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Hypogonadism is common in men with sickle cell disease (SCD) with prevalence rates as
high as 25%. Testicular failure (primary hypogonadism) is established as the principal
cause for this hormonal abnormality, although secondary hypogonadism and
compensated hypogonadism have also been observed. The underlying mechanism for
primary hypogonadism was elucidated in a mouse model of SCD, and involves increased
NADPH oxidase-derived oxidative stress in the testis, which reduces protein expression of
a steroidogenic acute regulatory protein and cholesterol transport to the mitochondria in
Leydig cells. In all men including those with SCD, hypogonadism affects physical growth
and development, cognition and mental health, sexual function, as well as fertility.
However, it is not understood whether declines in physical, psychological, and social
domains of health in SCD patients are related to low testosterone, or are consequences of
other abnormalities of SCD. Priapism is one of only a few complications of SCD that has
been studied in the context of hypogonadism. In this pathologic condition of prolonged
penile erection in the absence of sexual excitement or stimulation, hypogonadism
exacerbates al ready impaired endothel ia l n i t r ic oxide synthase/cGMP/
phosphodiesterase-5 molecular signaling in the penis. While exogenous testosterone
alleviates priapism, it disadvantageously decreases intratesticular testosterone
production. In contrast to treatment with exogenous testosterone, a novel approach is
to target the mechanisms of testosterone deficiency in the SCD testis to drive
endogenous testosterone production, which potentially decreases further oxidative
stress and damage in the testis, and preserves sperm quality. Stimulation of
translocator protein within the transduceosome of the testis of SCD mice reverses both
hypogonadism and priapism, without affecting intratesticular testosterone production and
consequently fertility. Ongoing research is needed to define and develop therapies that
restore endogenous testosterone production in a physiologic, mechanism-specific
fashion without affecting fertility in SCD men.
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1 INTRODUCTION

Sickle cell disease (SCD) is the most common hereditary
hematologic disorder in the United States, which affects an
estimated 100,000 Americans, mostly African-Americans, and
millions of people globally (1). Patients with SCD experience
acute complications, such as painful vaso-occlusive episodes, and
chronic multi-organ damage, which heighten their risks for
morbidity and mortality (2). SCD was long considered to be a
disease of children and young adults because of its devastating
natural progression. Due mostly to universal newborn screening
and early therapeutic intervention, life expectancy in patients
with SCD has steadily improved over the last 30 years, and recent
studies have estimated the median survival for patients with SCD
at 60 years (3). Extended survival outcomes have, however, led to
an increase in long-term complications of this disease.

SCD is associated with hypogonadism (total testosterone
levels below 300 ng/dl), which develops in up to 25% of men
with this disease (4). This rate contrasts with the 6-12%
prevalence rate of symptomatic hypogonadism in otherwise
healthy middle aged and older men, who manifest an age-
related decline in testosterone production (5). The impact of
testosterone deficiency in the SCD male population is evident,
based on its symptomatic effects, e.g., impaired physical and
sexual maturation, reduced libido, erectile dysfunction,
decreased physical strength, fatiguability, mood changes, and
infertility (6, 7). Attempts to address this problem are, however,
hampered by limited understanding of the mechanism of
hypogonadism in SCD.

This review focuses on the mechanism of testosterone
deficiency in SCD, the impact of hypogonadism on health- and
reproduction-related issues in SCDmales, and novel strategies to
drive endogenous testosterone biosynthesis. These strategies may
translate into clinical therapeutic opportunities for preserving
sexual function and fertility, and possibly other conditions,
adversely affected by hypogonadism in SCD.
2 SICKLE CELL DISEASE

SCD is caused by a single point mutation in the b-globin gene of
hemoglobin, leading to the expression of abnormal sickle
hemoglobin (HbS). Traditionally, the pathophysiology of SCD
was thought to result exclusively from the polymerization of HbS
under hypoxic conditions, causing erythrocytes to become
deformed, sludge, and occlude blood vessels, along with
oxidative stress, inflammation, and hemolytic anemia (8).
More recent studies show that SCD is also characterized by a
chronic deficiency of the endogenous vasodilator nitric oxide
(NO) and vascular dysfunction (8, 9). As a consequence, SCD
leads to progressive multi-organ failure resulting in pulmonary
hypertension, leg ulcers, renal failure, stroke, infarct, retinopathy,
neurocognitive impairment, bone loss, and priapism (2, 9, 10).

