
Frontiers in Endocrinology | www.frontiersi

Edited by:
Ralf Jockers,

Université de Paris,
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Receptor Guanylyl Cyclase C (GC-C) was initially characterized as an important regulator
of intestinal fluid and ion homeostasis. Recent findings demonstrate that GC-C is also
causally linked to intestinal inflammation, dysbiosis, and tumorigenesis. These advances
have been fueled in part by identifying mutations or changes in gene expression in GC-C
or its ligands, that disrupt the delicate balance of intracellular cGMP levels and are
associated with a wide range of clinical phenotypes. In this review, we highlight aspects of
the current knowledge of the GC-C signaling pathway in homeostasis and disease,
emphasizing recent advances in the field. The review summarizes extra gastrointestinal
functions for GC-C signaling, such as appetite control, energy expenditure, visceral
nociception, and behavioral processes. Recent research has expanded the
homeostatic role of GC-C and implicated it in regulating the ion-microbiome-immune
axis, which acts as a mechanistic driver in inflammatory bowel disease. The development
of transgenic and knockout mouse models allowed for in-depth studies of GC-C and its
relationship to whole-animal physiology. A deeper understanding of the various aspects of
GC-C biology and their relationships with pathologies such as inflammatory bowel
disease, colorectal cancer, and obesity can be leveraged to devise novel therapeutics.

Keywords: cGMP (cyclic GMP), guanylyl cyclase C, guanylyl cyclase C agonists, intestine, colorectal cancer type
INTRODUCTION

Beginning in the 1970s, over a decade of research aimed at identifying the receptor for Escherichia
coli heat-stable enterotoxin (ST) in intestinal epithelial cells led to the cloning and characterization
of the receptor guanylyl cyclase C (GC-C) (1–5). Shortly after that, elegant studies provided a
detailed characterization of multiple aspects of GC-C biology, including descriptions of its
endogenous ligands, downstream signaling, actions in the gastrointestinal system, and potential
extra-intestinal effects (6, 7). Although the role of GC-C in the gut remains a substantial focus of
basic and translational research, there has been interest in the extra-intestinal functions of the GC-
C/cGMP axis (8, 9). These studies, along with the discovery of disease-causing mutations, helped
elucidate how GC-C activation and deficiency contribute to human disease (6, 10–12). In the last
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five years, new and unexplored interactions between GC-C,
mucosal homeostasis, the gut microbiome, and host immunity
have emerged, along with a better mechanistic understanding of
its role in colorectal cancer (13–15).

The identification of mutations or changes in gene expression
that perturb the delicate balance of intracellular cGMP levels and
fluid and ion homeostasis has opened up new avenues of
investigation into the role of GC-C in human health and
disease, potentially leading to the development of future
therapeutics (6, 7). Except for diarrhea, fluid and ion transport
as a mechanistic driver and upstream regulator of intestinal
pathologies per se has not been the main subject of investigation.
Mutations in GC-C that cause impaired intestinal sodium
transport have recently brought this theme to the forefront as
a key player in altering the composition of the gut microbiome,
which in turn orchestrates mucosal immune responses and the
development of pathologies such as inflammatory bowel disease
(16). An entirely new appreciation has emerged for the intestinal
ion-microbiome-immune axis in human health and disease,
previously given short shrift due to a lack of causal genetic
evidence (16).

Although GC-C is highly expressed in the intestine, studies
have shown that it is also expressed in extraintestinal tissues,
albeit at a much lower level (17–19). It is important to note that
the extraintestinal tissues are not generally exposed to the
bacterial ST toxin, but the endogenous hormones guanylin and
uroguanylin may stimulate the GC-C receptor or function in a
GC-C independent manner (9). In this review, we discuss the
canonical roles and stimuli of GC-C, extraintestinal effects, and
how changes in GC-C-mediated signaling underpin colorectal
cancer (CRC) and inflammatory bowel disease (IBD) (Figure 1).
We describe the development of knockout and transgenic mouse
models to study GC-C mediated signaling that integrate
physiology, metabolism, and the gut microbiome. We also
present our perspectives on how the loss and gain of GC-C
mediated signaling may be linked to CRC and IBD and how
these seemingly disparate conditions may help broaden our
understanding of the cellular roles of GC-C/cGMP signaling in
health and disease.
CANONICAL ROLES OF GC-C IN THE
INTESTINE

GC-C/cGMP Signaling Pathway
The canonical GC-C/cGMP pathway is well documented as a
critical signaling pathway in intestinal fluid and ion homeostasis.
GC-C was initially identified as the receptor for a heat-stable
enterotoxin (ST) produced by pathogenic enterotoxigenic
Escherichia coli (ETEC) (3). This transmembrane receptor is
encoded by GUCY2C. Its predominant expression on the
intestinal brush border epithelium (20) strategically positions it
to critically regulate fluid ion homeostasis in the gut (13). GC-C
is a multidomain protein that includes an extracellular domain
(ECD), transmembrane domain, juxta-membrane domain,
kinase homology domain (KHD), a linker region, guanylyl
Frontiers in Endocrinology | www.frontiersin.org 2
cyclase domain (GCD), and C-terminal domain (Figure 2).
The crystal structure of the GC-C has not yet been solved, but
based on our experimental mutagenesis data, which has recently
been corroborated by structural studies of the related soluble
guanylate cyclase (sGC) protein, we proposed a model that the
structural re-arrangement of ECD and KHD, as well as the
conformational switch of the linker region, re-arrange the two
cyclase domains into an active conformation, enabling catalysis
and cGMP synthesis (21–24). The functional and clinical
relevance of each domain has recently been reviewed (6).

In 1978, Hughes et al. and Field et al. independently reported
that ST increases cGMP by activating GC-C in intestinal
epithelial cells, resulting in fluid-ion expulsion from cells and
watery diarrhea (25, 26). The supposition that ST produced by
ETEC acts as a molecular mimic of endogenous peptides led to
the discovery of guanylin and uroguanylin and insight into their
mechanisms of action. Guanylin, purified from the rat jejunum,
has a high degree of homology with ST, and was shown to
increase intracellular cGMP in T84 human colon cancer cells
(27). Shortly after, uroguanylin was isolated from opossum urine
and intestinal mucosa and named after its natural source and
similarity to its predecessor (28). Uroguanylin was also isolated
and characterized from human urine (29). These ligands, like
many hormones, are secreted by intestinal epithelial cells in their
precursor forms (30). Their biologically active forms are C-
terminal fragments derived from longer prohormones. The
enzymes and mechanisms responsible for the conversion of
precursor hormones to active hormones are unknown (31).
Furthermore, prouroguanylin and proguanylin, which are
constitutively secreted into the gut lumen primarily by mature
enterocytes, are released into the bloodstream and can be
detected in plasma (31, 32). While GC-C was found to be
expressed in intestinal epithelial cells relatively uniformly along
the rostrocaudal axis, its ligands were found to have differential
expression, with uroguanylin primarily expressed in the small
intestine and guanylin primarily expressed in the distal small
intestine and colon (31, 33–35). The cellular sources of
endogenous GC-C ligands are not well defined, but studies
have shown that they are expressed in a variety of cell types,
including Paneth cells, goblet cells, entero/colonocytes,
enteroendocrine cells, and tuft cells (31, 33–35). Although
synthesized uroguanylin was 10-fold more potent than
guanylin, neither peptide achieves the potency of ST in
activating GC-C. Purified forms of these ligands elicited GC-C
mediated intracellular cGMP production (36). Guanylin peptides
produced in the gastrointestinal (GI) tract presumably enter the
circulatory system, reaching various extraintestinal tissues where
the precursor hormones are processed into active forms, bind to
GC-C, and modulate the function of the target organ. In
addition, guanylin peptides may be produced locally in target
organs, have auto/paracrine functions, and contribute to the
circulating pool (37).

Multiple lines of evidence suggest that guanylin peptides are
luminally secreted in the intestine (38, 39). More recent studies
using murine jejunum and colon preparations mounted in
Ussing chambers have provided experimental evidence for a
June 2022 | Volume 13 | Article 911459
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secretory pathway for guanylin peptides in the basolateral
direction from enterocytes. Notably, while proguanylin peptide
has been shown to be released in both the apical and basolateral
directions, apical secretion is greater (31). The physiological roles
of circulating prohormones, as well as the stimulus and
regulation of secretion of these precursors from gut epithelial
cells into the intestinal lumen and blood, remain unexplored.

In intestinal epithelial cells, GC-C is a major source of cGMP.
Physiologically, ligand binding to GC-C catalyzes cGMP formation
from GTP, resulting in the activation of cGMP-dependent protein
kinase II (PKGII) (6, 20, 40, 41). PKGII-mediated phosphorylation
and consequent inhibition of sodium hydrogen exchanger isoform 3
(NHE3) reduce intestinal sodium absorption (42, 43). Furthermore,
elevated intracellular cGMP levels may inhibit cAMP-specific
phosphodiesterase (PDE3), leading to an increase in cAMP levels
and cross-activation of cAMP-dependent protein kinase (PKA)
(44). Both PKGII and PKA can activate the cystic fibrosis
transmembrane conductance regulator (CFTR) anion channel,
increasing intestinal chloride and water secretion (44, 45)
(Figure 3). PKGII also phosphorylates vasodilator-stimulated
Frontiers in Endocrinology | www.frontiersin.org 3
phosphoprotein (VASP), which can be used as a readout of GC-
C activation (46). As outlined above, the known biological roles of
GC-C are primarily dependent on its ability to produce cGMP. Any
cGMP-independent functions of GC-C remain to be determined.
The latest understanding in this regard has come from genetic and
physiological studies using Gyc76C, a receptor guanylyl ortholog in
Drosophila melanogaster (47). Gyc76C, the closest ortholog of
human GC-C (http://www.flyrnai.org/diopt), regulated humoral
responses of fly larvae to bacterial infections in a cGMP-
dependent manner, while cellular responses were cGMP-
independent, and did not require the GCD but required a
functional KHD (47).

