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Bone homeostasis involves bone formation and bone resorption, which are processes
that maintain skeletal health. Oxidative stress is an independent risk factor, causing the
dysfunction of bone homeostasis including osteoblast-induced osteogenesis and
osteoclast-induced osteoclastogenesis, thereby leading to bone-related diseases,
especially osteoporosis. Autophagy is the main cellular stress response system for the
limination of damaged organelles and proteins, and it plays a critical role in the
differentiation, apoptosis, and survival of bone cells, including bone marrow stem cells
(BMSCs), osteoblasts, osteoclasts, and osteocytes. High evels of reactive oxygen species
(ROS) induced by oxidative stress induce autophagy to protect against cell damage or
even apoptosis. Additionally, pathways such as ROS/FOXO3, ROS/AMPK, ROS/Akt/
mTOR, and ROS/JNK/c-Jun are involved in the regulation of oxidative stress-induced
autophagy in bone cells, including osteoblasts, osteocytes and osteoclasts. This review
discusses how autophagy regulates bone formation and bone resorption following
oxidative stress and summarizes the potential protective mechanisms exerted by
autophagy, thereby providing new insights regarding bone remodeling and potential
therapeutic targets for osteoporosis.
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1 INTRODUCTION

Bone is constantly being remodeled to maintain the balance of growth and development of the
skeletal system (1). Bone remodeling is essential for the formation and maintenance of bone
morphology and the repair of damaged bone (2). Physiological bone remodeling requires a balance
between bone formation and bone resorption, while the dynamic balance needs coupling of the
activities of different bone cells (e.g., osteoblasts, osteocytes, and osteoclasts) (3). Osteoblasts mainly
arise by differentiation of bone marrow mesenchymal stem cells (BMSCs) and play an osteogenic
role in the regulation of the synthesis, secretion, and mineralization of the bone matrix (4). At the
end stage of bone formation, osteoblasts become encapsulated in the bone matrix and mature into
osteocytes, which play a crucial role in bone remodeling (5). Osteoclasts, which are the only bone-
resorbing cells in the body, are tissue-specific multinucleated macrophages that arise by the
differentiation of monocytes or macrophage precursors on or near the bone surface (6). Bone
remodeling consists of four primary stages, including bone resorption, recruitment of osteoblasts
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and BMSCs, osteoblast differentiation, and completion of bone
mineralization (7). Dysfunction of any cell type involved in this
process can lead to the failure of bone remodeling followed by
the development of bone-related diseases, especially
osteoporosis (8).

Oxidative stress plays a pivotal role in the regulation of the
balance of bone remodeling processes (9), including effects on
bone formation and bone resorption. Reactive oxygen species
(ROS) induced by oxidative stress can lead to apoptosis of
osteocytes and osteoblasts and inhibit bone mineralization and
osteogenesis, which combine with unbalanced osteoclast
formation to lead to enhanced bone loss and progression of
osteoporosis (10, 11). At physiological levels, ROS can act as
signaling molecules involved in cellular processes such as
differentiation, proliferation, apoptosis, autophagy, and redox
signaling (12). In contrast, excessive ROS levels result in damage
to lipids, proteins, and DNA, which can ultimately lead to cell
death (13).

Autophagy is an essential metabolic pathway for cell survival
in case of nutrient or energy deficiencies, oxidative stress,
infections, or hypoxia (14). The cytoplasm or organelles of the
cell itself are engulfed into vesicles to form autophagosomes,
which are then transported to the lysosome for degradation to
remove damaged or aging organelles and to maintain the basal
cellular homeostasis (15, 16). In response to oxidative stress,
autophagy is regulated by the level of ROS resulting from cellular
injury, and it supports cell survival by a cytoprotective
mechanism that mitigates the damage resulting from the
oxidative stress (17). However, excessive accumulation of ROS
can also exacerbate cellular damage by dysregulation of
autophagy, leading to mitochondrial dysfunction and increased
levels of ROS (18). It appears that the interaction between ROS
and autophagy is critical for cellular homeostasis. Therefore, the
mode of interaction between autophagy and oxidative stress
during bone remodeling warrants further elucidation. Here, we
reviewed the mechanism of autophagy in response to oxidative
stress during bone remodeling and discussed potential
therapeutic targets of the autophagy process for osteoporosis.
2 ROLE OF OXIDATIVE STRESS IN
BONE REMODELING