2.1 Hypogonadism in Sickle Cell Disease
Clinical research has documented a high frequency of testosterone
deficiency in SCD, with prevalence rates as high as 25% (4). In a
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small number of clinical studies investigating hypogonadism in
SCD, findings regarding its etiology and clinical implications have
varied. Studies have reported elevated luteinizing hormone (LH)
and follicle-stimulating hormone (FSH) levels in patients with
SCD (primary hypogonadism; 6, 11–14). Repeated testicular
infarction is observed in some men with SCD, attributed to
erythrocyte sickling, obstructed blood flow, and hypoxia (15),
and this course has been proposed to be a contributing factor for
testicular failure (16–19). In contrast, studies report decreased LH
and FSH in patients with SCD (secondary hypogonadism; 4, 20,
21). Furthermore, compensated hypogonadism (characterized by
increased gonadotropins and normal testosterone levels) has also
been identified in men with SCD (22). Smaller testis size in SCD
men (6, 23) and reduced testis weight in SCD mice (24) is further
evidence of hypogonadism related to this disease.

In recent years, progress has been made toward
understanding the mechanism of testosterone deficiency in
SCD, and primary hypogonadism has now been established as
the principal cause for this hormonal abnormality. Oxidative/
nitrosative stress is implicated in defective testosterone
production by affecting the expression or enzymatic activation
of several steroidogenic enzymes, or by depletion of antioxidants
(25–27). In the vasculature of humans and experimental animals
with SCD, reactive oxygen species (ROS)-generated enzymes
NADPH oxidase (NOX) and xanthine oxidase, endothelial NO
synthase (eNOS) uncoupling, autooxidation of HbS, heme iron
release, and increased asymmetric dimethylarginine have been
described (28, 29). Diverse stimuli associated with these redox
sources include hypoxia, angiotensin II, proinflammatory
cytokines, vasoconstrictors, growth factors, metabolic factors,
and superoxide itself (30).

The testis of the SCDmouse exhibits upregulation of 4-hydroxy-
2-nonenal (4-HNE), a major end product of lipid peroxidation,
upregulation of NOX gp91phox subunit, and uncompensated
expression of the antioxidant enzyme glutathione peroxidase-1, all
consistent with a heightened and uncontrolled redox environment
in the SCD mouse Leydig cell (31). Increased NOX-derived
oxidative stress reduces protein expression of steroidogenic acute
regulatory protein (StAR) (but not cholesterol side-chain cleavage
enzyme) in Leydig cells of the SCD mouse testis, which initiates
cholesterol transfer into mitochondria. Reduced transport of
cholesterol to mitochondria of Leydig cells in the SCD testis
accounts for primary hypogonadism (31).

Secondary hypogonadism appears to represent patients
having more severe or progressive forms of SCD, who exhibit
more frequent abnormalities of LH and FSH in comparison with
patients having mild disease (20). While not completely
understood, secondary hypogonadism may be the result of
vasoocclusion of hypothalamic-pituitary small blood vessels, or
pituitary infarction (11).

2.1.1 Hypogonadism, Reproductive Issues, and
Health-Related Quality of Life in SCD
Testosterone plays a critical role in muscle physiology, body
development, bone density, sexual function, fertility, as well as
social, emotional, and neurocognitive functioning in males (32).
Patients with SCD exhibit reduced height and weight, decreased
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physical strength, and delayed sexual maturation (23). Low levels
of testosterone have been associated with very low bone mass
density in SCD patients compared with those having normal
bone mass density (33). Psychological distress, such as mood
changes, increased anxiety, extreme fatigue, social withdrawal,
and depression, and neurocognitive impairment, such as
impaired executive function, attention, and processing speed,
are well recognized complications of SCD (34–36). However, it is
not understood whether declines in physical, psychological, and
social domains of health in SCD patients are related to low
testosterone levels or are consequences of other abnormalities of
SCD. Future studies are warranted to evaluate this possible
consequence of hypogonadism in SCD.