Mouse Models to Study GC-C/cGMP Axis
Mutations in the GUCY2C gene may result in meconium ileus
due to loss of function (12) or familial diarrhea due to gain of
function (10, 11) (Figure 1). The development of animal models
to study GC-C/cGMP signaling and mimic human
pathophysiology associated with these mutations is critical for
biomedical research and diarrheal disease studies, as well as
FIGURE 1 | Canonical and emerging roles of GC-C in intestinal homeostasis. The conventional roles of GC-C in the regulation of intestinal fluid ion homeostasis and
associated human pathologies are well established. Homozygous and compound heterozygous loss of function mutations in GC-C cause meconium ileus due to
decreased fluid and ion secretion. Gain of function mutations in GC-C cause congenital secretory diarrhea due to increased fluid and ion secretion. The emerging
roles of the GC-C/cGMP signaling axis in the pathogenesis of several human diseases, most notably colorectal cancer and inflammatory bowel disease, are
becoming evident. Loss of GC-C/cGMP signaling because of prominent downregulation of guanylin and uroguanylin is associated with tumorigenesis. Gain of GC-C/
cGMP signaling upregulates interferon-stimulated genes and STAT1 activation in intestinal tissue, leading to chronic inflammation and inflammatory bowel disease.
Impaired gut barrier integrity and dysbiosis of the microbiome associated with loss (or gain) of GC-C mediated signaling may be linked to inflammatory bowel disease
(or colorectal cancer) are shown in dotted lines. The figure was prepared using Biorender.
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being a useful tool for discovering therapeutic drug targets in
preclinical studies. The gene encoding GC-C (Gucy2c) is mapped
to chromosome 6 in mice and chromosome 12p12 in humans.
Two independent groups developed GC-C knockout mice that
were found to be viable and showed no apparent changes in
intestinal fluidity (48, 49). Studies in these GC-C knockout mice
have revealed that GC-C/cGMP signaling is required for the
mediation of ST-induced diarrhea, protection against enteric
pathogens, and themaintenance of microbiota homeostasis (14, 48–
50). GC-C knockout mice also displayed extraintestinal phenotypes
such as adipose mass hypertrophy and steatohepatitis, exacerbating
the metabolic syndrome associated with diet-induced obesity, such
as cardiac hypertrophy and impaired glycemic control (51).

Mouse models with deletions of guanylin (52) and
uroguanylin (53) have been created. Guanylin null mice were
viable with no intestinal obstruction or malabsorption. These
mice had lower levels of cGMP in the colonic epithelia, which
correlated with a significant increase in the rate of colonic
epithelial proliferation and an accelerated turnover of cells
along the crypt-villus axis, while the amount of apoptosis
remained unchanged (52). On the other hand, uroguanylin
null mice had lower cGMP levels in the small intestine, but
fluid-ion homeostasis in the gut appeared to be maintained (53).
Interestingly, these mice had increased blood pressure and an
Frontiers in Endocrinology | www.frontiersin.org 4
impaired natriuretic response to dietary salt intake, indicating
that uroguanylin plays a role in maintaining overall salt
homeostasis in the body (53).

Recently, a transgenic mouse model was developed and
studied to decipher the cellular origins of guanylin using
fluorescent reporter (Venus) expression driven by the
proguanylin promoter (31). Proguanylin-expressing cells were
found throughout the small intestine and colon but were scarce
in the duodenum (31). Additionally, transgenic mice with the
EGFP reporter gene inserted immediately upstream of the coding
sequence of the gucy2c gene generated by the GENSAT Project
and made available by the Mutant Mouse Regional Resource
Center (https://www.mmrrc.org/catalog/sds.php?mmrrc_id=
30480) could be a useful resource for studies defining its
expression, localization, and function in intestinal, neuronal,
and other cell types.

We recently reported a novel mouse model with an activating
mutation in Gucy2c (p.Ser839Ile) equivalent to that seen in an
affected Norwegian family with familial diarrhea syndrome
(p.Ser840Ile) (13). As anticipated, these mice showed elevated
cGMP levels in the small intestine and diarrhea-like features,
including increased fecal sodium and water content (13).
Significantly, our findings in this mutant mouse model
demonstrating dysbiosis and increased susceptibility to dextran
FIGURE 2 | Schematic representation of the domain architecture of GC-C. GC-C is predicted to be a homodimeric multidomain protein that includes an extracellular
domain that binds peptide ligands, a transmembrane domain, a juxta-membrane domain, a kinase homology domain that binds ATP, a linker region, a guanylyl
cyclase domain that forms a head-to-tail dimer, that converts GTP to cGMP, and a C-terminal domain. The domain boundaries of human GC-C are shown in the
linear schematic on the right of the domain architecture, with a single letter amino acid code at each position. Numbers in brackets represent the number of amino
acids within the predicted domain boundaries. The figure was prepared using Biorender.
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sulfate sodium (DSS)-induced colitis delineated an essential
rheostatic role of GC-C signaling in intestinal homeostasis (13).
SINGLE-CELL DISSECTION OF
GC-C/CGMP AXIS IN THE INTESTINE

Single-cell analysis technologies have advanced our
understanding of human disease by enabling unbiased and
comprehensive analysis of cellular diversity within a tissue
(54). Multiple studies have used single-cell sequencing to
profile intestinal epithelial cells, identify novel subtypes,
characterize gene signatures, assess clonal evolution of tumor
cell lineages, and gain insights into somatic mutations and drug
response (54, 55). A study employing human colonic cell single-
cell RNA sequencing to uncover epithelial cell diversity in health
and IBD discovered a novel pH-sensing absorptive colonocyte
named BEST4/OTOP2 cells, which have distinct expression of
the calcium-sensitive chloride channel BEST4 and the proton-
selective channel OTOP2 (56). BEST4 expression is predicted to
mark colonic epithelia involved in salt, ion, and metal transport.
Frontiers in Endocrinology | www.frontiersin.org 5
Intriguingly, the cells in this cluster expressed mature colonocyte
markers, most notably the genes encoding uroguanylin
(GUCA2B) and guanylin (GUCA2A). Physiologically, the high
expression of guanylins in BEST4/OTOP2 cells at the top of the
crypts may aid in pH sensing and the maintenance of luminal
homeostasis via regulation of the GC-C/cGMP signaling
pathway. Indeed, functional studies have revealed that these
specialized cells conduct protons into the cytoplasm in
response to extracellular acidification, resulting in significant
acidification of intracellular pH. Further, BEST4/OTOP2 cells
have high levels of the anti-apoptotic protein BAG1, which may
allow them to survive substantial pH changes (56).

An emerging understanding is that the unique acidic
environment created within the BEST4/OTOP2 cell in
response to extracellular acidification may be required for
downstream functions. Notably, intracellular acidification is a
well-known trigger for activating NHE3, which transports
protons out of cells in exchange for Na+ ions, thereby
inhibiting excess proton accumulation in intestinal epithelial
cells (16, 57, 58). We can speculate that the mechanistic role of
guanylins and GC-C/cGMP signaling in BEST4/OTOP2 cells is
FIGURE 3 | The GC-C/cGMP signaling axis and fluid-ion homeostasis in the intestine. Binding of ligands (heat-stable enterotoxin/ST) produced by enterotoxigenic
E.coli and the endogenous hormones guanylin and uroguanylin) to GC-C catalyzes the formation of cGMP from GTP. Increased intracellular cGMP levels result in the
activation of cGMP-dependent protein kinase II (PKGII) and the inhibition of cAMP-specific phosphodiesterase (PDE3), which in turn leads to the cross-activation of
cAMP-dependent protein kinase (PKA). Reduced intestinal sodium absorption is caused by PKGII-mediated inhibitory phosphorylation of NHE3. PKGII and PKA
phosphorylated and activate the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, increasing intestinal chloride and water secretion.
Elevated intracellular cGMP increases duodenal bicarbonate secretion via CFTR and perhaps additional unknown mechanisms. Increased cGMP activates cyclic
nucleotide-gated ion channels (CNG), promoting Ca2+-influx, which recruits calcium-sensing G-protein coupled receptors (CaR) to the plasma membrane. PDE5, a
cGMP-dependent phosphodiesterase, and PDE10 hydrolyze cGMP to 5’ GMP to attenuate GC-C signaling. Pharmacological GC-C agonists (e.g., linaclotide) and
cGMP-specific phosphodiesterase PDE5 antagonists (e.g., sildenafil citrate) increase intracellular cGMP levels suggesting, that they may have a synergistic
antiproliferative effect and reduce the likelihood of resistance to both drugs in colorectal cancer. The figure was prepared using Biorender.
June 2022 | Volume 13 | Article 911459
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to inhibit NHE3 and prevent the leak of protons from the cytosol
imported in response to extracellular acidification, thereby
facilitating the build-up of protons that initiates downstream
signaling. We further note that intracolonic pH is relatively
acidic and ranges between 5 and 7 along the human colon,
depending on the type and abundance of gut microorganisms
and their fermentation products and bicarbonate secretion by
colonic epithelial cells (59, 60). Experimental observations show
that when the extracellular pH was 7, there was no significant
difference in intracellular pH between BEST4+ and BEST4- cells,
but at pH 5, there was substantial acidification (∼0.5 pH unit
lower) of the cytoplasm in BEST4+ cells compared to BEST4-
cells (56). BEST4/OTOP2 cells may sense pH changes caused by
microbiota composition, regulate host-microbiome interactions,
and control mucosal immunity. Further studies are needed to
substantiate these hypotheses.

Recently, single-cell analysis in human biopsy specimens also
identified a rare BEST4+ cell type in the duodenum (~1.3% of all
epithelial cells), which may play a role in maintaining normal
fluid ion homeostasis (61). Importantly, BEST4+ cells in the
duodenum, like those in the colon, express high levels of the
GUCA2B and GUCA2A genes (61). GC-C was found to be
ubiquitously expressed in the duodenal epithelium.
Furthermore, because BEST4+ cells have the highest level of
CFTR expression among all duodenal cells, they are referred to as
BEST4, CFTR high-expressor (BCHE) cells (61). While GUCA2B
and GUCA2A expression are specific to BCHE cells in the
duodenum, they are broadly expressed in many colonic
enterocytes. Additionally, CFTR expression was found in
BEST4+ cells in the duodenum but not in the colon, implying
that BEST4+ cells in the colon and BEST4+ cells in the
duodenum may serve different functions. Selective expression
of guanylin and uroguanylin in BEST4+ cells in the duodenum
would result in increased GC-C/cGMP signaling and
downstream constitutive activation of CFTR, which may
mediate the high-volume fluid secretion required to neutralize
the acidity of chyme from the stomach (61).

Several recent single-cell studies have provided novel insights
into the role of the GC-C/cGMP signaling axis in various human
pathologies. For example, a single-cell analysis to determine the
importance of aryl hydrocarbon receptor (Ahr)-dependent
signaling in shaping cellular differentiation potency and
suppressing colon tumorigenesis discovered that Ahr deletion
changes the landscape of colonic crypt cell-cell communication,
including the complete loss of the GC-C/cGMP pathway (62).
Another intriguing study found a distinct population of
enterocytes (enterocytes 1) in the colon- and ileum-derived
human organoids that specifically expresses GUCA2A but is
not susceptible to SARS-CoV-2 infection despite high levels of
angiotensin-converting enzyme 2 (ACE2), the cellular receptor
of SARS-CoV-2-mediating viral entry (63). Increased expression
of interferon-stimulated genes (ISGs) in these cells may underpin
their resistance to SARS-CoV-2 infection (63). It is possible that
GC-C/cGMP signaling modulates the cell-intrinsic innate
immune response to inhibit virus replication and spread, based
on findings (13).
Frontiers in Endocrinology | www.frontiersin.org 6
GC-C AND COLORECTAL CANCER:
ROLES IN TUMORIGENESIS AND
CLINICAL POTENTIAL
Multi-Dimensional GC-C-Mediated
Regulation of Cytostasis
Periodic tides of cell regeneration replace the older cells along the
crypt-villus axis via cytostatic regulation mediated in part by the
GC-C/cGMP pathway (64). Despite repeated assaults on the gut,
a normal and healthy epithelial layer is maintained (65). GC-C
regulates stem cells at the base of intestinal crypts, which migrate
and differentiate to form enterocytes and other cell types (46, 65).

