osteogenesis for DPP4 inhibitors.
Intraperitoneal injections of sitagliptin for 9 days significantly
increased the osteogenic progenitors while decreased the
adipogenic progenitors in non-fractured tibiae (5). Sitagliptin
would increase the BMD of mice with a high-fat diet (6). In
addition, the negligible BMD loss was observed in OVX non-
diabetic adult rats treated with the higher sitagliptin doses,
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compared with thiazolidinediones or placebo for 12 weeks (7).
In addition, DPP4 inhibitors showed the function of pro-
osteoblastogenesis and anti-osteoclastogenesis. Anagliptin
significantly promoted the osteoblastic differentiation of
MC3T3-E1 cells and increased matrix deposition and
mineralization (5). Linagliptin downregulated LPS-induced
osteoclast formation and bone resorption (8). Nishida et al. (9)
showed that the humanized anti-CD26 monoclonal antibody
(hu-CD26mAb) inhibited osteoclast precursor differentiation.

Data from animal studies suggested that DPP4 inhibitors
(sitagliptin, saxagliptin, vildagliptin, and linagliptin) have an
anabolic effect on bone. However, clinical studies of DPP4
inhibitors remained controversial (5). Dombrowski et al. (48)
found that DPP4 inhibitors were associated with a decrease in
the risk of osteoporotic fracture by matching 4,160 patients with
DPP4 inhibitors to never users. A meta-analysis of 28 trials
showed 40% reduction in fracture risk with the treatment of
DPP4 inhibitors (11,880 T2D) compared to placebo or other
treatments (9,175 T2D) in a duration of 24 weeks (49). A
retrospective population–based (49) cohort study of T2D (N =
216,816) revealed that DPP4 inhibitor usage was not associated
with change in fracture risk compared to controls and other non-
insulin anti-diabetic drug usage. Since the average duration of 1.3
years might have been too short to show association with
fracture risk.

In contrast, a post hoc pooled analysis of 20 randomized
controlled studies in 9,156 patients with T2D revealed that the
incidence rate for bone fracture was higher with saxagliptin
versus control (50). Different study designs may explain the
different findings because the studies included in the pooled
analyses took higher doses than approved saxagliptin doses (2.5
mg/day) with almost up to 5 or 10 mg/day or even 100 mg/day.
Meanwhile, another network meta-analysis (51) including 117
RCTs of 221,364 T2D, compared anti-diabetic drugs head-to-
head. Specifically, trelagliptin, omarigliptin, sitagliptin,
vildagliptin, and saxagliptin may increase the risk of bone
fracture, whereas others (linagliptin and alogliptin) may show
benefits. It indicated that fracture risk was independent of age,
sex distribution, and the duration of exposure to anti-
diabetic drugs.

With aging, diabetes, obesity, and menopause status were risk
factors for osteoporotic and bone fractures, thus it is hard to
conclude the association between DPP4 inhibitors and bone
metabolism from the current clinical evidence. Further
controlling confounding factors, long-term studies are needed
to confirm the effect of DPP4 inhibitors on osteoporotic fracture
in none-diabetes, non-menopausal, and different levels of
obesity population.
4 MECHANISMS OF THE EFFECTS OF
DPP 4 ON BONE METABOLISM

Some previous studies have tried to prove whether the beneficial
effects of DPP4 inhibitors on bone metabolism arise from a direct
action on the bone cells. Ishida et al. (52) found that DPP4
May 2022 | Volume 13 | Article 856954

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Yang et al. Dipeptidyl Peptidase 4 and Bone Metabolism
inhibitor had no direct impact on the differentiation and
proliferation of osteoclast precursors or on the ligand of
receptor activator of nuclear factor kB (RANKL) expression in
bone marrow stromal cells. Gallagher et al. (53) investigated the
effect of a DPP4 inhibitor (MK-0626) on bone metabolism in an
animal model of T2D. They revealed that MK-0626 had no
adverse effects on bone in vivo or no direct effect on osteoblasts in
vitro. The results also suggested that the effects of DPP4 on bone
remodeling might mediate through indirect mechanisms instead
of direct impacts.

4.1 DPP4 Takes Part in the Bone
Metabolism Through a Network
of Adipokines
There is an essential relationship between bone remodeling and
energy metabolism since bone remodeling requires energy. A
great number of observations have shown that adipose could
regulate energy metabolism via adipokines based on the thesis of
adipose-bone interactions (54). In the last decade, BMAT was
found to be a kind of fat depot within the marrow niche with
different origin, structure, and function.