Although poorly studied in SCD, male infertility is recognized
to be a common complication of this disease (23, 37–39). Impaired
male fertility in SCD is due to multiple causes, including
hypogonadism, gonadal failure and sperm abnormalities (such
as oligospermia, reduced sperm motility and density, and
abnormal sperm morphology), decreased ejaculate volume, and
delayed or impaired sexual development. Prevalence rate of at least
one abnormal sperm parameter in male patients with SCD is 91%
(40). Erectile dysfunction, largely as a result of penile damage from
recurrent or prolonged priapism, further contributes to reduced
fertility in SCD men (23).

2.1.2 Hypogonadism and SCD-Related Priapism
Priapism is a pathologic condition of prolonged penile erection
in the absence of sexual excitement or stimulation (41). Ischemic
priapism, which features little or absent intracorporal blood flow
resulting in painful erections, is prevalent in men with SCD,
occurring in as many as 48% of men, with a mean age of onset of
15 years (42, 43). Repeated episodes of priapism may lead to
irreversible damage to erectile tissue and permanent erectile
dysfunction (42, 44, 45) and cause psychological distress,
impaired sexual relationships, and reduced quality and
function of life (46). The prevalence rate of erectile dysfunction
associated with recurrent ischemic priapism in SCD patients is as
high as 47.5% (47).

The historical premise is that androgens are causative in the
pathophysiology of priapism. However, this notion is now
challenged. Reports of no increase in priapism in testosterone
deficient men administered testosterone gel at eugonadal levels
(48), as well as reduced priapism occurrences in testosterone
deficient men with SCD receiving long-acting testosterone
undecanoate injections (49) oppose earlier conceptions that
testosterone therapies cause priapism. It is now established that
physiologic testosterone administration does not cause priapism
and, in contrast, this intervention promotes molecular
mechanisms that favor normal erection responses. In fact,
priapism in SCD is associated with decreased testosterone
levels. A potential role for testosterone in correcting priapism
acknowledges that androgens contribute to physiologic erectile
tissue responses. Testosterone and dihydrotestosterone promote
physiologic relaxation of penile arteries and cavernous tissue,
and androgen deficiency decreases the expression and enzymatic
activities of eNOS, neuronal NOS, and phosphodiesterase type 5
(PDE5) in the penis, the main players in penile erection (50).
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The mechanisms by which testosterone deficiency contributes
to priapism has recently been elucidated. In a mouse model of
SCD, characterized by both primary hypogonadism and
priapism (51), testosterone replacement at eugonadal levels
corrects priapism. At the molecular level, normalized
testosterone levels reverse downregulated eNOS activity via a
nongenomic mechanism by normalizing downregulated P-Akt
(Ser-473) and P-eNOS (Ser-1177) protein expressions in the
penis (51). Increased NO reverses downregulated protein
expression and activity of PDE5, the enzyme which degrades
cGMP in the penis (52–56). Testosterone’s effect on PDE5
protein expression is believed to be mediated by increased NO-
induced accumulation of cGMP, which binds to cGMP response
sequences in the PDE5 promoter (57). Testosterone’s effect on
PDE5 catalytic activity is due to phosphorylation of PDE5 on
Ser-92 by cGMP-mediated activation of protein kinase G, which
stimulates binding of cGMP to the regulatory domain of PDE5
(58). Upregulated PDE5 protein expression and activity in the
penis restores the mechanism for cGMP degradation, thereby
preventing excessive accumulation of this nucleotide upon
neurostimulation. By controlling the amount of cGMP, which
causes relaxation of smooth muscles in the penis and penile
erection, priapic activity is lessened (51). This proof-of-principle
study supports testosterone deficiency as a cause for SCD-
associated priapism by exacerbating already impaired NO
molecular signaling in the penis.

In contrast to its physiologic doses, testosterone at
supraphysiologic doses decreases NO production from eNOS
and increases oxidative stress in endothelial cells (59–61). This
may partially explain findings described in several case reports in
men that, at excessive dosing, testosterone may trigger priapism
rather than reduce it (62–64).