Multiple proteins regulate cell cycle progression, one of which is
the cyclin-dependent kinase inhibitor, p21. We demonstrated that
GC-C/cGMP signaling increases Sp1-mediated p21 transcription in
colonic cancer cells, induces cellular senescence, and has
antitumorigenic properties (64) (Figure 4). Because GC-C is a
substrate for inhibitory phosphorylation by c-src tyrosine kinase
(66), this cytostasis mechanism is controlled by cross-talk between
GC-C and c-src. Under normal physiologic conditions, GC-C
regulates basal cGMP levels and the delicate balance between
proliferation and differentiation through its downstream effects
mediated by increased p21 expression (64).

In addition to p21-mediated cytostasis, several GC-C-
mediated antitumorigenic mechanisms have been described.
The most notable example is GC-C/cGMP signaling-mediated
attenuation of b-catenin-mediated TCF transcriptional activity
(67, 68) (Figure 4). PKGII-mediated signaling opposes pro-
proliferative and pro-migratory phenotypes mediated by b-
catenin/TCF (67, 68). In turn, b-catenin/TCF signaling
dampens the GC-C axis by silencing the transcription of its
ligands, guanylin and uroguanylin (15). GC-C/cGMP has also
been shown to inhibit protumorigenic Akt signaling via a PTEN-
mediated mechanism (69). Furthermore, because Akt can
increase b-catenin nuclear accumulation by directly
phosphorylating b-catenin or indirectly stabilizing b-catenin
through inhibition of GSK-3b, inhibition of Akt signaling may
also be involved in GC-C-mediated attenuation of b-catenin/
TCF transcriptional activity (70) (Figure 4).

Both apoptosis and autophagy are regulated by Akt signaling
(71). Akt promotes cell survival by inhibiting pro-apoptotic signals
from Forkhead box O (FOXO) transcription factors. FOXO
regulates cell survival by either directly targeting cyclin-dependent
kinase inhibitors such as p21 and p27, or indirectly, by influencing
cyclin D1 and p53 (72). Early stages of colon tumorigenesis are
characterized by GC-C signaling attenuation, which is associated
with the over-activation of Akt, a common integrator of mitogenic,
pro-oncogenic, and tumor suppressor signals, putting GC-C at the
crossroads of homeostasis and tumorigenesis (69). Ligand-mediated
activation of GC-C in colorectal cancer cells replenishes cGMP and
specifically downregulates Akt without affecting mitogenic-activated
protein (MAP) kinase pathways (69).

GC-C-mediated regulation of intracellular calcium levels and
cytostasis has been described (73). Increased intracellular cGMP
activates cyclic nucleotide-gated ion channels (CNG), promoting
Ca2+-influx, which recruits calcium-sensing G-protein coupled
June 2022 | Volume 13 | Article 911459
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receptors (CaR) to the plasma membrane (73) (Figure 3). Taken
together, the regulation of cytostasis by GC-C mediated signaling
via several pathways is important in understanding the role of
GC-C in carcinogenesis. Further research into the interplay of
such regulatory mechanisms as “cytostasis determinants” will
most likely shed light on the emerging role of GC-C/cGMP
signaling in colorectal cancer (Figure 1).

GC-C and Its Ligands in
Pre-Cancerous Lesions
Epidemiologic studies have found a link between countries prone
to enterotoxigenic E.coli infections and a low prevalence of
colorectal cancer. Although this is far from indicating
causation, such a link may imply that repeated exposure to ST
has some beneficial effects and an anti-proliferative role in the
early stages of cancer (74). Allelic imbalance is seen in early
colorectal cancers on chromosome 1p (75), where the genes
encoding guanylin and uroguanylin are located. As previously
discussed, guanylin expression varies along the duodenal-to-
colonic axis of the intestine, with maximum expression in the
distal small intestine and colon (76). In contrast, uroguanylin is
predominantly expressed in the small intestine (33, 77). Because
Frontiers in Endocrinology | www.frontiersin.org 7
uroguanylin and guanylin expression is negatively regulated by
Wnt signaling, they are mostly found on the surface epithelium
facing the lumen, which has tapering Wnt expression, as
opposed to GC-C, which is expressed along the crypt-to-
surface axis (15). Most colorectal tumors are caused by
adenomatous polyposis coli (APC) loss-of-function mutations
or b-catenin gain-of-function mutations, both of which result in
abnormal Wnt signaling activation (78). This is consistent with a
substantial reduction in guanylin and uroguanylin expression
during the early stages of tumorigenesis in colorectal cancer
compared to normal tissue (15) (Figure 1). The loss of GC-C
ligands early in the transformation process suggests that
oncogenic pathways disrupt the normal cellular homeostasis
maintained by GC-C. Can these ligands be used as colorectal
cancer diagnostic or prognostic markers? This is an important
question to consider.

Aberrant crypt foci (ACF) are pockets of hyperproliferation seen
in cancer biopsies and are classified as premalignant lesions (79).
Treatment with methyl-N-nitrosourea (MNU) increases ACF
formation in GC-C null mice compared to WT. Furthermore, ST
or cGMP analog treatment failed to reverse ACF in GC-C null mice
(64). Studies in the ApcMin/+ mouse, which carries an inactivated
FIGURE 4 | Signaling pathways of the GC-C/cGMP axis that regulate cellular proliferation. Ligand-mediated activation of GC-C increases intracellular cGMP. Cyclic
GMP production activates PKGII and p38 MAPK resulting in phosphorylation of the Sp1 transcription factor. Sp1 upregulates the expression of p21 and mediates
cytostasis. PKGII-mediated signaling opposes pro-survival and pro-proliferative phenotypes mediated by the b-catenin/TCF and Akt pathways. Increased GMP
activates cyclic nucleotide-gated ion channels (CNG), promoting Ca2+-influx that mediates cytostasis and recruiting calcium-sensing G-protein coupled receptors
(CaR) to the plasma membrane. TGs denotes target genes. The figure was prepared using Biorender.
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allele of the Apc gene, also demonstrated that activation of GC-C
protects against the development of multiple polyps (65, 80). Even
though guanylin and uroguanylin are gene products that are lost
early in colorectal carcinogenesis, GC-C expression is maintained
in the majority of colorectal cancers. This has sparked interest in
studies to see if uroguanylin-mimetics can be used as a
chemoprophylactic drug for people at high risk of developing
colorectal cancer (65, 80). Importantly, because guanylin and
uroguanylin expression is restricted to normal regions of the
intestine, an in vivo tracking technology for these peptides could
be used to differentiate cancer-affected parts of the intestine from the
rest of the intestine.

GC-C Ligand-Mediated Anti-Cancer
Therapies
Several GC-C agonists have completed clinical trials. Although
linaclotide, a 14-amino acid uroguanylin mimetic, has been used
to treat chronic constipation and irritable bowel syndrome, the
FDA-approved formulation of oral linaclotide developed for
small-bowel delivery was found to be insufficient for inducing
GC-C in the colorectum and preventing tumorigenesis in humans
(81). In preclinical studies, linaclotide inhibited tumorigenesis and
polyp formation in ApcMin/+ mice when compared to an untreated
control group (82). Another GC-C agonist, plecanatide, showed an
anti-proliferative effect in ApcMin/+ mice via GC-C/cGMP
signaling, due to suppression of the Wnt/b-catenin pathway as
well as other pro-inflammatory cytokines (83). Dolcanatide, a
uroguanylin mimetic with improved stability, has been developed
and unlike other GC-C agonists, is resistant to proteolysis in the
intestinal milieu. Daily administration of this drug has been shown
to improve the condition of DSS-induced colitis in mice by
activating GC-C/cGMP signaling (84). However, this is in
contrast to the recent study using transgenic gain-of-function
mutant mice which showed a greater susceptibility to DSS (13).

GC-C agonists as monotherapy may increase the risk of
tumor cells developing resistance to these drugs. This is
because chronic GC-C stimulation may induce cGMP-specific
phosphodiesterase PDE5 (85, 86), which lowers cGMP levels and
impairs Ca2+ influx through CNG channels (73) .
Phosphodiesterase inhibitors prevent cGMP degradation (87).
Sildenafil is a PDE5 inhibitor drug approved for erectile
dysfunction (ED) (88), but studies in mice have repurposed it
to target colorectal cancers (87, 89). Sildenafil treatment
effectively reduces polyp formation in APCMin/+ mice (82) and
prevents inflammation-induced tumors in AOM/DSS mice
model (90). Vardenafil, a similar drug, raises cGMP levels in
the colonic mucosa of wild-type mice and is thought to have
chemo-preventive properties (91). Since it causes a cGMP-
mediated increase in PKGII activity, it inhibits proliferation
and apoptosis without negatively affecting differentiation in the
colonic epithelium (92, 93). Additionally, PDE5 inhibitors could
prevent tumor formation by stabilizing cGMP levels and
improving epithelial barrier function (94). PDE5 antagonists,
like GC-C agonists, increased luminal apoptosis to maintain
cellular homeostasis and suppressed tumor proliferation (82).
PDE10, another cGMP-degrading phosphodiesterase, is also
overexpressed in colon cancer cells compared to normal
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colonocytes (67). Indeed, PDE10 could be a potential mechanism
conferring resistance to PDE5 inhibitors (82). Thus, combining two
drugs, GC-C agonists and PDE5 antagonists, which both increase
intracellular cyclic GMP levels via complementary mechanisms of
action, may result in a synergistic antiproliferative effect that reduces
the likelihood of resistance to both drugs (Figure 3).

Emerging GC-C-Directed Colorectal
Cancer Therapies
In recent years, chimeric antigen receptor T (CAR-T) cells,
which involve engineering patients’ immune cells to treat
cancer, have sparked considerable interest among scientists
and oncologists. Despite a few setbacks, CAR-T therapy has
demonstrated promising therapeutic efficacy in treating
hematological malignancies (95–97). The specific targeting of
the CD19 cell marker is critical to the success of this therapy in
hematological malignancies (98). In comparison, the
development of CAR-T cell therapy for solid tumors such as
colorectal cancer has stalled due to a lack of tumour-
specific antigens.

In this regard, GC-C has emerged as an attractive candidate
for CAR-T cell therapy in colorectal cancer for the following
reasons: first, the broad selectivity of GC-C expression in the
human intestine; second, expression on the cell surface; and
finally, the ability to maintain expression in colorectal cancers at
both primary and metastatic sites (99). Preclinical studies in mice
models demonstrated that GC-C-targeted CAR-T cells effectively
induce T-cell activation and effector function, recognize and kill
human colorectal cancer cells without toxicity or autoimmunity,
and provide protection against metastatic colorectal cancer (100,
101). CAR-T-based approaches targeting GC-C have entered
clinical trials (https://clinicaltrials.gov/ct2/show/NCT04652219).
Furthermore, while CAR-T cells targeting GC-C in colorectal
cancer may be promising due to the gut-specificity of GC-C
expression and its universal expression in primary tumors and
distant metastases, these approaches may also be promising in
targeting tumors arising from intestinal metaplasia, such as
esophageal, gastric, and pancreatic cancers with ectopic GC-C
expression (99, 102, 103).