It was shown that the BMAT is a metabolically active fat
depot that plays a role in lipid storage and metabolic homeostasis
(45). In addition, BMAT is involved in the bone–fat interaction
through a complex network of adipokines such as adiponectin
and leptin.

DPP4 is a newly discovered adipokine that originated from
mature adipocytes (55–57) including bone marrow adipocytes
(10, 11). Mulvihill et al. (11) revealed that bone marrow–derived
cells contributed to ~40%–50% of sDPP4 activity in the fasting
state by three gene knockout (KO) mice models. In addition,
Weivoda et al. (12) utilized denosumab (DMAb) to
pharmacologically ablate osteoclasts and RNA sequencing of
bone biopsies in postmenopausal women, demonstrating that
DPP4 is not only an osteoclast-derived protein but also links
bone remodeling to energy metabolism. Thus, it was deducible
DPP4 might play an essential role in the adipokines network of
bone energy metabolism.

4.1.1 Adiponectin
Adiponectin is mainly from BMAT (58) and secreted fromMSC-
derived adipocytes (59). Its receptor is expressed on osteoblasts
and osteoclasts. Adiponectin would promote the differentiation
and activity of osteoblasts and inhibit the differentiation of
preosteoclasts and bone resorption (60–62). Evidence had
proved a negative correlation between the activity of DPP4 and
the circulating level of adiponectin in lean and obese subjects
(63). Meanwhile, a systematic review and meta-analysis of
randomized controlled trials showed that treatment of DPP4
inhibitors would increase the plasma concentrations of
adiponectin (64). Exendin-4, a GLP-1 receptor agonist,
increased the expression and secretion of adiponectin via the
Protein Kinase A (PKA) pathway in 3T3-L1 adipocytes (65). In
addition, Piao et al. found a cross-talk between DPP4/GLP-1/
GLP-1R and adiponectin/adiponectin receptor in ischemic
vascular regeneration under chronic stress conditions (66).
Frontiers in Endocrinology | www.frontiersin.org 4
From the accumulated evidence, it was speculated that DPP4
might diminish the positive effect of adiponectin on bone mass.

4.1.2 Leptin
Leptin signaling is one of the critical pathways affecting human
energy metabolism, and its biological functions are complicated.
Leptin has a dual effect on bone tissue, which can either centrally
inhibit bone formation by binding to leptin receptors in the
hypothalamus or locally promoting bone formation and
inhibiting bone resorption by binding to the expressed
receptors on the surface of osteoblasts (67, 68). Leptin is not a
substrate of DPP4 but has a putative DPP4 truncation site.
Anagliptin (DPP4 inhibitor) ameliorated leptin resistance and
attenuated food intake and body weight in diet-induced obesity
mice (69). A group of Japanese T2D patients was treated with
anagliptin and metformin or miglitol for 52 weeks, and reduced
leptin concentration was observed (70). However, the exact
function of truncated leptin on bone remains unknown.

4.2 DPP4 Regulates Bone Remodeling by
Binding to Its Substrates Locating in the
Skeletal System
DPP4 might indirectly regulate bone remodeling by binding to
multiple peptides substrates including incretins, gastrointestinal
peptides, and neuropeptides, whose receptors are widely
expressed in skeletal system. Gastrointestinal peptides, such as
GLP-1, GLP-2, and GIP have been shown to favor bone
formation over resorption, whereas NPY and PYY have been
shown to have catabolic effects on bone metabolism (Table 1).

4.2.1 Anabolic action
GLP-1 is an incretin hormone originating from the distal small
intestine and would be degraded at the N-terminus by DPP4
(71–73). The GLP-1 receptor (GLP-1R) is expressed on human
bone marrow stem cells (BMSCs) but not on mature osteoblasts
(74) and MLO-Y4 osteocytic cell line (75). In human BMSCs,
GLP-1 inhibited adipocyteogenesis but promotes bone formation
through upregulating osteocalcin (OCN) and osteoprotegerin
(OPG) (76–78). Furthermore, GLP-1 and GLP-1R agonists
(exendin-4 and liraglutide) are proved to increase the
proliferation and differentiation of osteoblasts (79–81). In
animal studies, GLP-1R KO mice show decreased bone quality
and strength and reduced cortical area (82). In contrast, GLP-1R
agonists (liraglutide and exendin-4) increased aBMD and
improved trabecular structure and bone strength (83, 84). The
mechanisms of GLP-1R–mediated osteogenic action are exerted
through a dual role: the cAMP/PKA/b-catenin/T cell factor
(TCF) pathway to initiate osteoblast differentiation and the
PKA/PI3K/Akt/GSK3b pathway to inhibit ß-catenin
degradation and promote its nuclear accumulation in BMSCs,
which resulted in the anabolic bone formation (74).