Priapism is one of very few complications of SCD that has
been studied in the context of hypogonadism. It is interesting to
observe that low testosterone exhibits opposing erection
phenomena in the general population of men vs men with
SCD: while low testosterone may contribute to decreased
erection in the general population having cardiovascular or
metabolic factors affecting erectile tissue function, it results in
uncontrolled erection in the SCD population, which has a
severely disturbed PDE5 regulatory pathway in the penis.
However, it is noted that achieving physiologic “eugonadal”
effects in the penis is healthful in both populations.
3 TESTOSTERONE
REPLACEMENT STRATEGIES

Traditional approaches for managing testosterone deficiency in
general have largely centered on exogenous administration of
testosterone. Testosterone therapies and their relative usages
are: transdermal testosterone gel therapy (70%), testosterone
injections (17%), transdermal testosterone patches (10%), and
other forms of testosterone therapy, such as an oral formulation
(3%) (65, 66). However, limitations exist with these current
therapies. Adverse side effects are commonly described in
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association with exogenous testosterone administration,
including supraphysiologic levels of testosterone, local
irritation with applications, gynecomastia, erythrocystosis,
hepatotoxicity, and sleep apnea (67). Adverse prostate health
risks of benign prostate enlargement and prostate cancer as well
as cardiovascular risks (i.e., edema, heart attack, stroke) have
also been contended to be potential risks of testosterone
therapy (68). Impaired sperm production and infertility are
also documented risks of exogenous testosterone therapies, by
virtue of feedback inhibition of central gonadotropin release.
Such therapies suppress LH, which in turn suppress Leydig cell-
stimulated testosterone production, resulting in reduced
intratesticular testosterone concentrations needed for
spermatogenesis (67, 69). Because of the contraceptive effect
exerted by exogenous testosterone preparations, many young
men with hypogonadism desiring to retain reproductive
function are precluded from pursuing exogenous testosterone
therapies as a therapeutic option.

Alternatives to exogenous testosterone treatment have been
explored, with the main objective to drive endogenous
testosterone production and in turn preserve fertility. Current
options include selective estrogen receptor modulators (SERMs),
aromatase inhibitors, and human chorionic gonadotropin (hCG)
(70). Both SERMs (e.g., clomiphene citrate and tamoxifen
citrate), which serve as estrogen receptor antagonists, and
aromatase inhibitors (e.g., letrozole, anastrozole, and
testolactone), which block the conversion of testosterone to
estradiol, result in decreased estrogen feedback to the
hypothalamus thereby effecting a natural increase in
gonadotropin release (70). Their efficacy in increasing
testosterone production is limited in men with normal or
elevated LH levels who manifest a testosterone production
defect at the testicular level. hCG, operating as an LH
analogue, serves to stimulate Leydig cell production of
testosterone. Its efficacy is limited in men whose Leydig cells
are not functionally responsive to LH because of decreased
receptor function or capacity for testosterone production
(65, 71).

These reports indicate that currently available testosterone
therapeutic options aiming to enhance endogenous testosterone
production fall short in addressing testosterone deficiency
associated with testicular failure. This shortcoming is relevant
generally and for hypogonadal males with SCD. Specifically in
males with SCD, exogenous testosterone would further affect
fertility by decreasing intratesticular testosterone production
needed for spermatogenesis.
4 ENDOGENOUS MECHANISM-SPECIFIC
MOLECULAR TARGETS FOR
TESTOSTERONE PRODUCTION

Targeting mechanism-specific endogenous sources of testosterone
production in the SCD testis to produce eugonadal levels of the
hormone directly addresses primary hypogonadism. As transfer of
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cholesterol from the outer to the inner mitochondrial membrane
of Leydig cells in the testis is the principal site of regulation of
steroid hormone biosynthesis, and is impaired in SCD, targets for
stimulating testosterone production may involve transduceosome
protein components. The transduceosome is an ensemble of
mitochondrial and cytosolic proteins responsible for cholesterol
translocation from intracellular stores to the inner mitochondrial
membrane (72). Translocator protein (TSPO) is a high-affinity
drug- and cholesterol-binding mitochondrial protein, and its
protein expression is decreased in the testis of SCD mice (73,
74). The TSPO-dependent import of StAR into mitochondria and
the association of TSPO with the outer/inner mitochondrial
membrane contact sites drives intramitochondrial cholesterol
transfer and subsequent steroid formation (73). Previous studies
have shown that TSPO drug ligands activate steroid production by
MA-10 mouse Leydig tumor cells and by mitochondria isolated
from other steroidogenic cells (75–77). Furthermore,
pharmacologic stimulation of TSPO stimulates testosterone
production, both in vitro by Leydig cells isolated from aged rats
and in vivo in aged rats, without reducing intratesticular
testosterone concentrations or sperm number (78, 79). These
studies oppose several previous reports which questioned the
role and extent of involvement of TSPO in mitochondrial
cholesterol import and steroidogenesis (80, 81).