Other emerging GC-C-directed modalities for the early
diagnosis and treatment of colorectal cancer include
photodynamic diagnosis (PDD) and photodynamic therapy
(PDT), which are light-based approaches that can be used for
the early diagnosis and treatment of colorectal cancer (104).
Recently, PDD and PDT approaches involving zinc
phthalocyanine as a photosensitizer bound to a polyethylene
glycol-gold nanoparticle that could be directly delivered to a
colorectal cancer site using a specific antibody against GC-C
were developed and tested in cell culture studies (105, 106).
REGULATORY ROLE OF GC-C
IN INTESTINAL INFLAMMATION
AND IBD PATHOLOGY

Inflammatory bowel disease (IBD) is becoming more common.
Historically, it was a condition of the wealthy, but it is now fast
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spreading to developing countries (107, 108) with an increasing
trend in the juvenile age group (109). Two subtypes of IBD are
Crohn’s disease (CD) and ulcerative colitis (UC). The former can
affect any part of the gastrointestinal tract, while the latter affects
the colon and rectum (110). Although our understanding of the
disease and its response to treatment has progressed (111), we
still have a long way to go in uncovering the mechanistic drivers
in the pathogenesis of IBD. Both the immune system and the
microbiota have co-evolved and shape gut homeostasis, which
has far-reaching effects on other organ systems (112). There is a
growing recognition that IBD is a complex disease with an
interplay of incompletely defined genetic and environmental
risk factors that disrupt the microbiome-immune axis (110).
Research into rare monogenic causes of IBD may shed light on
common sporadic adult-onset disease by identifying pathways
that act as upstream pathogenic factors of disease pathology.

In this context, it is important to note that IBD is associated
with GC-C gain of function mutations, implying that activation
of the GC-C/cGMP axis could be a key to underlying IBD
predisposition. One of the earliest insights linking GC-C and
IBD was provided by the study of patients with familial diarrhea
syndrome due to an activating mutation in GC-C (S840I) in one
large Norwegian kindred, more than 25% of whom were
diagnosed with Crohn’s disease (10). More recently, mutations
in GC-C have been identified as a common monogenic cause of
pediatric-onset IBD (113). The mutational spectrum of GC-C
and associated human phenotypes, including IBD has recently
been reviewed elsewhere (6, 16). Given the relatively small
number of activating mutations associated with GC-C reported
in the literature, definitive genotype-phenotype correlations are
not possible. However, two mutations in the GC-C linker region
with the highest cGMP levels had more severe complications,
including early-onset IBD (11).

Loss of function of NHE3, a well-known effector, negatively
regulated by GC-C, has also been linked to IBD-like pathologies
in humans and mice models (57, 114, 115), indicating that the
impairment of Na+ absorption shared by both activating GC-C
and inactivating NHE3 mutations could be a pathogenic driver
in IBD. In line with this hypothesis, impaired sodium absorption
is a long-recognized pathological feature in IBD and microscopic
colitis, a poorly understood type of IBD that is nearly as common
as CD and UC (16). Several studies have shown reduced NHE3
expression/activity in IBD patients and after exposure to
proinflammatory cytokines and Clostridium difficile toxin B;
however, it has been uncertain until recently whether the
downregulation of NHE3 plays a causal role rather than simply
reflecting the disease (116–118). The discovery of mutations in
GC-C and its downstream effector NHE3 in patients with IBD
has highlighted impaired intestinal sodium transport as a key
player in altering the composition of the gut microbiome, which
in turn orchestrates mucosal immune responses. This ion-
microbiome-immune axis will continue to provide critical
insight into the pathogenesis of IBD and new avenues for
prevention and treatment. Supporting evidence comes from in
vitro studies demonstrating the ability of high sodium levels and
high pH correlating with the intestine of patients with activating
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mutations in GC-C to promote the growth of a colitogenic
pathobiont Bacteroidetes thetaiotaomicron (119, 120).

A transgenic mice model was recently developed to study a
human mutation in GC-C (S840I) associated with familial
diarrhea syndrome with increased susceptibility to IBD (13).
Transgenic mice were more vulnerable to DSS-induced colitis
than wild-type mice, as evidenced by lower body weight and
higher fecal lipocalin levels, indicating a higher disease activity
index. Furthermore, transgenic mice with GC-C activation
demonstrated prominent gut microbial dysbiosis, emulating
the microbiome of IBD and familial diarrheal syndrome
patients with S840I mutation in GC-C (121). An increase in
opportunistic pathogen species (Anaeroplasma, Desulfovibrio,
Mucispirillum, and Paraprevotella) and a decrease in protective
bacteria (Colidextribacter, Dorea, Dubosiella, and Lactobacillus)
in transgenic mice were seen, making them vulnerable to
environmental factors that promote gastrointestinal
inflammation (13). The predicted functional composition of
the fecal microbiome revealed that those pathways linked to
host immunity and IBD pathogenesis, such as IL17 signaling and
Th17 cell differentiation, NOD-like receptor signaling, antigen
processing and presentation, were enriched in transgenic mice
(13). Interestingly, pathways governing the breakdown of
polycyclic aromatic hydrocarbons were downregulated,
possibly predisposing to cancer, while chemical carcinogenesis
pathways were also downregulated, possibly indicating a
protective role against tumorigenesis in transgenic mice with
GC-C activation (13).

It is worth noting that GC-C deletion in mice also resulted in
gut microbial dysbiosis, which contributed to increased
Salmonella spp. infection, highlighting a complex relationship
between GC-C signaling and the gut microbiome (14). Pathway
analysis and experimental validation of transcriptomic data from
colonic tissue from transgenic mice with GC-C activation
revealed that GC-C/cGMP activation activates STAT1 in ileal
and colonic tissue, resulting in increased expression of
interferon-stimulated genes and inflammation in the gut (13)
(Figure 1). In summary, the mice model of activating mutation
in GC-C has provided mechanistic understanding of IBD
associated with familial diarrhoea syndrome at multiple
biological levels ranging from transcriptome, molecular to
cellular, and microbiome. Therefore, any disruption in fluid
and ion transport may disrupt microbial homeostasis, activate
proinflammatory signaling, and promote host-damaging
mucosal inflammatory responses.
EXTRAINTESTINAL ROLES
OF GC-C/CGMP SIGNALING

GC-C at the Crossroads of Gut-Brain Axis,
Behavioral Functions, and Visceral
Nociception
What controls the balance between energy intake and energy
expenditure has been enigmatic for decades. The gut-brain axis
June 2022 | Volume 13 | Article 911459

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Prasad et al. Receptor Guanylyl Cyclase C
has emerged as a critical player in this process (122). Numerous
hormones and factors have been implicated in the coordinated
control of energy homeostasis, both centrally and peripherally
(122). In this context, the GC-C/cGMP system has emerged as
the one with the most important functions. While guanylin
hormones, which are released after a meal, centrally mediate
satiety and energy expenditure, they may also act locally on
adipocytes and regulate their function (51, 123, 124).
Importantly, recent research has revealed additional functions
for the GC-C signaling in the nervous system that go beyond
feeding/satiety circuits, such as their roles in behavioral functions
and visceral nociception, indicating a more extensive role in
controlling neurophysiology (125, 126).

The hypothalamus is the control center for energy
homeostasis, and nuclei within the hypothalamus crosstalk,
integrate obesogenic and anti-obesity signals, and regulate
appetite and energy expenditure (127). The anorexigenic effects
of GC-C are reported to be mediated by its expression in the
hypothalamic arcuate nucleus (ARC), which contains neuronal
populations that communicate with other hypothalamic areas
involved in appetite control and play an important role in
regulation of energy homeostasis (124, 127). Physiologically, an
increase in uroguanylin peptide levels after a meal leads to satiety
and energy balance to maintain a homeostatic state (51). Indeed,
prouroguanylin/uroguanylin levels in plasma and intestine were
found to be lower in obese individuals and, more importantly, do
not rise in circulation in response to a meal, which is consistent
with obese mice, which had decreased leptin-dependent
uroguanylin secretion after a meal (123, 128–130). In line with
this idea, intravenous or intraventricular administration of GC-C
ligands to mimic an energy-efficient state induced satiety in wild-
type mice but not in GC-C null mice and resulted in significant
weight loss in diet-induced obese mice, further confirming a
crucial anorexigenic role of GC-C signaling (51, 131, 132).
Notably, activation of GC-C signaling in hypothalamic
neurons increased expression of the anorexigenic neuropeptide
proopiomelanocortin, which may activate catabolic pathways,
resulting in decreased food intake and increased energy
expenditure (51, 127). Furthermore, central uroguanylin
administration increased sympathetically innervated brown
adipose tissue (BAT) thermogenesis, indicating that central
GC-C signaling not only regulates feeding but also energy
utilization and fat accretion by modulating sympathetic output,
BAT thermogenesis, and browning of white adipose tissue (131).
It should be noted that contradictory data has also been
published, indicating that neither central nor peripheral
administration of GC-C ligands affects food intake or glucose
homeostasis (133, 134).

There are two discrete neuronal circuits expressing GC-C
reported in the literature, one originating in the tyrosine
hydroxylase negative neurons of the ventral pre-mammillary
nucleus (PMV) in the hypothalamus and the second in the
tyrosine hydroxylase positive neurons of the ventral tegmental
area (VTA) and substantia nigra (SN) in the midbrain, both of
which independently project to other sites throughout the brain
(18). In neurons, GC-C may play a role in ion fluxes across the
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plasma membrane, coordinating neuronal activity and
interactions between neurons (135). Interestingly, recent
research has identified two distinct uroguanylin signaling
mechanisms in the brain: a GC-C dependent pathway that
hyperpolarized neurons (Purkinje cells of the cerebellum) and
a GC-C independent pathway that increased calcium levels in
astrocytes (136). There are still unanswered questions about the
mechanism(s) of action of GC-C in neuronal circuits, how the
GC-C system integrates orexigenic and anorexigenic signals to
control energy expenditure and energy balance, and how central
GC-C signaling modulates peripheral tissue functionality and
obesity pathophysiology. Furthermore, research into the role of
the peripheral GC-C system in regulating adipocyte function has
gained momentum, and aspects of these new roles will be
discussed later in this review.