GLP-2 was co-secreted with GLP-1 in the intestine (85) and
was deactivated by sDPP4 with a half-life of 5 to 7 min (86). The
GLP-2 receptor (GLP-2R) was expressed on osteoclasts (87).
Both short-term (14 days) (88) and long-term (4 months) (89)
administrations of GLP-2 would reduce bone resorption (CTX)
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in a dose-dependent manner without influencing bone formation
(OCN and P1NP). Four-months of treatment with GLP-2
enhanced hip BMD in postmenopausal women (89).

GIP mainly originates from the proximal small intestine (90)
and is degraded by DPP4 with a half-life of about 4 min in human
serum (91). The GIP receptor (GIPR) is expressed on BMSCs (92),
osteoblasts (93), osteoclasts (94), and osteocytes (93). In vitro,
stimulating osteoblasts with GIPR would reduce its apoptosis (91)
and increase their viability, alkaline phosphatase activity, and type
1 collagen expression (93, 95). In vivo, GIPR KO mice exhibit low
bonemass (91), altered bonemicroarchitecture, decreasedmarkers
of bone formation (96), and cortical osteopenia due to decreased
bone formation and increased bone resorption. In clinical studies,
reduced collagen type-1 (CTX-1) and increased procollagen type I
N-terminal propeptide (P1NP) were observed in short-term GIP
infusion in both healthy humans and patients with type 1 diabetes
(97). These results indicate that GIP can uncouple formation and
bone resorption and play an anabolic role in bone metabolism.

4.2.2 Catabolic Action
NPY is expressed in osteoblasts, osteoclasts, osteocytes, and
chondrocytes (98). NPY inhibits the differentiation and activity
of osteoblast by binding to Y1 receptors on osteoblasts. The
reduced bone formation and bone mass (99) would be vanished
by osteoblast-specific Y1 KO (100, 101). NPY was truncated by
DPP4 with a half-life of 2 to 3 min and then lost the ability of
binding to the Y1 receptor (102). Thus, it is valuable to evaluate
the effect of DPP4 inhibition on NPY-related bone loss.

PYY shares the same receptors with NPY and is often co-
secreted with GLP-1 and GLP-2R (103). The secretion form of
PYY (PYY1−36) containing 36–amino acid molecular was
degraded by DPP4 to form PYY3−36 (104). PYY1-36 might exert
suppressive effects on osteoblast activity by binding to the Y1

receptor (101). PYY1-36 was negatively associated with aBMD
and P1NP (105), indicating a catabolic impact on bone
Frontiers in Endocrinology | www.frontiersin.org 5
metabolism. Bone mass was reduced in transgenic mouse
models with overproduction of PYY, whereas bone mass and
strength was increased in PYY KO mice (106). Further studies
are needed to clarify whether the DPP4 degraded form PYY3−36

would have an anti-osteogenic effects on BMD.

4.3 DPP4 Regulates Immune Responses in
the Bone Microenvironment
It is well known that there is a dynamic cross-talk between bone
remode l ing and immune sys tems which i s ca l l ed
“Osteoimmunology” (107). Several diversified immune cells,
including CD4+ T cells and CD8+ T cells, were found in the
bone marrow (108–110). Bone cells share the same
microenvironment with immune cells in the bone marrow,
including cytokines, chemokines, receptors, and transcription
factors. Since DPP4 was expressed on the surface of osteoblasts
(111) and osteoclasts (112) and a wide range of immune cells
(i.e., macrophages, lymphocytes, natural killer cells, monocytes,
and dendritic cells) (113–115), it is conceivable that DPP4 would
exert its effect on the “osteoimmunology”.