A recent study in a SCD mouse model demonstrated that
pharmacologic stimulation of TSPO corrects priapism.
Treatment of SCD mice with TSPO-selective drug ligand N,N-
dihexyl-2-(4-fluorophenyl) indole-3-acetamide (FGIN-1-27)
produces eugonadal levels of testosterone. Normalized
testosterone levels corrects priapism without decreasing
intratesticular testosterone production (74). At the molecular
level, TSPO ligand, by normalizing testosterone levels, restores
PDE5 activity and decreases NOX-mediated increase in oxidative
stress in the penis. Conceivably, this effect of testosterone
pertains to recovered control of NO/cGMP responsiveness
associated with restored PDE5 function. The mechanism
underlying testosterone’s inhibitory effect on NOX expression
and activity is not known, but may be indirect through the
improvement of endothelial function. In human endothelial cells
and mouse aorta, NO S-nitrosylates and inhibits p47phox
subunit of NOX, inhibits protein expression of gp91phox and
p47phox subunits of NOX, and inhibits superoxide production
(82–84). These findings suggest that targeting endogenous
testosterone production in the SCD testis by pharmacologic
activation of protein components involved in cholesterol
transport could be a novel, targetable pathway to correct
primary hypogonadism and ameliorate testosterone deficiency-
associated health conditions without affecting fertility.

While not examined, it is plausible that, in addition to
TSPO, other cytosolic or outer mitochondrial membrane
protein components involved in cholesterol transport from
intracellular stores to the inner mitochondrial membrane (such
as voltage dependent anion channel 1, negative protein adaptor
14-3-3ϵ, or AAA domain-containing protein 3A) (72), may be
targeted in the SCD testis to increase endogenous testosterone
production. Because pharmacologic activation of TSPO is
May 2022 | Volume 13 | Article 892184
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independent of LH, it is conceivable that this approach may treat
secondary hypogonadism, or mixed primary and secondary
hypogonadism, as well. Other possible mechanism-based
targets in the SCD testis include increased oxidative stress, or
enzymatic sources of oxidative stress (such as NOX), which are
enhanced in SCD-associated primary hypogonadism (Figure 1).

Of note, L-glutamine, one of the 3 recently FDA-approved
treatments for SCD (L-glutamine, crizanlizumab, and voxelotor),
increases glutathione-dependent anti-oxidation in the testis and
testosterone levels, at least in sleep-deprived rats (85), while
alleviating primary hypogonadism and protecting erythrocytes
against oxidative damage.
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5 DISCUSSION

SCD affects millions of people throughout the world, mostly of
African ancestry, and is recognized by the World Health
Organization and United Nations as a global health issue. In
the United States, health outcomes for people with SCD have
improved in the past few decades. Despite medical advances, life
expectancy for individuals with SCD in the United States
remains 20 to 30 years lower than that of the average
American. It has been recognized that research and treatment
efforts for SCD lag behind that of other chronic genetic illnesses,
such as hemophilia and cystic fibrosis, requiring legislative
attention (86, 87). In correlation, less FDA-approved therapies
are currently available for SCD. The Sickle Cell Disease
Comprehensive Care Act, signed into law in December 2018,
represents a commitment by the government to continue
research towards increasing the understanding of prevalence,
distribution, outcomes, and therapies associated with SCD.

Amidst health care disparities among ethnic populations in
the United States, limited knowledge and action surround
hypogonadism in SCD, in spite of its long-term and costly
health problems. While many studies have evaluated the
mechanism and health-related issues of hypogonadism in the
general adolescent population, very few studies have focused on
hypogonadism in the SCD population. For example, although an
estimated 1 in 4 SCD patients exhibits low testosterone levels, no
studies have assessed the testosterone-dependent health-related
quality of life profiles of SCD patients.

Despite inequity in federal and foundation research funding,
basic scientific advances and potential new directions to target
testosterone deficiency in SCD are being made in recent years.
The objective of finding and targeting mechanism-specific
endogenous sources of testosterone production appears
necessary for preserving sexual function and fertility in the
SCD young adult population, particularly in light of the harms
of exogenous testosterone therapies.
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