The expression of GC-C in dopamine neurons in the VTA
and SN indicates that GC-C plays a diverse role in controlling
neurophysiological functions including, but not limited to,
satiety and energy homeostasis (18). In line with this notion,
electrophysiological studies showed that GC-C activation
increased excitatory potentials of midbrain neurons mediated
by glutamate and acetylcholine receptors in a cGMP/PKG
dependent fashion (125). Importantly, GC-C knockout mice
exhibited an attention deficit hyperactivity disorder (ADHD)-
like phenotype (125). Consistent with these findings, a human
study found a link between single nucleotide polymorphisms in
GUCY2C and ADHD and its core symptoms (137). However,
contradictory data were recently published, indicating that GC-C
knockout mice did not exhibit ADHD-like phenotypes but
instead displayed cognitive and startle phenotypes (138). This
could indicate that other molecules or pathways compensate for
the loss of GC-C in midbrain dopamine neurons. More research
utilizing neuron-specific deletions is required to shed light on the
functional contributions of GC-C signaling in neuropsychiatric
disorders associated with midbrain dopamine system
malfunctions, such as ADHD, addiction, Parkinson’s disease,
and schizophrenia.

Irritable bowel syndrome (IBS) is a functional gastrointestinal
pain disorder characterized by an abnormal brain-gut axis, with
psychological stress being a risk factor (139). Uroguanylin
mimetics have been US Food and Drug Administration (FDA)
approved for treatment of constipation associated with IBS (140).
Furthermore, these drugs have been demonstrated to have potent
antinociceptive effects in preclinical models of visceral
hypersensitivity, and thus have been shown to relieve
abdominal pain in IBS patients (126, 141). However, unlike the
mechanisms ascribed for GC-C in the hypothalamus and
midbrain, little is known about pathways regulating the role of
GC-C in visceral nociception. The GC-C-mediated regulation of
visceral hypersensitivity has been studied using genetic models as
well as pharmacological approaches. In preclinical models, GC-C
agonism was shown to reduce post-inflammatory visceral
hypersensitivity as well as stress-induced visceral hypersensitivity
(126, 142). Mechanistically, ligand-mediated activation of GC-C
signaling in intestinal epithelial cells was found to release cGMP into
the submucosa, where it inhibited nociceptive afferent signaling, or
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bottom-up sensitization, and mediated analgesic effect (126, 141).
Further understanding the physiological role of the GC-C signaling
in visceral nociception not only could provide insights into the
aetiology of IBS but is also necessary for the design of novel and
rational approaches for abdominal pain relief.

The Potential Role of GC-C in Liver
Regeneration and Its Clinical Implications
The liver is a major metabolic organ that performs a multitude of
functions and has an incredible regenerative capacity (143). One
of the earliest insights into the role of GC-C in the liver emerged
from autoradiography studies by Krause and colleagues, who
demonstrated the presence of a ST receptor in the adult opossum
liver and documented that ST elicited a 7-fold increase in cGMP
in the liver compared to a 30-fold increase in the duodenal glands
(144). Subsequently, rodent studies revealed that GC-C
expression in livers is temporally regulated, peaking during the
perinatal period and remaining undetectable in adult livers (145,
146). Intriguingly, GC-C expression in adult livers was noticed in
injury/regeneration models such as partial hepatectomy,
intraperitoneal carbon tetrachloride (CCl4) injection, or
subcutaneous turpentine oil injection (147). After partial
hepatectomy, there was a significant and phasic increase in
GC-C expression that peaked at 12h, reaching ileum levels,
which declined at later time points.

In comparison, although exposure to CCl4 injection or
turpentine oil injection showed similar upregulation of GC-C, it
was much lower than in the case of partial hepatectomy (147).
Independent studies validated these findings, demonstrating that
GC-C protein levels were markedly elevated after partial
hepatectomy, specifically in non-parenchymal cells and, to a
lesser extent, in hepatocytes, lending credence to the potential
role of GC-C in liver regeneration (148). During liver regeneration
after CCl4 exposure, the expression of endogenous ligands
(guanylin and uroguanylin) increases in coordination with GC-C
expression (149).

Notably, these observations are consistent with a long-recognized
view that increased guanylyl cyclase activity might play a role in liver
development and regeneration (150, 151). The increase in GC-C
expression, ST binding, and ST-stimulated cGMP accumulation in
primary cultures of rat hepatocytes and a rat hepatoma cell line (H-
35) after treatment with dexamethasone, alone or in combination
with interleukin-6 (IL-6), all support the role of GC-C in the
regulation of acute hepatic phase response (152). Although these
results have given us an insight into a major extraintestinal role of
GC-C, many questions remain. Specifically, what induces GC-C
expression during liver regeneration and what are the consequences
of increased cGMP remain unresolved. We note that HNF4A, the
transcription factor that regulates GC-C expression, is well
established to play a role in liver regeneration by regulating the
acquisition of the fully differentiated phenotype (153, 154). Given
the role of GC-C in regulating cellular differentiation (155), we
believe increased intracellular concentrations of cGMP in replicating
cells during regeneration or perinatal growth would be required to
acquire the liver phenotype. Other regulatory functions for cGMP,
such as cell-cell crosstalk, are also possible, based on observations of
carrier-mediated cGMP release in hepatocytes (156).
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The development of steatohepatitis in mice with a targeted
disruption of GC-C lends some support to the role of GC-C in
the hepatobiliary system (51). Perfusion experiments revealed
that cell-permeable cGMP analogs stimulate fluid and ion
secretion and increase bile acid–independent bile flow (157). In
line with these findings, CFTR has been found in the apical
domain of biliary epithelial cells, and its activation is cGMP
dependent. A Cl- secretory defect has been linked to liver disease
in cystic fibrosis patients (158–160). In addition to CFTR,
independent studies have reported the expression of GC-C and
guanylin in the epithelial cells of the bile ducts of the liver and
gallbladder (161, 162). The available evidence suggests that GC-
C mediated CFTR regulation may modulate the ductular
reaction and expansion of biliary epithelial cells in response to
liver injuries, which has been linked to both repair and disease
progression leading to inflammation and fibrosis (163). Recent
studies have shown that regulation of the osmotic gradient,
transcellular water transfer, and changes in the lumen volume
play key roles in complex crypt-villus patterning and
morphogenesis in the intestine (164). As previously outlined,
GC-C activates CFTR and regulates ion secretion in the intestine;
it is possible that it influences fluid and electrolyte flux in the liver
and facilitates the coordination of epithelial morphogenesis
during liver organogenesis. This role is consistent with the
predominant expression of GC-C in the canalicular domain of
the regenerating liver (147).

Together, these findings may point to a role for GC-C in the
regeneration of the liver in response to injury, including the
replenishment of hepatocytes, the reconstitution of damaged
biliary epithelia, and the restoration of normal liver function.
Studies in GC-C-null outbred mice documenting accelerated
mortality by intraperitoneal injection of CCl4 provided
corroborative evidence for the role of GC-C in effective
recovery from acute toxic liver injury (149). Markers of liver
injury, such as hepatocyte death, apoptosis, and areas of
centrilobular necrosis, were exacerbated in CCl4 treated GC-C-
null mice (149). Along the same lines, GC-C null mice and
uroguanylin-null mice had increased apoptosis and slower
recovery from non-lethal radiation injury to the intestine
(165). However, it is unknown whether the protective
mechanisms of GC-C signaling in the intestine and liver are
similar, and more research is needed. Significantly, in the
radiation injury mice model, cGMP supplementation reduced
apoptosis and promoted intestine regeneration in GC-C null
mice and uroguanylin-null mice (165). Translating these findings
into potential therapeutic options, it would be worthwhile to
investigate GC-C agonists or cell-permeable cGMP analogs as
agents that can stimulate and accelerate regeneration in donor
and transplanted livers and following hepatic resection.
The Enigmatic Role of GC-C in the
Pancreas and Its Relevance for
Inflammation and Cancer
Transepithelial ion transport within the ductal system is critical
to pancreatic function. Accumulating evidence now points to
CFTR as a critical regulator of pancreatic transepithelial ion
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transport, which is consistent with its high expression in the
pancreas and the fact that cystic fibrosis patients have prominent
pancreatic pathology (166–168). Mechanistically, CFTR on the
apical membrane is required for the pancreatic ductal epithelium
to secrete a bicarbonate-rich fluid containing up to 140 mM
HCO−

3 (167). Given the evidence that GC-C/cGMP signaling
regulates CFTR function in the intestine (6), it appears intuitive
that GC-C and its ligands exist in the pancreas as potential local
regulators of fluid and electrolyte secretion via a paracrine/
luminocrine signaling pathway.

Indeed, cell-specific localization studies in the human and rat
pancreas broadly support this possibility, with GC-C,
uroguanylin, and guanylin found in the exocrine parenchyma
confined to centroacinar cells and epithelial cells of the
intercalated, intralobular, and interlobular ducts, but not in
acinar cells or islet cells (169, 170). These results are consistent
with independent studies demonstrating GC-C activity in the
exocrine pancreas (171). Localization of GC-C in the pancreas
parallels the expression of the transcription factor CDX2, which
is known to regulate GC-C expression in the intestine (172, 173).
Furthermore, guanylin is abundant in pancreatic juice, raising
the intriguing possibility that guanylin released luminally into
the pancreatic ducts may exert its function in the pancreas in a
luminocrine fashion (174). Functional studies in human
pancreatic duct cell lines expressing the CFTR wild-type or
mutant (DF508) provided evidence that guanylin, via
functional coupling proteins, acts as a specific regulator of
pancreatic CFTR channel function. Guanylin increased Cl-

conductance in cells expressing wild-type CFTR to a similar
extent as forskolin and ST but did not activate Cl- conductance in
cells expressing mutant CFTR (174).

An important caveat remains. Even though tissue
distribution and cellular localization in human and rat
pancreas indicated that GC-C was exclusively localized to the
ductal system, it is not present in the endocrine pancreas (169,
170). This is consistent with functional studies demonstrating
GC-C activity in exocrine pancreas (171) and guanylin-
mediated CFTR activation in pancreatic ductal cells (174).
However, GC-C expression in various mouse tissues
produced strikingly opposite results (175). The authors report
that in this experiment, GC-C was not detected in the entire
pancreas but was present in isolated islets, leading them to
conclude that its expression was most likely restricted to the
islets (175). Furthermore, the expression of GC-C was higher in
MIN6c4 cells, a subclone of the pancreatic b cell line, MIN6,
derived from a mouse insulinoma, than in the parental cell line,
correlated with the prolonged maintenance of insulin secretion
in these cells as compared to parental cells (175). Depletion of
GC-C in MIN6c4 cells resulted in decreased KCl-induced
insulin secretion and content (175), which is consistent with
previous reports that guanylin stimulated insulin secretion in a
rat pancreatic cell line (176). Together, the studies above
provide a complex picture of the localization and potential
role of GC-C in the pancreas, which could be explained in part
by the abundant plasticity within the normal endocrine and
exocrine pancreas (177).
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GC-C was among the highly upregulated genes in pancreatic
acinar (AR42J) cells treated with caerulein as an in vitromodel of
acute pancreatitis (178, 179). Given the well-studied role of
CFTR in pancreatitis (180), it is likely that GC-C also plays a
role in the development and progression of pancreatitis;
however, whether the induction of GC-C during pancreatitis
serves a protective or detrimental function remains unresolved.
In line with the in vitro pancreatitis model, GC-C expression was
significantly upregulated in human chronic pancreatitis samples
than in normal pancreatic tissue (103). Furthermore, when
pancreatic cancer was compared to pancreatitis, the
upregulation of GC-C was found to be even more significant
in pancreatic cancer (103).

