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Aging conundrum: A
perspective for ovarian aging
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Jihui Ai* and Kezhen Li*

Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong
University of Science and Technology, Wuhan, China
Progressive loss of physiological integrity and accumulation of degenerative

changes leading to functional impairment and increased susceptibility to

diseases are the main features of aging. The ovary, the key organ that

maintains female reproductive and endocrine function, enters aging earlier

and faster than other organs and has attracted extensive attention from society.

Ovarian aging is mainly characterized by the progressive decline in the number

and quality of oocytes, the regulatory mechanisms of which have yet to be

systematically elucidated. This review discusses the hallmarks of aging to

further highlight the main characteristics of ovarian aging and attempt to

explore its clinical symptoms and underlying mechanisms. Finally, the

intervention strategies related to aging are elaborated, especially the

potential role of stem cells and cryopreservation of embryos, oocytes, or

ovarian tissue in the delay of ovarian aging.
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Introduction

Ovarian aging is characterized by the gradual decline in the quantity and quality of

oocytes, mainly due to the low number of primordial follicles (PMFs) at birth and high

monthly depletion during the reproductive period (1, 2). Ovarian aging manifests as

reproductive decline until the loss of fertility, accompanied by endocrine dysfunction,

menstrual cycle abnormalities, and other clinical symptoms (3, 4). Ovarian aging

includes age-related physiological aging and pathological failure caused by different

factors (5, 6). Age-related ovarian aging is a natural and inevitable physiological aging

process. The age-dependent decline in oocyte quality accelerates between 35 and 40 years,

and the natural menopause transition usually occurs between 40 and 45 years, with an

average age of menopause between 50 and 52 years (7). In terms of pathological failure,

ovarian aging mainly refers to premature ovarian insufficiency (POI), which is divided

into primary or secondary POI (6, 8). POI affects approximately 1 percent of women

under 40 years of age and 0.1 percent of women under 30 years of age (9). However, the
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etiology of primary POI remains unclear and may involve

chromosomal abnormalities, gene mutations, enzyme

deficiencies, and autoimmune disorders (10, 11). Secondary

POI is associated with factors such as unhealthy lifestyles,

chemotherapy, radiotherapy, reproductive system surgery,

surgical menopause, endocrine disrupting chemicals, viral

infection, or certain infectious diseases (12). This review

focuses on the histomorphology and function of the ovary,

clinical symptoms, pathogenesis and intervention strategies of

ovarian aging, aiming to reveal the key regulatory factors of

ovarian aging in the subfertility period.
Hallmarks of aging

Aging can be defined as the progressive accumulation of

degenerative changes that ultimately leads to an increased

probability of functional impairment and mortality. Lopez-

Otin C and Blasco MA et al. proposed that the current

molecular and cellular hallmarks of aging be grouped into

three categories: primary, antagonistic, and integrative

hallmarks (13). While these hallmarks of aging have been

presented as nine separate hallmarks in various research

disciplines and there is a certain degree of cross-linking
Frontiers in Endocrinology 02
between them, we still hoped to summarize them by

hierarchical relationship. Here, the hallmarks of aging are

reviewed to provide some insight into the initiation of ovarian

aging (Figure 1).
Primary hallmarks

The primary hallmarks are considered to be the actual cause

of aging and have a clear negative impact on deoxyribonucleic

acid (DNA) (14). They first initiate cell damage, resulting in

cumulative damage and gradual loss of function over time, which

manifest as genomic instability, telomere attrition, epigenetic

alterations, and loss of proteostasis (15–18).

Sustaining genome integrity requires the integration of

multiple mechanisms and signaling pathways, and its stability

is crucial for individual growth and human health (19). Genome

instability is an increasing trend of genomic alteration during the

cell life cycle, driven by a variety of endogenous and exogenous

damage (20). Furthermore, genomic instability is reflected in

gene mutation, replication, and transcription blockage, as well as

DNA repair defects, which lead to the decline of organ function

and disease progression, such as xeroderma pigmentosum,

Cockayne syndrome, and other aging-related diseases (21–23).
FIGURE 1

The current hallmarks of aging.
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The main function of telomeres is to protect the ends of

chromosomes to maintain genomic integrity (24–26). Age and

environmental factors such as inflammation, reactive oxygen

species (ROS), and exposure to radiation or toxins can accelerate

telomere attrition (27). The indispensable components in

telomere maintenance, such as telomerase, telomerase

ribonucleic acid (RNA) components, and shelterin complex,

are closely correlated with aging and age-related diseases, such

as premature aging syndromes and cancer (28).

Epigenetic alterations in DNA methylation, histone

modification, and chromatin remodeling affect aging and

longevity (29). Among various epigenetic alterations, DNA

methylation is directly related to ROS metabolism through key

r edox in t e rmed i a t e s su ch a s 2 -oxog lu t a r a t e , S -

adenosylmethionine (SAM), and nicotine adenine dinucleotide

(NAD) (30). These intermediate fluctuations directly affect

epigenetic characteristics, resulting in detectable changes in

gene expression and protein modification. Studies have shown

that mouse quiescent satellite cells and teleost fish brain tissues

display epigenetic repression of trimethylated histone H3 lysine

27 (H3K27me3) during aging (31, 32). Another study showed

that the trimethylated histone H3 lysine 4 (H3K4me3) complex

regulates the lifespan of Caenorhabditis elegans (33, 34). In

addition, epigenetic alterations during aging also cause obvious

chromatin structural changes, including heterochromatin region

loss, global histone loss, and chromatin spatial interaction

changes (35).