Cellular oxidative stress is caused by an imbalance of
intracellular redox homeostasis or a relative overload of ROS
(19). Mitochondrial are rod-shaped or elongated under normal
conditions, whereas under conditions of oxidative stress, the
length and density of mitochondria are significantly reduced as
they become fragmented, resulting in impaired cellular metabolic
function and increased ROS production, and potentially even cell
death (20). Oxidative stress is an independent risk factor for
postmenopausal, glucocorticoid, and diabetic osteoporosis (20).
By impairing bone remodeling as a result of disruption of the
coupling of osteoblasts and osteoclasts, oxidative stress-induced
ROS may underlie the main cellular mechanism of osteoporosis
(21, 22).
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2.1 Oxidative Stress in Osteoblasts
At physiological levels, ROS help maintain cellular function,
whereas uncontrolled levels of ROS are detrimental (23). As
osteoblast differentiation requires energy, BMSCs or
preosteoblasts undergo a metabolic transformation whereby
mitochondrial respiration and ATP production are increased
to ensure an adequate energy supply, which is accompanied by
an increase in endogenous ROS (24). Additionally, excessive
ROS levels reduce osteogenic differentiation in situations of
estrogen deficiency, high glucose, diabetes, inflammation,
stress, aging, or other pathophysiological factors, which can
decrease metabolic enzyme activity or antioxidant production
(25, 26). BMSCs cultured long-term in vitro exhibit decreased
antioxidant capacities and elevated ROS levels, leading to
reduction or loss of osteogenic differentiation potential (27).
Likewise, hydrogen peroxide (H2O2)-induced oxidative stress
has been shown to inhibit osteogenic differentiation in rat
BMSC as measured by reduction in alkaline phosphatase
(ALP) activity and Runx2 and ATF4 expression levels (28)
(29). In contrast, reduction in the level of oxidative stress in
BMSCs enhanced osteogenic function and restored bone mass
and bone microarchitecture in ovariectomized rats (30). In
addition, signaling pathways triggered by ROS regulate cell
proliferation, growth, differentiation, and even apoptosis,
thereby affecting the lifespan of osteoblasts. Mitogen-activated
protein kinases (MAPKs) such as c-Jun-N terminal kinase (JNK),
extracellular signal-regulated kinase (ERK1/2), and p38 are
involved in osteoblasts apoptosis (31–33). High levels of ROS
activated the JNK signaling pathway, which increases the
transcriptional expression of pro-apoptotic genes such as
caspase 3, FASL, and caspase 9 (34). Moreover, ROS induced
by H2O2 continuously stimulated the ERK signaling pathway in
osteoblasts, which then enhances the expression of Bax and the
hyperpolarization of the mitochondrial membrane potential,
thereby resulting in cell apoptosis (35).

2.2 Oxidative Stress in Osteoclasts
Oxidative stress and the consequent production of ROS
promotes osteoclast differentiation and osteoclastogenesis (36).
Receptor activator of nuclear factor-kB ligand (RANKL)
stimulation has been shown to increase ROS production in
bone marrow mesenchymal stem cells (BMMs) through a
tumor necrosis factor receptor-associated factor 6 (TRAF6)/
RAC1/nicotinamide adenine dinucleotide phosphate oxidase 1
(Nox1) signaling cascade, resulting in enhanced differentiation of
osteoclasts. Conversely, exposure to the antioxidant N-
acetylcysteine (NAC) has been shown to inhibit the response
of BMMs to RANKL, involving ROS production, activation of
the MAPK pathway, and osteoclastogenesis (37). Likewise, in the
glucose-induced diabetic osteoporosis model in rats, increased
ROS production in osteoclasts and subsequently enhanced
expression of proteins related to MAPKs [phosphorylated (p)-
ERK, p-JNK, and p-p38], NF-kB (NF-kB, p-IkB, and IKK), and
NACHT-LRR-PYD domains-containing protein 3 (NLRP3)-
related protein expression, which promotes osteoclast
differentiation and bone resorption, were observed (38).
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ROS production not only directly enhances osteoclast
differentiation but also interacts with osteoblasts to regulate the
formation and differentiation of osteoclasts. OPG/RANK/
RANKL form a molecular triad that links osteoblasts
and osteoclasts and thus plays a significant role in
osteoclastogenesis (39, 40). High levels of H2O2-induced ROS
in osteoblasts (including osteoblast-like MG63 cells and primary
mice osteoblasts) and BMSCs have been shown to stimulate the
expression of RANKL mRNA and protein through ERKs and the
PKA-CREB pathway (41). Co-culture of osteoblasts with
osteoclast precursor cells has revealed that ethanol (EtOH)-
induced RANKL expression depends on intracellular ROS
stimulation by NADPH oxidase activity in osteoblast, which
promotes osteoclast differentiation (42). These results
demonstrate that ROS can promote RANKL secretion by
osteoblasts, thereby regulating osteoclast differentiation, thus
providing novel insights into the role of ROS production in the
regulation of osteoblast-osteoclast communication.