Notably, uroguanylin has been shown to inhibit pancreatic
cancer cell proliferation, consistent with its role in regulating
epithelial cell turnover via cGMP signaling (103). As with
chronic pancreatitis and pancreatic cancer, prominent
upregulation of GC-C (due to bile acid exposure) has been
reported in Barret’s metaplasia and oesophageal adenocarcinoma,
where it is thought to have a pro-tumorigenic effect by initiating
lineage-addicted tumorigenesis via chronic suppression of the
EGFR/AKT axis (181, 182). It is important to note that bile acids,
specifically the reflux of bile acid into the pancreatic duct and to the
epithelial cells or acinar cells, have been linked to pancreatitis, acinar
to ductal metaplasia, and pancreatic cancer (183). Exposure to bile
acids, like what has been reported in oesophageal cancer cells (181,
182), may underlie the upregulation of GC-C in pancreatitis and
pancreatic cancer. More research is needed to determine whether
GC-C plays a role in cellular reprogramming in the malignant
pancreas and to assess the current state of evidence implicating both
low and high GC-C to have context-dependent effects in this
deadly disease.

Potential Role of GC-C in Adipose Tissue
Function and Fat Mobilization
Obesity is referred to as the silent endemic (184). It affects
multiple organ systems and frequently leads to other co-
morbid conditions referred to collectively as metabolic
syndrome, which has drastic effects in increasing susceptibility
to other diseases brought to prominence lately by the COVID-19
pandemic (185). As previously discussed, guanylins are
anorexigenic peptides that regulate adiposity by activating
brown adipose tissue and inhibiting energy storage in white
adipose tissue (51, 131). Understanding the role of guanylins in
central vs. peripheral regulation of whole-body energy balance
could shed light on mechanisms underlying the pathogenesis of
obesity and provide insight into developing therapeutic strategies
for treating obesity and related diseases.

Given the contrasting findings of satiety response to central
uroguanylin administration, it appears that the impact of
uroguanylin is not solely mediated by central mechanisms (51,
134). One of the earliest insights into the potential role of the
peripheral GC-C system in regulating adipocyte function
emerged from transcriptomic analysis of rats fed a high-fat diet
(HFD), which revealed high expression of guanylin and GC-C in
mesenteric fat in lean rats that resisted dietary obesity, versus
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those that developed obesity (186). The mechanism and function
of guanylin and GC-C induction in fat are unclear.
Immunohistochemical analysis revealed that guanylin and GC-
C are expressed by macrophages in the visceral fat depot,
indicating that adipose tissue macrophages are the primary
source of the increase in their expression seen in rats that
resisted dietary obesity (186). This raises the intriguing
question of whether GC-C/cGMP signaling plays a role in
altering the inflammatory profile of adipose tissue macrophages.

Obesity is strongly linked to the induction of chronic
inflammation, macrophage infiltration into adipose tissue, and
metabolic dysfunction (187). Given the evidence that GC-C
signaling can modulate inflammation in the intestine (13), it is
tempting to speculate that guanylin derived from macrophages
has anti-inflammatory autocrine and paracrine effects within
adipose tissue. Consistent with this notion, double transgenic
rats that overexpress both guanylin and GC-C in macrophages
were resistant to a high-fat diet and escape insulin resistance
(186). Mechanistically, GC-C/cGMP signaling in adipose tissue
macrophages was shown to regulate mesenteric fat inflammation
by inhibiting classical activation (M1) of macrophages in
response to a high-fat diet (188). While genes involved in fat
droplet formation were downregulated, those involved in fatty
acid oxidation were upregulated in mesenteric fat in HFD-fed
double transgenic rats compared to HFD-fed wild-type rats
(186). Ex vivo studies revealed that rat and bovine adipocytes
cocultured with guanylin and GC-C expressing macrophages
showed significant inhibition of lipid accumulation, pointing to a
role for GC-C/cGMP signaling in macrophages in the
modulation of lipolytic energy mobilization by adipocytes (186,
189). The inhibition of lipid accumulation appears to be related
to an increase in interleukin-15 secretion from guanylin and GC-
C expressing macrophages, which inhibits fatty acid synthase in
adipocytes and leads to obesity resistance (190).

As previously outlined, GC-C/cGMP signaling can increase
intracellular levels of cAMP and cGMP, two secondary
messengers known to be important in lipolysis (191, 192). In
human adipose tissue, GC-C RNA and protein expression was
detected in mature adipocytes as well as the stroma-vascular
fraction (SVF), which contains a variety of cell types, including
macrophages and vascular smooth muscle cells (123). Whereas
circulating uroguanylin levels were reduced, GC-C expression
appears to be upregulated in visceral adipocytes and various cell
types of adipose tissue SVF in obese type 2 diabetes mellitus
patients (123). Both guanylin and uroguanylin induced lipolysis
in differentiated human omental adipocytes, as evidenced by
phosphorylation of hormone-sensitive lipase at Ser563, an
increase in fatty acid and glycerol release, and an upregulation
of several lipolysis-related genes (123). In comparison, the
potential role of peripheral GC-C/cGMP signaling in brown
adipose tissue function is unknown. Although diet-induced
thermogenesis and brown adipose tissue activation are
reported to be GC-C dependent, GC-C expression is not
detected in brown adipose tissue, indicating that these effects
appear to be mediated through the hypothalamus-sympathetic
nervous system-adipose tissue axis (19).
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In summary, while the best-studied function of uroguanylin
in obesity is in the central nervous system, where it stimulates
anorexigenic pathways via GC-C receptor activation in the
hypothalamus, there is growing evidence that it may also
influence metabolic function peripherally, primarily via GC-C
receptor in adipose tissue macrophages and adipocytes. Obesity,
for example, induces GC-C in adipose tissue, where it may
regulate multiple aspects of adipocyte biology. While GC-C
induction in fat appears to correlate with insulin resistance and
an increase in adipose tissue macrophages, activation of GC-C
signaling in adipose tissue induces lipolysis and promotes fat
mobilization, suggesting that GC-C in adipose tissue may have
an anti-obesity role. This is supported by the fact that
uroguanylin-deficient mice fed a high-fat diet are more obese
and insulin-resistant. Surprisingly, GC-C knockout mice in this
study had normal body weight, adiposity, and glucose tolerance
(134). The origin of guanylin peptides and the mechanistic role
of GC-C receptor activation in obese adipose tissue remains to
be defined.

Given the disparities in body weight gain in whole body GC-C
knockout mice fed a high-fat diet, it is possible that the central
and peripheral effects of GC-C signaling on adipose tissue are
context-dependent and may be influenced by other factors such
as the outgrowth of obesity-inducing gut commensals (51, 134).
Studies, for example, have shown that GC-C signaling is an
immune mediator with both pro-inflammatory and anti-
inflammatory properties (193, 194). In some studies, GC-C
deletion in mice protects against experimental colitis and
reduces inflammation (193), while in others, it exacerbates
colitis by impairing gut barrier integrity (194). The gut
microbiome appears to play a prominent role in the
pathogenesis of colitis in GC-C null mice. More research is
needed to determine whether GC-C and its ligands are expressed
by adipose tissue during normal physiology and how they
contribute to obesity-induced adipose tissue inflammation.

Furthermore, given the evidence of an anti-inflammatory
effect of GC-C signaling on macrophage maturation in adipose
tissue (188), it is important to determine how GC-C receptor
activation inhibits M1 cytokine gene expression. Importantly, in
vivo experiments with loss of GC-C expression, specifically in
adipose tissue, are required to decipher the effects of the
peripheral GC-C system. It is tempting to speculate that early
induction of GC-C-mediated central and peripheral regulation of
whole-body energy balance may control appetite and dampen
the early inflammatory response to obesity. In this context, oral
supplementation with linaclotide has recently been shown to
stimulate brown fat thermogenesis and reduce body weight,
providing a translational opportunity for reducing the risk of
insulin resistance and type 2 diabetes mellitus (195).

Physiology and Clinical Significance of
Guanylins as Intestinal Natriuretic
Hormones
The kidney is essential for maintaining extracellular fluid
homeostasis, including sodium homeostasis, acid-base balance,
volume regulation, blood pressure regulation, and glucose
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homeostasis (196). Despite the crucial role of sodium
homeostasis in physiological processes, particularly blood
pressure regulation, entero-renal mechanisms governing
sodium excretion are not well defined. Nearly 50 years ago,
pioneering studies by Lennane et al. found that oral
administration of a NaCl load resulted in a greater natriuretic
response than intravenous administration of the same load in
both rabbits and humans (197, 198). This led to the hypothesis of
intestinal natriuretic hormones, with guanylin and uroguanylin
acting as potential candidates, that transmit signals from the GI
tract to the kidney (53). How levels of these bioactive peptides
dynamically change and orchestrate fluid-ion balance has been
an active area of research.

Using a targeted gene disruption mouse model, Lorenz et al.
demonstrated that uroguanylin was essential for regulating renal
sodium excretion after enteral loading via the formation of a
putative enterorenal axis for coordinating salt ingestion with
natriuresis (53). This lends credence to the model that a high-salt
diet causes prouroguanylin to be released from the intestinal
epithelium into the circulation and delivered to the renal tubules,
where it is processed to uroguanylin, resulting in increased
sodium excretion in the urine (199, 200). Indeed, studies have
shown that a high salt intake not only induces the expression of
guanylins in the intestine and kidney but also increases
uroguanylin secretion in the urine (37, 201–203). On the other
hand, some studies demonstrating that a high salt diet induced
uroguanylin expression primarily in the kidney rather than the
intestine, led to the alternative model that diet-evoked
uroguanylin signals originate in the kidney rather than
circulating uroguanylin derived from the intestine (204, 205).
Regardless, despite differing views on the origin of these peptides,
mounting evidence suggests that the diuretic and natriuretic
responses to guanylin peptides following high dietary salt intake
play a key role in extracellular fluid homeostasis. A thorough
understanding of how these bioactive peptides affect salt and
water balance may provide valuable insights into the
development of novel therapeutic options.

Uroguanylin knockout mice develop hypertension primarily
because of renal salt handling deficits, implying that the gene
could be a promising candidate for essential hypertension. This
multifactorial disorder is a significant risk factor for death from
cardiovascular and cerebrovascular events (53). Indeed, a
haplotype-based case-control study found an association
between uroguanylin and essential hypertension. However,
more research is needed to identify and characterize
susceptibility mutations in the GUCA2B gene for essential
hypertension (206). Given the growing trend of disorders
associated with dysregulated fluid-ion balance and the
associated morbidity and mortality, it is important to draw
insights from adaptive responses to volume overload to design
and develop appropriate therapeutic approaches. One can
speculate that upregulation of circulating uroguanylin levels
observed during pathophysiological states of sodium retention
and blunted volume expansion natriuresis, such as congestive
heart failure and nephrotic syndrome, may serve as a
compensatory and/or adaptive response, as well as a prognostic
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indicator of edematous pathophysiological states (207, 208). The
converse is also true. The guanylin/uroguanylin signaling
pathway is downregulated in the intestine as an adaptive
response to salt restriction (201, 209).