4.3.1 T Cells
Naïve T cells played a potential protective role for bone in studies
where T cell–deficient mice were presented with enhanced
osteoclastogenesis and reduced BMD (116). Accordingly,
activated T cells may disturb bone homeostasis and induce
subsequent bone loss via the release of RANKL (117) and TNF-
a (118) under pathological conditions such as estrogen deficiency
(119, 120) and in inflammatory diseases (121). Activated T cells
can be divided into cytotoxic CD8+ T cells and CD4+ T helpers
cells, which is further subcategorized in Th1, Th2, Th17, and Treg
cells. DPP4 is a marker of human activated T cells and an essential
co-stimulatory molecule for T cells’ maturation, activation, and
differentiation. It directly triggers T cell activation and
proliferation by binding to ADA (30). Furthermore, DPP4 also
TABLE 1 | Summary of the effects of the gut hormones and neuropeptide on bone metabolism.

Hormone Receptors Receptors on bone
cells

Effects on bone cells Effects on bone

proliferation differentiation apoptosis Bone
formation
parameters

Bone
resorption
parameters

BMD and Bone
strength

GLP-1 GLP-1R BMSCs, primary
osteoclasts,
osteoblasts

differentiation and proliferation of
osteoblastic cell lines (MC3T3-E1,
TE-85, and MG-63) ↑

osteogenic
differentiation of
BMSCs ↑

/ P1NP ↑
ALP ↑

CTX ↓ BMD↑
improved
trabecular
structure bone
strength ↑

GLP-2 GLP-2R osteoclasts / / / P1NP ↓ CTX ↓ aBMD↑
GIP GIPR osteoblasts,

osteoclasts,
osteocytes, BMSC

/ / / P1NP ↑ALP
↑

CTX ↓ BMD ↑
bone loss ↑

NPY Y1R osteoblasts,
osteocytes,
osteoclasts,
chondrocytes

inhibited osteoblast activity by
binding to the osteoblastic Y1
receptor

Bone
resorption
parameters↓

bone mass ↓

PYY Y1R osteoblasts / / / P1NP ↓ / aBMD ↓
bone mass ↓
bone strength ↓
May 2
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has a costimulatory function by binding to CXCR4 (32), M6P/
IGF-IIR (33), TCR/CD3 (30), CD45 (protein tyrosine
phosphatase) (34), caveolin-1 (36), CARMA1 (37), and
fibronectin III (38, 39). Synthetic inhibition or deficiency of
DPP4 results in impaired development and maturation of naïve
T cells (122–124). In addition, DPP4/CD26 plays an essential role
in T cell differentiation.

Naïve CD4+ T cells differentiated into distinct effector T cell
subsets of T helper l (Th1) and T helper 2 (Th2) (125). Both Th1
and Th2 cells are now known to inhibit osteoclast formation by
secreting signature cytokines IFN-g and IL-4, respectively (126).
DPP4 is expressed at a higher level in Th1 cells but at a lower level
in Th2 cells. Deleting of DPP4/CD26 in mice deregulated Th1
immune responses and reduced Th1 cytokines but upregulated
Th2-type cytokines (127, 128). Accordingly, DPP4 was proposed
to enhance the production of Th1 proimflamatory cytokines
including IFN-g, TNF-a, and IL-6 (115). As an osteoclastogenic
subset of T cells, T helper 17 (Th17) cells secreted IFN-g and IL-17,
regulating pre-osteoclast proliferation, differentiation, and
apoptosis, leading to pathological bone loss (129, 130). Treg cells
(131–133) are known to have anti-osteoclastogenesis function by
downregulating the expression in RANKL and macrophage
colony-stimulating factor (M-CSF) (134, 135). DPP4/CD26 was
highly expressed on Th17 cells (121), yet was used as a negative
selection marker for Tregs. The absent/low DPP4 expression on
the surface of Treg cells were important for the utilization and
accumulation of adenosine to present as Treg/effector T cells
(135). In addition, DPP4 inhibitors significantly increased the
Treg expansion in non-obese diabetic mice (136). Hence, DPP4
may promote osteoclastogenesis by restraining proliferation and
activization of Treg cells. Any imbalance within the two couple of
lymphocytes (Th1, Th2, Th17, and Tregs) played a prominent role
in immune regulation (137, 138). A study using solid-phase
immobilized specific anti-CD3 mAb to stimulate T cells
differentiation showed that the high expression of DPP4/CD26
Frontiers in Endocrinology | www.frontiersin.org 6
played an indispensable role in the differentiation and functions of
Th1 and Th17 lymphocytes. Thus, DPP4/CD26 could be involved
in bone diseases such as osteoporosis by regulating naïve CD4+ T
differentiation and the immune balance of its activated subsets.