Taken together, these findings suggest that ROS can inhibit
osteoblast differentiation and hence also bone formation, in
addition to promoting osteoclast differentiation and
osteoclastogenesis. The effect of oxidative stress on different
cell types and their communication are thought to play an
essential role in the development of osteoporosis.
3 ROLE OF AUTOPHAGY IN
BONE REMODELING

3.1 Autophagy in Osteoblasts
Autophagy plays a significant role in bone formation, including
differentiation of BMSCs into osteoblasts to osteocytes,
osteogenesis, differentiation, and the formation of bone matrix.
BMSC differentiation requires energy, while the products of
autophagosomal degradation can be oxidized by mitochondria
to provide a suitable energy supply for their differentiation (43).
Optimal differentiation of MSCs into osteoblasts involves an
early stage of AMP-activated protein kinase (AMPK)/mTOR
signaling axis-mediated autophagy as well as a later stage of Akt/
mTOR signaling axis activation (44). Conversely, reduction of
the level of autophagy directly inhibits the function of
endogenous BMSCs and further promotes the development of
osteoporosis (45). When MSCs are fully differentiated into
osteoblasts, basal autophagy is completely inhibited, but this
does not indicate that the differentiated cells are no longer
capable of autophagy (46).

Mesenchymal-derived osteoblasts, which are recognized as
specialized mineralizing cells in bone formation, are known to
play a critical role in the synthesis, secretion, and mineralization
of the bone matrix (47, 48). A previous study in vitro found that
autophagy defects induced by ablation of FIP200 in osteoblasts
led to the dysfunction of osteoblasts differentiation
(49). Furthermore, downregulation of the expression of
autophagy markers, such as LC3-II and ATG7, has been
shown to result in the inhibition of osteoblast differentiation
(50, 51). The early stage of osteoblast differentiation requires the
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activation of AMPK, and the terminal stage is dependent on
downregulation of AMPK (52, 53), which is mediated by
stimulation of AKT and mTOR (54), and then activates
cell autophagy.

Additionally, autophagy is also directly involved in the
mineralization process of osteoblasts. Conditional knockdown
of ATG7 in osteoblasts led to a reduction of mineralization
capacity in vivo (55), and knockout of the autophagy-related
genes Fip200 or Atg5 in Osterix-Cre transgenic mice also
resulted in impaired mineralization and reduced bone mass in
mice (56). These results indicated that autophagy is required in
the mineralization process of osteoblasts, which can be attributed
to autophagic vesicles acting as carriers for the secretion of
apatite crystals to the extracellular matrix (55).

3.2 Autophagy in Osteoclasts
Osteoclasts, which differentiate from hematopoietic mononuclear
stem cells in the bone marrow, are critical at the beginning of bone
remodeling by bone resorption via following differentiation into
multinucleated osteoclasts which then migrate to the surface of the
bone (57, 58). HIF1-a, which is produced in response to hypoxic
stress, has been reported to upregulated BNIP3, which increases
the level of Beclin-1 and then activates autophagic flux
accompanied by the autophagy-related genes ATGs, thereby
leading to increased osteoclastogenesis by upregulation of CTSK,
NFATC1, and MMP9 (59). Another study showed that a
microgravity environment (rotary cell culture system) increased
autophagy in osteoclasts, which then stimulated osteoclast
differentiation and osteoclastogenesis (60). Moreover, the level of
autophagy initiation protein Beclin-1 has been reported to
increase during osteoclast differentiation. Ctsk-cell expression
conditional Beclin-1 deficient mice exhibited an increase in the
thickness of cortical bone via attenuated osteoclast function, while
overexpression of Beclin-1 in osteoclast precursors has been
reported to enhance autophagy-induced osteoclastogenesis
in vitro and increase bone resorption (61). Mechanistically, it
was concluded that TRAF6-mediated K63-linked ubiquitination
at Beclin1-K117 is needed for RANKL-induced osteoclast
differentiation (61, 62). These findings support the notion
that autophagy in osteoclasts is susceptible to environmental
factors such as hypoxic stress and microgravity, which results
in further regulation of the differentiation of osteoclasts
and osteoclastogenesis.