Binding of guanylins to GC-C is necessary for cGMP
production. As such, GC-C is considered a bonafide receptor
of ST and endogenous guanylin peptides (6, 7). Early studies in
the opossum and rat kidneys predicted the presence of a
functional receptor for E. coli ST (210, 211). Subsequent
research on endogenous peptides that resemble ST,
uroguanylin, and guanylin, which were originally isolated from
urine and intestine, respectively, revealed that they promote
natriuresis, kaliuresis, and diuresis in perfused rat kidneys (8,
27, 28). Whether binding of guanylins to GC-C is required for
mediating these effects in the kidney is not clear. Still, data from
several studies suggest that renal effects of these peptides are
mediated by signaling independent of GC-C (212, 213). For
instance, although uroguanylin treatment increased renal
sodium excretion in mice, it did so even when the receptor
GC-C was deleted, demonstrating that additional pathways are
required to specify the renal function of guanylin hormones
(214). Previous research into the expression and localization of
GC-C in the kidney has been limited because most studies rely
on detecting transcript levels (53, 212, 215).

In summary, early studies encouraged the notion that the
kidney also expresses GC-C and that the signals manifested by
binding of guanylin peptides would result in increased excretion
of salt and water in the urine, thereby regulating overall fluid-ion
homeostasis. More recent research has undermined this notion,
revealing that the guanylin peptides function via an unknown
GC-C independent mechanism. Pertussis toxin-sensitive G
protein-dependent and phospholipase A2-dependent signaling
have been proposed as potential cGMP- and GC-C-independent
mechanisms of action for guanylin peptides in kidney (9, 213).
Physiologically, guanylin and uroguanylin-regulated
phospholipase A2-dependent signaling has been reported to
modulate K+ conductance in cortical collecting ducts, thereby
changing the driving force for Na+ and water reabsorption (213).
On the other hand, cGMP-dependent mechanisms of
uroguanylin action in renal tubules have also been reported,
including modulation of activities of Na+/K+- and H+-ATPases
as well as NHE3 (216–218). An important agenda for future
research is clarifying the signal transduction pathways that
mediate the responses of guanylin peptides and dictate when
and how the kidney can retain sodium and water or lose them
in urine.

Potential Role of GC-C/cGMP in the
Synergistic Interaction of Circadian
Rhythmicity and Feeding Behavior
Homeostatic states such as the biological clock and metabolism
are intertwined. For example, orexins, the neuropeptides that
regulate feeding, are well-known essential regulators of sleep/
wake cycles and the circadian clock (219). Thus, the feeding cycle
can entrain the circadian cycle; however, the neuro-molecular
mechanism by which feeding regulates the circadian rhythm is
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not fully defined. The hypothalamic suprachiasmatic nucleus
(SCN) controls the human biological clock (220). The circadian
rhythm regulates various mechanisms in the human body, like
blood pressure (221) and hormone secretion (222, 223). Some of
the hormones regulated in the circadian fashion include insulin,
leptin, ghrelin, and adiponectin; these are partially controlled by
feeding behavior as well (222).

Further, the anatomical connection from the eye to the SCN is
the ‘retinohypothalamic tract.’ This tract enables the adjustment
of circadian rhythm to the dark-light cycle of the environment.
Rats with SCN lesions lost the circadian regulation of
corticosterone secretion (224). The body clock is regulated by
genes initially identified in Drosophila, with the Per gene playing
a negative role and the Clock gene playing a positive role (225).

Cyclic GMP is the major signaling molecule that regulates the
biological clock via PKGII in the SCN, modulating circadian
rhythms and synchronization to the day/night cycle (226, 227).
Indeed, research suggests that sildenafil may be useful in treating
circadian adaptation to environmental changes (227). PKGII is a
master regulator of the circadian clock, which drives many
physiological, biochemical, and behavioral rhythms, and is
important in modulating the timing and quality of the sleep-
wake cycle (226). Importantly, mice lacking PKGII cannot reset
the circadian clock, despite having normal retinal function (226).
Mechanistically, PKGII appears to control the light-induced
modulation of Period 1 and 2 genes reciprocally, influencing
the direction of phase shifts (advances or delays) of the clock
(226). However, to date, the upstream hormone-guanylyl cyclase
system that elicits cGMP production and regulates PKGII
activity in SCN is unknown. Because GC-C is expressed in the
hypothalamus and uroguanylin-mediated GC-C activation in the
hypothalamus has been implicated in the control of appetite and
energy expenditure (51), it is tempting to speculate that
hypothalamic GC-C/cGMP signaling regulates PKGII signaling
and influences the adjustment of the biological clock and
coordinates synergistic interaction between the clock and
feeding behavior. Further studies are needed to substantiate
this hypothesis.

Studies have shown that the blood pressure of normotensive
Wistar rats is rhythmically coordinated with soluble guanylyl
cyclase levels in aortic tissues (221). Cyclic GMP plays a role in
circadian entrainment in rats, proven by the administration of
exogenous cGMP in both day and night conditions. Daytime
exogenous cGMP treatment induced phase advances in the
circadian rhythm of rats, as monitored by electrical stimulation
from the SCN of hypothalamic sections maintained in a perfusion
buffer. The circadian rhythm remained unaltered with similar
treatment at night (228). Further, the pharmacological inhibition
of PKG was found to prevent light-induced phase changes in the
circadian rhythm of hamsters (229).

Circadian rhythm influences both the small and large
intestine in mice (230). Apoptosis and development of
clonogenic cells in the intestinal crypts of mice normalized to
the circadian variation even when lighting conditions were
reversed (231). In addition to hormonal modulation of
circadian rhythm, dietary habits alter levels of DNA synthesis
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and proliferation in intestinal cells. These cycles, non-existent in
the intestine at birth, arise after mice are weaned and develop a
nocturnal feeding habit. Some parts of the gastrointestinal tract,
like esophagus and rectum display a greater extent of circadian
variation. The peaks of DNA synthesis varied by about 6-8 hours
from the tongue to the anus, suggesting a dependence on the
passage of food (225).

Oscillators and many clock-controlled processes have been
observed in peripheral tissues of mammals (225, 232). What
couples the peripheral oscillators, which are primarily regulated
by food intake and metabolic changes, to the central pacemaker
is not fully understood. The master clock, located in the
hypothalamic SCN, is thought to entrain the phase of
peripheral clocks via rhythmically secreted hormones. Feeding
and associated metabolic changes could synergistically reinforce
the circadian clock to attain entrainment. Changes in feeding
behavior, like changes in photoperiod, may reset the circadian
clock. Several genes involved in feeding, digestion, and
absorption are controlled by a circadian clock (225, 232). In
this context, it is important to note that the expression of
guanylins and GC-C, and, by extrapolation, GC-C/cGMP
signaling, exhibit circadian periodicity in the intestine of young
rats (233). The transcript and protein levels of uroguanylin and
guanylin were found to vary in light/dark cycles, with a peak
during the dark photoperiod when the animals are actively
feeding, with uroguanylin exhibiting greater variation than
guanylin. Intriguingly, the cycle of uroguanylin and guanylin
expression in the ileum and colon showed an anticipatory rise in
the evening and peaked earlier than in the jejunum, suggesting
that this regulation is circadian. GC-C, like its ligands, showed
significant circadian variation at the mRNA level with
upregulation (ileum > proximal colon > jejunum) during the
dark photoperiod (233). The nocturnal increase in GC-C and its
ligands may be essential to prepare the gastrointestinal tract for
feeding by increasing fluid ion secretion required for mucus
hydration and conferring lubricant properties to protect
epithelial cells from mechanical stress during the passage of
luminal contents and peristalsis waves. Additionally, given the
existence of high-amplitude circadian rhythms in the expression
of guanylin peptides, it is tempting to speculate that these
hormones are secreted by the gut with circadian rhythm into
the circulation and may act as entraining factors in the
hypothalamus and thus mediate the synergistic bidirectional
interaction between the master clock and peripheral clocks in
the digestive system. This could also highlight the potential of
FDA-approved uroguanylin mimetics, such as linaclotide, as
chronobiotics, or agents that modify the characteristics of a
circadian rhythm (phase, amplitude, or period).
LEARNING OPPORTUNITIES
AND PROSPECTS

Regulation of Endogenous GC-C Ligands
Despite ample evidence that dietary zinc regulates uroguanylin
expression, the precise mechanism underlying this association
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has remained obscure (234). In 1996, Blanchard and Cousins
discovered uroguanylin as one of several genes induced by a zinc-
deficient diet in rats (235). Subsequently, the authors directly
tested the hypothesis that zinc deficiency increased uroguanylin
gene expression and proposed a role for increased uroguanylin
expression in secretory diarrhea associated with zinc deficiency,
as well as how supplemental zinc could correct secretory diarrhea
(236, 237). Immunohistochemical studies revealed that in zinc-
adequate rats, uroguanylin positive cells were concentrated at the
tips of the villi of the duodenum and jejunum. In contrast, in
zinc-deficient rats, the positive cells were dispersed throughout
the villus (238). The upregulation of uroguanylin in response to
zinc deficiency was exacerbated by an IL-1a-induced
proinflammatory state (239).

Furthermore, dietary zinc deficiency increased the
accumulation of uroguanylin derived from the systemic
circulation in the rat kidney (240). Recent transcriptomic
studies found that ‘cellular response to zinc ion’ was the only
pathway significantly enriched in the ileum in patients with
familial diarrhea syndrome due to an activating mutation (S840I)
in GC-C compared to healthy controls, reinforcing the link
between dietary zinc and GC-C signaling (241). Importantly,
biochemical studies have demonstrated that zinc inhibits GC-C
activity at concentrations comparable to those required to inhibit
adenylyl cyclase (22). Recently, zinc has been shown to directly
bind ST and inhibit GC-C activation and cGMP induction,
providing an alternative mechanism for its inhibitory role in
ETEC pathogenesis (242). These findings are consistent with
previous studies that zinc-deficient diets allow ETEC to colonize
the murine intestinal epithelium (243). Understanding the role of
zinc in regulating uroguanylin expression and GC-C activity in
fluid and ion homeostasis has important implications for
developing interventions for diarrhoeal diseases and
inflammatory bowel disease.