CD8+ T cells were another kind of lymphocytes with both
osteogenesis and osteoclastogenesis functions. A bi-directional
regulatory loop between osteoclasts and CD25+FoxP3+CD8+ T
cells was observed in previous researches (139). The naïve CD8+

T-cells primed by osteoclasts would express cytokines including
FoxP3, CD25, CTLA-4, RANKL, and IFN-g (140), which, in
turn, potentially activated or suppressed osteoclast activity. The
IFN-g and CTLA-4 inhibited osteoclast activity (140, 141),
whereas RANKL increased osteoclast activity. Healthy
individuals taking DPP4 inhibitor sitagliptin 100 mg daily for
28 days displayed significant increase in the percentage of
memory CD8+ T cells from days 0 to 3 compared to the
placebo group (142). Therefore, these findings support further
studies to verify regulation mechanisms of DPP4 on CD8+ T cells
and clinical outcome of bi-directional regulatory loop.
4.3.2 B Cells
B cells have long been recognized as active RANK/RANKL/OPG
axis regulators in osteoimmunology. B cells produced OPG (116)
and RANKL (143) and played dual functions on bone
homeostasis. Imbalanced production cytokines of B cells
between RANKL and OPG might strongly link bone turnover
and the immune response. DPP4 is expressed on B cells, a
natural killer (144). Reduced DNA synthesis (144, 145) in B
cells and impaired immunoglobulin isotype switching of B cells
were observed in DPP4-deficient mice (146). However, an in
vitro study showed no effect of DPP4 deficiency on B cells in rats
(132), whereas B cell numbers were decreased markedly in later
life by monitoring the long-term effect of DPP4 deficiency in vivo
(147). DPP4 is expressed on B cells (144); in turn, it might be
TABLE 2 | The effects of cytokines on bone metabolism.

Cytokines Bone remodeling References

Chemokines
CX3CL1 Stimulation of osteoclastogenesis (155)
CXCL9 Inhibition of osteoblast differentiation (156)
CXCL 10 Stimulation of osteoclastogenesis and bone formation (157–160)
CXCL 12 Stimulation of osteoclastogenesis and osteoblastogenesis (157–160)
CCL 5 Osteoblast migration and bone formation;Inhibition of osteoclastogenesis. (161)
CCL 2 Stimulation of osteoclastogenesis (162, 163)
CCL 3 Stimulation of osteoclastogenesis (164)
CCL 11 Stimulation of osteoclastogenesis and bone formation (165)
CCL 20 Enhanced osteoblast-mediated osteoclastogenesis partly via IL-6 production (166)
Interleukin (IL)
IL-1 Stimulation of osteoclastogenesis (167–169)
IL-6 Dual functions on Induces RANKL-dependent osteoclastogenesis (170)
IL-10 Inhibit osteoclastogenesis (171)
IL-17 Stimulating the production of M-CSF and RANKL in osteoblasts and MSCs, enhancing the formation of bone-resorbing osteoclasts from

monocyte/macrophage precursors.
(172)

Other cytokines
GM-CSF Inhibited monocyte-derived osteoclast differentiation (173)
G-CSF G-CSF promoted monocyte maturation and supported differentiation of late-stage OCP cells (167)
TNF-a Enhances osteoclast differentiation, inhibits osteoclast apoptosis. (168)
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involved in the proliferation and function of B cells in
physiological bone remodeling.