In addition to its role in osteoclast differentiation, autophagy
has also been demonstrated to be essential in osteoclast function.
Terminally differentiated osteoclasts are tightly attached to the
bone surface by pedicles. F-actin, talin, vinculin, and a-actinin
are the key anchor targets for osteoclast attachment, and
lysosomes then migrate to the bone surface and resorbing bone
(57). The autophagy-related proteins ATG4B, ATG5, ATG7, and
LC3 have all been shown to play crucial roles in promoting bone
resorption activity. For example, knockdown of ATG5 and
ATG7 in osteoclasts has been shown to significantly reduce the
depth and volume of bone traps and reduce the ability to deliver
lysosomes to the fold membrane boundary, although this does
not appear to affect osteoclast formation. The lysosomal
secretory function requires ATG5-ATG12 coupling to facilitate
June 2022 | Volume 13 | Article 898634
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LC3 binding to phosphatidylethanolamine. ATG5 deficiency
inhibits LC3II production as well as CTSK localization (63, 64).
4 REGULATION OF AUTOPHAGY IN
OXIDATIVE STRESS

Oxidative stress is involved in the development of osteoporosis
and aging, as evidenced by both ovariectomy and age-increased
oxidative stress and reduction of the antioxidant system in rat
femurs, which promotes the development of osteoporosis (65).
As mentioned above, oxidative stress disrupts the balance of
bone formation and resorption by inhibiting osteoblast function
and promoting osteoclast activity. In response to oxidative stress-
induced autophagy, ROS may act as an antioxidant during
dysregulation of bone remodeling to protect from bone loss
and osteoporosis. In the following, we describe the regulation of
autophagy in response to oxidative stress in osteoblasts,
osteocytes, and osteoclasts (Figure1).

4.1 Regulation of Autophagy in the
Response to Oxidative Stress
in Osteoblasts
A high glucose (HG) environment, glucocorticoids or estrogen
deficiency cause a pathological increase in ROS levels, thereby
impairing the osteoblast function (66–68). In response to ROS,
autophagy is activated and promotes osteoblast function as a
negative feedback loop. Alberto et al. found that HG increased
protein oxidation and the ROS levels, thereby activating
autophagy in MC3T3-E1 cells, which reduced damage from
Frontiers in Endocrinology | www.frontiersin.org 4
HG and protected the cells, whereas inhibition of autophagy
increased cell apoptosis (66). In addition, increased ROS levels
caused the LC3II/LC3I ratios to increase and p62/SQSTMI to
decrease, as observed in advanced glycation end products
(AGE)-treated osteoblasts. Furthermore, the autophagy agonist
rapamycin (RA) attenuated AGE-induced apoptosis, while the
autophagy inhibitor 3-methyladenine (3-MA) increased AGE-
induced apoptosis, indicating that autophagy plays a critical role
in protecting osteoblasts from AGE-induced apoptosis (69).
Likewise, other studies have also demonstrated that osteoblast
activity is regulated by glucocorticoids in a dose-dependent
manner. Low doses of dexamethasone promoted osteoblast
autophagy, protected from damage by ROS, and attenuated
apoptosis in osteoblasts. However, as the dose and the duration
of the dexamethasone treatment increased, the antioxidant
effects of autophagy were overwhelmed, which then lead to
apoptosis (67). These results reveal that the protective effect of
ROS-induced autophagy is limited and dependent on the dose of
ROS level and the duration of stimulation.