The therapeutic progress with GC-C agonists for the
treatment of irritable bowel syndrome with constipation has
prompted research into the regulation of endogenous guanylin
peptides in different disease conditions (140). Recently, increased
expression of guanylin peptides in lingual taste buds was
reported, along with increased circulating levels, following
sleeve gastrectomy, a weight-loss surgical procedure in which
part of the stomach is removed, broadening the role of these
hormones in food preference via the regulation of gustatory
responses (244). Food intake raises circulating uroguanylin
levels, but the stimulus for secretion is unknown (51).
Although leptin, an adipocyte-derived hormone, has been
linked to the nutritional status-based modulation of
uroguanylin, direct supportive evidence is sparse (245). This
link is particularly relevant to our understanding of the stimuli
that inhibit postprandial secretion of uroguanylin into the
circulation in obesity, which is evident in both human and
animal models (123, 128–130). Notably, while genetic deletion
of uroguanylin resulted in a significant decrease in guanylin
expression, deletion of guanylin did not affect uroguanylin
expression (52, 53). Recent studies attempting to decipher the
mechanism of silencing guanylins in the context of colorectal
Frontiers in Endocrinology | www.frontiersin.org 16
cancer may provide important clues into their regulation in
physiological conditions (15). Intriguingly, in some studies,
uroguanylin levels in the circulation increased significantly
with high dietary salt intake, but the hormone levels in the gut
remained unchanged (204, 205). These observations offer insight
into the coordination of uroguanylin levels in the intestine and
plasma, raising new questions about the enterorenal endocrine
axis and challenging the conventional view that diet-induced
uroguanylin signals originate in the intestine.

Structure-Function Analysis of
GC-C Mutations
Ultimately, genetic testing in the clinic aims to help make clinical
decisions. Structure-function analysis of patient mutations is the
only way to differentiate pathogenic mutations from harmless
polymorphisms. Although no atomic-level structures of GC-C is
available, crystal structures of soluble guanylyl cyclases may serve as
templates for modeling the cyclase domain, and available structures
of protein kinases could serve as templates for the pseudokinase
domain of GC-C (246). The causality of several patient mutations in
GC-C has been established through functional studies (6). Most
patient mutations in GC-C reported in the literature affect residues
that are evolutionarily conserved, and therefore changes at these
sites are predicted to cause dysregulated function (6, 16). What are
the underlying structural changes that mediate a loss/gain of
function of mutations at these residues, and do mutations in
different domains produce proteins with altered conformation for
loss/gain-of-function? Does binding of regulatory elements to GC-C
alter the properties of a loss/gain-of-function mutation? These
questions need to be answered if we are to understand GC-C
biology and its relevance in human diseases.

Mapping mutations in the protein domains will also provide
insight into the underlying pathogenic mechanism. For example,
many reported activating GC-C mutations associated with
congenital sodium diarrheas and IBD lie within the KHD,
linker region, and GCD (10, 11, 113). On the other hand, GC-
C missense mutations associated with meconium ileus have been
localized to ECD, linker region, and GCD (12, 247, 248). This
does not necessarily imply that other domains with no reported
human mutations are merely inert linkers with a limited role in
the structure and function of the receptor. For example, the
juxtamembrane domain (JMD), one of the least studied domains,
has no recorded human mutations in GC-C. However, this
domain is predicted to serve essential regulatory roles such as
facilitating dimerization, allosteric KHDmodulation, and cyclase
activity regulation. Evidence supporting this proposed role is the
activating A488P mutation in JMD identified in the related
receptor guanylyl cyclase B (GC-B) that was linked to skeletal
overgrowth and showed enhanced basal and ligand-mediated
production of cGMP (249).

These insights gained from patient mutations in GC-C have
indicated that the GC-C activation is not a simple on-off switch
where, in the absence of ligand, the cyclase domain remains inactive,
and the active conformation is obtained upon ligand binding to the
ECD and catalysis proceeds. Instead, disease mutations have shown
how different domains can regulate the activity of the cyclase even in
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the absence of ligand binding and how minute changes in
conformations and interactions within and between each domain
can lead the catalytic site to active conformation.

GC-C, Inflammation, and Cancer:
Is There Increasing Overlap?
As previously discussed, activating mutations in GC-C are
associated with IBD, supporting the observation that higher levels
of mucosal cGMP are maintained in inflammatory states (10, 16,
250). An animal model of a gain-of-function mutation in GC-C
confirmed these clinical observations (13). In contrast to
expectations, IBD patients and an experimental colitis model
showed downregulation of GC-C and its ligands in response to
antecedent or concomitant inflammatory stimuli, implying that
direct treatment with uroguanylin mimetic drugs can reduce
inflammatory cytokines and play a protective role in
inflammation (251). Circulating levels of GC-C ligand precursors
were also reduced in Crohn’s disease patients (32). It is tentative to
speculate that impaired gut barrier integrity and dysbiosis of the
microbiome, for instance, depletion of Lactobacillus strains,
associated with both GC-C gain and loss of function, may
underpin their potential links to IBD (13, 14, 194).

In a murine model of intestinal inflammation caused by oral
S. Typhimurium infection, transcription of GC-C, guanylin, and
uroguanylin was found to be downregulated (14). Deletion of
GC-C was found to exacerbate intestinal inflammation following
S. Typhimurium infection, underscoring the importance of
cGMP signaling in promoting recovery from intestinal
inflammation (14). Inflammatory responses may reduce the
expression of undiscovered transcriptional stimuli of guanylins.

Together, these could exemplify the Goldilocks scenario in
biology, in which cellular functions rely on an optimal condition,
with higher or lower extremes potentially impeding them. This
paradigm could explain the pro-inflammatory effects associated
with the gain or loss of GC-C mediated signaling via likely distinct
mechanisms (Figure 1). This seemingly contradictory role for cyclic
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nucleotide signaling could add another layer of complexity to our
understanding of IBD and the development of potential therapies.

Inflammation and tumorigenesis appear to have similar
effects on GC-C regulation, most likely via partially
overlapping mechanisms (15, 251). In the literature, as
outlined earlier, several pathways linking silencing of the GC-C
axis and colorectal cancer have been described. Another
possibility is that the intestinal barrier disruption and dysbiosis
associated with GC-C depletion may result in the infiltration of
commensal bacteria and their molecular products, which drive
chronic inflammation and malignant transformation, thereby
contributing to the initiation of the development of invasive
colon cancer (14, 194, 252). Clinical trials are underway to
determine whether CRC is treatable with ligand supplementation.
Data from clinical trials in healthy human volunteers revealed that
oral supplementation of uroguanylin analogues linaclotide and
dolcanatide did not persist to activate GC-C signaling in the distal
rectum, emphasizing the need for developing colorectum-targeted
drug delivery systems for specific delivery and improved
bioavailability (81, 253). It would be interesting to see if
reconstitution of GC-C signaling in colorectum improves barrier
function and chronic inflammation and how these contribute to its
role in preventing transformation (Figure 1).

Given the links between activating GC-C mutations and IBD
in humans, as well as the supporting evidence from transgenic
mice of GC-C activation, we cannot rule out that downregulation
of GC-C and its ligands in IBD patients and in a mouse model of
experimental colitis could be an adaptive mechanism of epithelial
preservation (10, 13, 16). In this context, it is worth considering
studies demonstrating that barrier loss in IBD is associated with a
decrease in levels of occludin, a tight junction-associated protein,
in patient biopsy specimens from IBD patients (254).
Remarkably, occludin knockout mice are normal and, more
importantly, have a lower severity of DSS-induced colitis due
to apoptotic pathway blockage caused by caspase-3
downregulation. Thus, in the context of IBD, loss of occludin
FIGURE 5 | Summary of the multiple biological functions of GC-C/cGMP signaling in health and disease. The illustration depicts the role of GC-C/cGMP signaling in
the intestine and extraintestinal tissues, with key functions highlighted. The figure was prepared using Biorender.
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has been proposed as an adaptive mechanism to limit epithelial
damage (254). Interestingly, GC-C knockout mice have been
shown to downregulate occludins and other junction proteins,
impairing intestinal barrier stability (194). GC-C knockout mice
are also resistant to DSS-induced colitis. They have lower
apoptosis, indicating a role for GC-C signaling as an essential
mediator of IBD to promote mucosal homeostasis, though
whether this can be therapeutically targeted requires further
investigation (193). Taken together, it is tempting to speculate
this adaptive mechanism as part of the pro-neoplastic effects of
chronic intestinal inflammation, which would result in an
accumulation of cells with downregulated GC-C signaling and
associated cellular defects, facilitating neoplastic transformation.

Given the counterintuitive role of ectopic GC-C expression in
Barret’s esophagus and esophageal adenocarcinoma (181, 182), it is
critical to consider whether GC-C upregulation and chronic colitis
may also promote tumorigenesis (Figure 1). Furthermore, patients
with familial diarrhea syndrome due to S840I gain of function
mutation in GC-C have increased susceptibility to chronic
esophagitis (10); whether the pathologies are similar to those seen
with GC-C induction in the esophagus due to bile acid exposure
remains to be determined (181, 182). These links may also help us
understand the potential role of GC-C upregulation along the
transformation continuum in chronic pancreatitis and pancreatic
adenocarcinoma (103). More research is needed to determine the
precise mechanisms involved in the protumorigenic function of GC-
C signaling. Given the reproducible association of GC-C activating
mutations with IBD, it is important to consider that chronic
activation of the GC-C pathway by ligand treatment may activate
inflammasomes and trigger IBD-like immunopathology (255).
CONCLUSIONS AND IMPLICATIONS

The GC-C signaling pathway is widely regarded as one of the
most important fluid and electrolyte balance regulators. The
consequences of failing to balance intracellular cGMP levels are
demonstrated by conditions that appear to be driven by
dysregulation of fluid and ion balance and are associated with
diseases such as IBD and colorectal cancer. These findings also
raise new questions. It is unclear how fluid and electrolyte
balance changes impact inflammation or tumorigenesis or
whether the changes are due to effects independent of these
roles. Identifying germline mutations that either activate or
Frontiers in Endocrinology | www.frontiersin.org 18
inactivate GC-C has facilitated progress in this field, leading to
recognizing the role of the ion-microbiome-immune axis as an
upstream driver and regulator in intestinal pathologies. These
insights have collectively uncovered a critical role of intestinal
fluid and electrolyte homeostasis in regulating microbiome
composition and cross-talk with host immunity.

In recent years, research has focused on determining the precise
role of GC-C signaling in human health and disease. It is now clear
that GC-C and its ligands perform functions other than simply
regulating fluid and electrolyte balance. This includes findings on
GC-C coordinating appetite control and energy homeostasis,
behavioral functions, and emerging role in pathologies such as
obesity and metabolic syndrome. GC-C/cGMP signaling is
increasingly recognized as a modulator of physiological processes
in various extraintestinal tissues (Figure 5). Furthermore, the
development of transgenic and knockout mice provides an option
for further dissecting the role of GC-C and relating them to whole-
animal physiology. More recently, small molecule inhibitors of GC-
C have been developed as a targeted option for therapy in patients
with activating GC-C mutations (256). Another promising
approach would be to test the palette of drugs targeting kinases
that could bind the KHD and inhibit the cyclase activity (257).
Determination of the high-resolution structures of different
domains of GC-C and structure-based design will expand on
small molecules that can target GC-C and modulate its activity.
Importantly, small molecules that target the catalytic or regulatory
domains to promote enzymatic activity will create a new class of
pharmaceuticals to activate GC-C independent of the ligand-
mediated stimulation.
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