4.3.3 Macrophages
Osteomacs, a kind of bone macrophages, settles in the endosteal
and periosteal surfaces of the bone (148). Loss of osteomacs leads
to a complete loss of osteoblasts, which are presumed to play an
essential role in maintaining mature osteoblasts (149).
Macrophages are highly plastic in response to their
microenvironment and could be typically divided into pro-
inflammatory M1 and anti-inflammatory M2. Osteomacs cells
polarization with alternatively types are important mediators in
bone homeostasis (150). M1 enhances osteoclast differentiation
and resorption by upregulation of RANKL, whereas M2
participated in the clearance of apoptotic cells (151).
Treatment with DPP4 inhibitor Alogliptin was associated with
reduced numbers of pro-inflammatory M1 macrophages and
increased gene expression of M2 macrophage markers (152).
Hiromura et al. (153) found that DPP4 inhibitors can induce the
polarization and migration of M2 macrophages by CCL3
Caveolin-1 cell signal transcription factors in white fat. Other
research (154) showed GLP-1 agonist (exenatide) would
promote the polarization of M2 macrophages and the
differentiation of bone marrow hematopoietic stem cells into
osteoclasts through the PKA/STAT pathway. Therefore, it is
speculated that DPP4, as the upper hydrolase signaling molecule
of GLP-1, might regulate macrophage polarization through the
GLP-1/GLP-1 receptor pathway. Accordingly, DPP4 was
proposed to regulate M1/M2 polarization, resulting in a shift
in macrophage phenotypes toward M1. Further studies
concerning the direct role of DPP4 on osteomacs polarization
would be helpful for understanding the mechanism
of “osteoimmunology”.

4.4 DPP4 Cleaves Cytokines in
Bone Microenvironment
There is increasing evidence that cytokines are critically
responsible for bone resorption and formation changes. DPP4
can cleave X-Pro or X-Ala dipeptides from numerous cytokines
in the bone microenvironment through its N-terminal
dipeptidase activity. This cleavage can result in both inactive
and active fragments of the targeted cytokines (Table 2).
Chemokines promoted the migration of osteoclast precursor
cells and facilitated the process of osteoclastogenesis and bone
resorption. The NH2 terminal of many chemokines could be
cleaved by DPP4, thus influencing their biologic activities. The
widely studied CX3CL1/CX3CR1 (155), CXCL9 (156), CXCL10
(157–160), CXCL12/CXCR4 (157–160), and CCL5/CCR1 (161)
signaling pathway were proved to play an important role in
osteoclast formation and maturation. DPP4 removes N-terminal
amino acids from their ligands or receptors and impaires its
chemotactic activity (174–178). Other chemokines such as CCL2
(162, 163), CCL3 (164), CCL11 (165), and CCL20 (166) are
known to have putative truncation sites for DPP4, which showed
modifying effects on hematopoietic stem/progenitor cells with
truncated forms (2).
Frontiers in Endocrinology | www.frontiersin.org 7
Some ILs, such as IL-1 (167–169), IL-6 (170), and IL-17 (172)
known to enhance osteoclastogenesis or anti-osteoclastogenesis
(IL-10) (171) have putative truncation site for DPP4 (173). Other
cytokines, such as granulocyte macrophage (GM)–colony-
stimulating factor (CSF) (173), G-CSF (167), and TNF-a (168),
also take part in the regulation of immune and bone metabolism.
DPP4 could induce truncated products with inactive function for
GM-CSF, G-CSF (2), and TNF-a (27). The biochemical and
biological functions of putative DPP4 truncation sites are poorly
investigated. Previous research has shown that DPP4-cleaved
substrates could get inactivated, modified receptor interactions,
or modified bioactivities compared with the intact forms. For
example, DPP4-cleaved GLP-1 can act through a different
receptor from GLP-1R. As for PYY and NPY, the DPP4
cleavage form could enhance the selectivity of the Y2 receptor
relative to the non-selective activity of the intact form. DPP4
cleavage of GIP induced an antagonistic feature for GIP-R
signaling. The enzymatic activity of DPP4 has been implicated
in certain disease states.

Nevertheless, the function of truncated forms of these
cytokines has not been adequately appreciated. Further studies
are needed to determine the functional difference between the
truncated molecules and the full-length form of the protein.
FIGURE 2 | Summary of the potential mechanisms of DPP4 on bone
metabolism in bone environment. As a newly discovered adipokine originated
from mature adipocytes including bone marrow adipocytes, DPP4 plays a
complex role in classical enzyme functions and non-enzyme functions in bone
metabolism. (1) (red arrow) DPP4 might indirectly regulate bone remodeling by
binding to multiple peptides substrates on bone cells such as glucagon-like
peptide-1 (GLP-1), Glucagon-like peptide-2 (GLP-2), and glucose-dependent
insulinotropic polypeptide (GIP), neuropeptide Y (NPY) and peptide YY (PYY). (2)
(black arrow) DPP4 acts as receptor or costimulatory protein of different
immunomodulation signaling process of diversified immune cells including
CD4+ T cells, CD8+ T cells, B cells and macrophages. (3) (blue arrow) DPP4
hydrolyzes different sits on chemokines, interleukins, and other cytokines which
take part in bone remodeling.
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5 CONCLUSION AND FUTURE
PERSPECTIVES