Osteoblasts experiencing stress from aging or ovariectomy in
mice have been reported to have increased levels of ROS and
swollen mitochondria, followed by a 95% decrease in LC3-II
levels. Further research has indicated that osteoblast conditional
autophagy deficiency in mice results in enhanced aging and
estrogen deficiency-related bone loss (68). Conversely, estradiol
administration has been shown to increase ULK1, Beclin1, and
LC3II protein levels in osteoblasts, decrease oxidative stress
levels, and significantly reduced the expression of apoptotic
biomarkers through the ER-ERK-mTOR pathway (70). Thus,
autophagy can be an important potential target for protection
against damage from oxidative stress or ROS, but how autophagy
FIGURE 1 | Signaling pathways involved in oxidative stress-induced autophagy in bone remodeling. In osteoblasts, ROS induced an excessive increase in Beclin-1
levels by activation of the JNK/c-jun pathway, which triggered excessive autophagy, exacerbated osteoblasts apoptosis, and reduced bone formation. On the other
hand, oxidative stress activates protective autophagy through ROS/SIRT1/FOXO3, ROS/AMPK/FOXO3, ROS/AMPK/mTOR and ROS/PI3K/Akt/mTOR pathways to
remove excessive ROS within a certain range, promoting the survival of osteoblasts and increasing bone formation. Likewise in osteoblasts, oxidative stress-induced
protective autophagy is also present in osteocytes, which is achieved by ROS/MAPK/ERK/mTOR pathway. In osteoclasts, Oxidative stress-induced autophagy
promotes osteoclastogenesis and bone resorption through the ROS/ER and ROS/TFEB pathways.
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responds to ROS signaling needs to be further explored.
Following is a review of ROS/FOXO3, ROS/AMPK, ROS/Akt/
mTOR, and ROS/JNK/c-Jun pathways that are involved in the
autophagic response to oxidative stress in osteoblasts.

4.1.1 ROS/FOXO3
Forkhead box O3(FOXO3) protein is a member of the FOXO
family, which can be activated by catalase, SOD2, and
glutathione peroxide in antioxidant reactions (71). In response
to oxidative stress, MAPK8, MAPK14/p38a, and serine/
threonine-protein kinase 4 (STK4)/MST1 phosphorylate
FOXOs, causing their nuclear translocation as well as
transcriptional activation of target genes such as manganese
superoxide dismutase (MnSOD) and catalase (72, 73). During
BMSC differentiation into osteoblasts, and then osteoblasts
differentiation into osteocytes, the increasing level of ROS
activates FOXO3 serine 294 phosphorylation, and FOXO3-
induced autophagy then downregulates the increased ROS
levels as a negative feedback loop to ensure proper
differentiation (74). In addition, inhibition of MAPK11/12/14
kinase can reduce the nuclear translocation of FOXO3 by MSC
exposure to oxidative stress, while LC3B and GABARAPL1 are
significantly upregulated upon FOXO activation, suggesting that
MAPK11/12/14 participate in the activation of FOXO3 by ROS
and then activate autophagy. PARK2, a ubiquitin ligase that is
indispensable for inducing mitochondrial autophagy, was also
significantly increased when FOXO3 was induced by ROS, which
is an important process for the clearance of ROS, while the
process was impaired when FOXO3 was knocked down (74).

SIRT1 is another key factor involved in ROS-mediated
FOXO3 activation. Gu et al. found that ROS/SIRT1/FOXO3
may be involved in the survival of the damage from fluoride in
MC3T3-E1 osteoblasts. ROS-mediated activation of SIRT1 has
been shown to increase the level of FOXO3 deacetylation and to
promote the expression of its substrate Bnip3, which promotes
the upregulation of autophagy levels and reduces fluoride-
induced osteoblast apoptosis. Conversely, inhibition of SIRT1
expression has been shown to impair FOXO3-induced
autophagy (75).

4.1.2 ROS/AMPK
AMPK is a heterotrimeric complex comprising a catalytic
subunit (a-subunit) and two regulatory subunits (b- and g-
subunits) (76). In addition to its role in energy metabolism,
AMPK also acts as an oxidative stress sensor to regulate cell
survival under stressful conditions (77). ROS activates AMPK by
phosphorylating the AMPK alpha1 threonine 172 (78), and
activated AMPK directly phosphorylates the mTORC1 subunit
Raptor, which can then suppress the inhibitory effect of
mTORC1 on ULK1 to promote autophagy. Moreover, AMPK
also directly phosphorylates Ser 317 and Ser 777 of the UKL1
complex to activate autophagy (79). However, inhibition of
autophagy enhances ROS-induced cell apoptosis. H2O2 can
induce phosphorylation of ULK1 and upregulation of LC3B-II
via activation of AMPK, while treatment with the autophagy
inhibitors 3-MA and bafilomycin A1 increases H2O2-induced
cell death. Furthermore, AMPKa knockdown has been reported
Frontiers in Endocrinology | www.frontiersin.org 5
to further inhibit ULK1 phosphorylation and LC3B-II
upregulation, indicating that ROS/autophagy activation in
osteoblasts requires AMPK, which can act as a negative
feedback loop in the regulation of ROS levels when exposed to
oxidative stress (80). Consistent with these results, the AMPK
activators GSK621 or A-769662 enhance the protective
autophagic response as evidenced by phosphorylation of ULK1
on Ser-317, upregulation of ATG5 and Beclin-1, and
downregulation of p62 (81, 82) in case of H2O2-induced
oxidative stress in osteoblasts.

4.1.3 ROS/Akt/mTOR
The PI3K/Akt/mTOR pathway plays an essential role in stress
responses, autophagy, cell survival, and apoptosis (83). The
PI3K/Akt signaling axis activates mTOR by phosphorylation of
p70S6K and 4EBP1, thereby inhibiting autophagy (84, 85). ROS
initially regulate PI3K/Akt, and the PI3K/Akt pathway in turn
regulates ROS homeostasis to promote cell survival (86). It has
been reported that ROS levels are significantly elevated under
high glucose conditions, and p-Akt and p-mTOR protein
expression was significantly downregulated in MC3T3-E1 cells,
while the antioxidant NAC reversed their expression and
reduced osteoblasts apoptosis, suggesting that high levels of
ROS promoted the protective autophagy by inhibition of the
Akt/mTOR axis (87). Further study has revealed that the
inactivation of phosphatase and tensin homologs (PTEN)
when ROS activates PI3K may be the main reason for ROS
inhibition of the Akt/mTOR signaling pathway, as PTEN inhibits
the synthesis of PIP3 and thus activation of Akt signaling (88).
The Chinese traditional medicine monotropein has been
reported to protect against the damage from H2O2-induced
oxidative stress in osteoblasts. Monotropein was found to
decrease phosphorylation of Akt, mTOR, p70S6K, and 4EBP1,
as well as upregulate Beclin-1 expression and LC3-II/LC3-I
ratios, which then activated autophagy to increase osteoblastic
bone formation (89). Monotropein, hence, appears to have
potential for treatment or prevention of aging or estrogen-
deficiency osteoporosis.

4.1.4 ROS/JNK/c-Jun
Fluoride-mediated ROS triggers oxidative cell damage and
apoptosis through N-terminal kinase (JNK)/c-Jun signaling. In
contrast, the ROS-induced JNK/c-Jun pathway activates SIRT1
and triggers autophagy as an adaptive reaction to protect cells
from fluoride damage (90). However, it has also been shown that
the ROS-autophagy process mediated by the JNK pathway
enhanced osteoblast apoptosis. Glucocorticoids upregulated
JNK and c-Jun phosphorylation in osteoblasts, thereby
activating JNK/c-Jun signaling pathway-induced autophagy,
which then leads to increased apoptosis (91). ROS inhibitors
have been reported to downregulate the JNK/c-Jun signaling
pathway, but JNK inhibitors did not reduce ROS, indicating that
ROS is an upstream signal for JNK, while autophagy and
apoptosis occur in response to ROS/JNK/c-Jun signaling (91).
Further studies have shown that JNK causes the degradation of
the Beclin-1/Bcl-2 complex by phosphorylating Bcl2, and Beclin-
1 excessively stimulates the onset of autophagy (92, 93), and a
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low level of Beclin-1 promotes autophagy for cell survival, while a
high level of Beclin-1 induces autophagic cell death (94, 95).
These findings indicated that JNK may be a potential target
involved in the balance between oxidative stress-induced
autophagy and apoptosis.