This review introduces the role of DPP4 on bone metabolism and
summarizes its potential mechanisms (Figure 2). Inhibition of
DPP4 activity does not directly regulate bone remodeling, whereas
DPP4 indirectly affects bone metabolism by regulating DPP4
substrates and immune cells in the bone microenvironment. We
speculate that increased DPP4 activity might indirectly promote
bone resorption and inhibit bone formation, thereby increasing the
risk of osteoporosis, showing prospects of a potentially new
understanding of the mechanism of DPP4 on osteoporosis.
However, the study of DPP4 on bone metabolism is still in an
early stage, and there are still various questions that need to be
solved. Some suggestions are purposed for future research directions:

1. It is crucial for bone remodeling to keep the energy
homeostasis in the bone microenvironment. Adipokines
originating from BMAT would mediate bone remodeling and
energy balance through paracrine because adiponectin and
leptin may be regulated by adipocytokine DPP4 in the bone
microenvironment. Future studies may focus on the relationship
between DPP4 and other adipocytokines in the bone
microenvironment or other regulatory signals of energy
metabolism.

2. Because of the extensive cross-linking signals among bone
cells cytokines of bone immune cells in the bone
microenvironment, it is necessary to conduct in-depth
studies to find the initiating or critical mechanisms of the
dialogue between DPP4 and those factors. Thus, the
mechanism of DPP4 promoting bone resorption and
inhibiting bone formation in bone remodeling need to be
was further verified.
Frontiers in Endocrinology | www.frontiersin.org 8
3. It is valuable to modify DPP4 inhibitors from the distinct
regulation mechanisms of bone metabolism between DPP4
inhibitors and DPP4. So as to achieve the dual effects of
lowering glucose and reducing the risk of osteoporosis.

4. Substrates cleaved by DPP4 can inactivate, modify receptor
interactions, or modify biological activity. Because DPP4 has
a wide range of cy tok ine e ff ec t s on the bone
microenvironment, it is necessary to investigate cytokines’
biochemical and biological functions after the DPP4
truncation site to further clarify the role of DPP4 in
proteolysis.
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Down. Immunol Today (1999) 20(8):367–75. doi: 10.1016/s0167-5699(99)
01486-3

17. Morimoto C, Schlossman SF. The Structure and Function of CD26 in the T-
Cell Immune Response. Immunol Rev (1998) 161:55–70. doi: 10.1111/j.1600-
065x.1998.tb01571.x

18. von Bonin A, Hühn J, Fleischer B. Dipeptidyl-Peptidase IV/CD26 on T Cells:
Analysis of an Alternative T-Cell Activation Pathway. Immunol Rev (1998)
161:43–53. doi: 10.1111/j.1600-065x.1998.tb01570.x

19. Yaron A, Naider F. Proline-Dependent Structural and Biological Properties
of Peptides and Proteins. Crit Rev Biochem Mol Biol (1993) 28(1):31–81.
doi: 10.3109/10409239309082572

20. Guo Y, Hangoc G, Bian H, Pelus LM, Broxmeyer HE. SDF-1/CXCL12
Enhances Survival Chemotaxis of Murine Embryonic Stem Cells and
Production of Primitive and Definitive Hematopoietic Progenitor Cells.
Stem Cells (2005) 23(9):1324–32. doi: 10.1634/stemcells.2005-0085

21. Christopherson KW2nd, Hangoc G, Broxmeyer HE. Cell Surface Peptidase
CD26/dipeptidylpeptidase IV Regulates CXCL12/Stromal Cell-Derived
Factor-1 Alpha-Mediated Chemotaxis of Human Cord Blood CD34+
Progenitor Cells. J Immunol (2002) 169(12):7000–8. doi: 10.4049/
jimmunol.169.12.7000

22. Christopherson KW2nd, Hangoc G, Mantel CR, Broxmeyer HE. Modulation
of Hematopoietic Stem Cell Homing and Engraftment by CD26. Science
(2004) 305(5686):1000–3. doi: 10.1126/science.1097071

23. Zilleßen P, Celner J, Kretschmann A, Pfeifer A, Racké K, Mayer P. Metabolic
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