In the above studies, autophagy induced by oxidative stress
may be a double-edged sword for osteoblasts. On the one hand,
in response to aberrant ROS signaling, the MAPK/FOXO3,
SIRT1/FOXO3, and AMPK pathways are activated, and the
Akt/mTOR pathway is inhibited, leading to activation of
autophagy and the scavenging of excessive ROS within a
certain range, thereby promoting osteoblast survival and
increasing bone formation. On the other hand, when ROS
levels are so high as to exceed the clearance effect of protective
autophagy, they can activate the JNK pathway and subsequently
induce excessive autophagy, thereby enhancing apoptosis of
osteoblasts and thus reducing bone formation. A large cascade
of interdependent responses between autophagy and JNK-
mediated apoptosis has been documented, but how the JNK
pathway regulates the balance of autophagy and apoptosis in
osteoblasts in response to ROS signaling remains to be
fully elucidated.

4.2 Regulation of Autophagy in the
Response to Oxidative Stress
in Osteocytes
As in osteoblasts, oxidative stress-induced autophagy in
osteocytes is also a protective response. Decreased estrogen
levels are a prominent cause of postmenopausal osteoporosis.
Yang et al. established an ovariectomized rat model that mimics
the decrease in estrogen levels in vivo. They found a significant
decrease in bone mineral density and bone mass in
ovariectomized rats, accompanied by a decrease in antioxidant
parameters such as the total antioxidant capacity, superoxide
dismutase activity, catalase activity, and an increase in the
expression level of osteocyte autophagy-related factors such as
ATG5, LC3, and Beclin-1. In contrast, estrogen treatment
prevented the decrease in bone mass and the abnormal
increase in oxidative stress levels, and it restored autophagy to
normal levels (96). These data suggest that estrogen deficiency
can lead to an increase in oxidative stress levels in vivo, which in
turn triggers its downstream protective autophagic response, but
ultimately leads to the development of osteoporosis due to its
limited protective effect. Further exploration of the negative
feedback protection mechanism of autophagy in osteocytes has
revealed that ROS/MAPK/ERK and ROS/mTOR/ULK1
signaling axes appear to play important roles (97, 98).

4.2.1 ROS/MAPK/ERK
ERK is one of the classical signal transduction components of the
MAPK family, and it can directly induce autophagy by
upregulation of the expression of autophagy-related proteins
such as LC3 and p62 (99). Rekha et al. found that treatment
with low doses of glucocorticoids increased oxidative stress levels
and basal autophagy levels in osteocytes without increasing
osteocyte apoptosis, whereas high doses of glucocorticoids
Frontiers in Endocrinology | www.frontiersin.org 6
enhanced osteocyte apoptosis. Further studies have revealed
that glucocorticoid treatment significantly increases MAPK
and ERK phosphorylation in osteocytes, while the ERK-specific
inhibitor U0126 completely abolished glucocorticoid-induced
elevated LC3 expression. These data suggest that low-dose
glucocorticoid-induced oxidative stress activates the MAPK/
ERK signaling pathway, which in turn enhances autophagy
levels and protects osteocytes from oxidative stress damage,
whereas the protective effect of autophagy induced by high
levels of glucocorticoids has a range and does not respond to
abnormally elevated ROS levels, thus manifesting as excessive
apoptosis of osteocytes (97).

4.2.2 ROS/mTOR/ULK1
ULK1 is a key initiator protein in the induction of autophagy,
and inhibition of mTOR activity can enhance autophagy levels
by binding to and phosphorylating the serine site of ULK1 (100).
Bisphenol A (BPA) is an environmental endocrine disruptor that
can perturb bone metabolism and bone homeostasis (101). BPA
has been reported to increase malondialdehyde and ROS levels in
osteocytes and decrease the expression of the antioxidant
enzymes nuclear factor E2-related factor 2 (Nrf2) and heme
oxygenase-1 (HO-1), leading to oxidative stress. BPA has also
been shown to significantly inhibited mTOR phosphorylation
and promoted ULK1 phosphorylation, there inducing activation
of autophagy. In contrast, treatment with the mTOR activator
MHY1485 (MHY) or the ULK1 inhibitor SBI-0206965 (SBI)
inhibited BPA-induced autophagy and enhanced apoptosis in
osteocytes, but did not reduce ROS levels. Furthermore, NAC
treatment attenuated the level of ROS-mediated autophagy. This
suggests that the high level of ROS caused by BPA acts upstream
of the mTOR/ULK1 signaling axis and that the autophagic
response that it triggers is protective against the cytotoxic
effects of BPA (98).

4.3 Regulation of Autophagy in the
Response to Oxidative Stress
in Osteoclasts
ROS acts as intracellular signaling mediators in osteoclast
differentiation. RANKL stimulation of osteoclast precursor cells
increases intracellular ROS production, and reduction of
RANKL-induced ROS by NAC treatment down-regulates of
MAPK, ERK, and other signaling pathways, thereby leading to
attenuated osteoclast precursor differentiation (102, 103). Unlike
autophagy acting as the cytoprotective role in osteoblasts, ROS-
induced autophagy even promotes osteoclast differentiation and
formation. High levels of ROS induced by glucocorticoids or
inflammatory conditions act as a catalyst for osteoclastogenesis.
Sul et al. found that lipopolysaccharide promoted autophagy and
led to osteoclastogenesis by stimulating ROS production, while
reduction of ROS by siNOX1 and siNOX2 dramatically
diminished LC3II levels accumulation as well as the expression
of osteoclast-specific genes expression (104). Interestingly,
osteoclastogenesis was upregulated by glucocorticoids at high
doses, but low doses had no effect (105). The accumulation of
intracellular ROS in the presence of high glucocorticoid levels
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was synchronized with the upregulation of autophagic activity,
which was prevented by the ROS scavenger NAC. While 3-MA
administration blocked the promotion of osteoclast formation by
glucocorticoids, it failed to reduce intracellular ROS
accumulation. We further explored how ROS mediates
autophagy to enhance osteoclastogenesis and we found that the
ROS/ER and ROS/TFEB pathways may be involved in
this process.

4.3.1 ROS/ER
Endoplasmic reticulum stress (ER) is induced by the
accumulation of misfolded proteins leading to an unfolded
protein response. ROS can cause aggregation and misfolding of
proteins (106). Activation of ER regulates autophagy, which in
turn regulates cell survival and death (107). MCP-1 is an
important protein in the differentiation of monocytes into
osteoclast precursors, and p47PHOX expression and its
membrane translocation expressions induced by MCP-1 have
been reported to promote ROS production, which induced ER
and subsequently promoted upregulation of the autophagy
markers Beclin-1 and LC3II as well as expression of osteoclast-
associated markers such as TRAP and Ctsk. 3-MA treatment or
knockdown of Beclin-1 significantly suppressed TRAP and Ctsk
expression without affecting ER or its upstream ROS levels (108).
These results indicate that osteoclast precursor cell
differentiation is mediated by ROS production, which leads to
ER stress, thereby inducing autophagy and ultimately
promoting osteoclastogenesis.

4.3.2 ROS/TFEB
TFEB is a key transcription factor that controls the autophagy-
lysosome system. Stress conditions such as lysosomal
dysfunction or starvation cause nuclear translocation of TFEB
and promote transcription of its target genes (109). ROS can
directly oxidize TFEB, reduce its association with RRAG GTPase
on lysosomes, and rapidly induce nuclear localization (110). Sul
et al. found that high levels of ROS induced by 7-ketocholesterol
(7-KC) significantly increased the nuclear translocation of TFEB
and upregulated the lipidated form of LC3II in osteoclasts as well
as the number and the activity of osteoclasts. In contrast, TFEB
knockdown significantly downregulated autophagy levels and
Frontiers in Endocrinology | www.frontiersin.org 7
osteoclastogenesis. This suggests that 7-KC-mediated ROS
induced oxidation of TFEB and promoted its nuclear
translocation to enhance autophagy, leading to increased
osteoclast numbers and activity (111).
5 CONCLUSION

We have provided an overview of the function of oxidative
stress-mediated autophagy in bone remodeling. Oxidative
stress-induced ROS impair bone formation by osteoblasts and
osteocytes and promote bone resorption by osteoclasts, thereby
disrupting the homeostasis of bone and enhancing the
progression of osteoporosis. In addition, ROS also activates
autophagy and then regulates osteoblasts and osteocytes in a
negative feedback loop. However, ROS-mediated autophagy
enhances osteoclast differentiation, which can overwhelm the
protective effect in osteoblasts and osteocytes, as bone tissue
exposed to oxidative stress leads to the development of
osteoporosis. Therefore, further studies of the regulatory
mechanisms of autophagy in redox signaling during
pathological bone remodeling are needed. Furthermore, it may
be possible to exploit the potential targets of autophagy for
protective or therapeutic strategies against osteoporosis.
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