In addition, the maintenance of proteostasis is the key to

ensur ing normal organism development , res i s t ing

environmental stress, and promoting healthy aging and

longevity (36, 37). As part of the proteostasis network, the

ubiquitin-proteasome system and the autophagy-lysosome

pathway are two major mechanisms of intracellular protein

degradation (38–40). Studies have shown that the failure of

autophagy in physiological aging satellite cells causes the loss of

proteostasis, increased mitochondrial dysfunction, and ROS and

ultimately leads to a decline in satellite cell number and function

(41). In addition, loss of protein solubility and accumulation of

aggregates are the histopathological hallmarks of several

neurodegenerative diseases, such as Parkinson’s disease and

Alzheimer’s disease (42–44).
Antagonistic hallmarks

Antagonistic hallmarks, including cell senescence,

mitochondrial dysfunction, and deregulated nutrient sensing,

respond to the damage caused by primary hallmarks and are

considered to be part of the compensatory or antagonistic

response to damage. These responses initially mitigate the

damage, and if enlarged or aggravated, they ultimately become

deleterious and cause further damage.
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Cell senescence is a generally irreversible and permanent

state in the cell cycle caused by different stresses (45), including

continuous DNA damage, irradiation, ROS, and viral infection

(46). Cell senescence is accompanied by a low response to

mitogenic stimuli, an inability to re-enter the cell cycle, and an

enhanced secretory phenotype (47). The main structural and

functional changes in aging cells include decreased membrane

selective permeability, decreased responsiveness to mitogenic

stimuli, disordered immune function, reduced enzyme activity,

enhanced lysosomal activity, and decreased antioxidant capacity

(48, 49). Cell senescence can damage tissue repair and

regeneration, leading to age-dependent diseases, such as

osteoporosis, pulmonary fibrosis, renal diseases, hepatic

steatosis, and cardiovascular and neurodegenerative

diseases (50).

As the primary site of oxidation of carbohydrates, fats, and

amino acids to produce adenosine triphosphate (ATP), the

quality and activity of mitochondria are essential for

homeostasis maintenance, cell cycle control, and programmed

cell death (51–53). Mitochondrial signaling pathways involving

aging have been studied, such as mitochondrial dynamics,

mitochondrial protein synthesis, mitochondrial autophagy,

oxidative phosphorylation, ROS, and mitochondrial DNA

damage (54, 55). Severe mitochondrial dysfunction can lead to

biosynthesis disorders, insufficient energy supply, and increased

ROS, thereby aggravating tissue and organ damage and even

causing a variety of aging-related pathological changes (56–58).

The ability of cells to respond to nutrient-sensitive signaling

pathways is tightly linked with nutrient availability and

metabolic homeostasis, affecting the acquisition and

maintenance of cell growth, cellular senescence, metabolism,

and other physiological processes (59–62). Multiple signaling

pathways are known to be involved in the regulation of

nutrients, especially insulin/insulin-like growth factor 1 (IGF-

1), the mammalian target of rapamycin (mTOR), and adenosine

monophosphate-activated protein kinase (AMPK) signaling

systems (63, 64). However, the dysregulation of nutrient

sensing and energy metabolic pathways is closely related to

metabolic diseases, such as obesity, type 2 diabetes mellitus,

metabolic syndrome, and other age-associated diseases (65, 66).
Integrative hallmarks

Stem ce l l exhaust ion and al tered interce l lu lar

communication are thought to be integrative hallmarks

because they directly affect tissue homeostasis and function.

When the cumulative damage caused by the primary and

antagonistic hallmarks cannot be compensated for through

tissue homeostatic mechanisms, integrative hallmarks arise

and inevitably lead to the functional decline associated

with aging.
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Stem cell exhaustion, including the loss of stem cell number

or function, is a progressive process and a comprehensive result

of multiple aging-related injuries, leading to sustained and

irreversible changes in the inherent features of stem cells (67–

69). Throughout the life cycle, tissue-derived adult stem cells are

essential for tissue homeostasis maintenance and regeneration

by balancing self-renewal with lineage selection (70, 71).

Therefore, adult stem cell exhaustion is considered to be an

important driving factor behind the decline in tissue and organ

function observed during aging. Beyond intracellular

autonomous changes, aging also changes intercellular and

intertissue communication (13, 72). These communications

involve multiple independent or simultaneous processes that

depend on physiological or pathological conditions to affect and

maintain tissue homeostasis (35). Altered intercellular

communication in the immune system is a progressive

exacerbation of the proinflammatory state and reduced

immune surveillance and immune response (73–75). As an

acute and transient response to harmful conditions, the

inflammatory response is conducive to the defense, repair,

turnover, and adaptation of many tissues (76). However, with

age, the innate and adaptive immune systems change (77). A

chronic and low-grade inflammatory state termed inflammaging

is likely to have a detrimental effect on the effectiveness of the

immune system (78, 79). Studies have shown that changes in

redox balance, increased senescence-associated secretory

phenotype (SASP), and reduced effective autophagy trigger

inflammasomes, suggesting that aging-related diseases and

aging itself may be delayed by inhibiting proinflammatory

molecular mechanisms (80).
Histomorphological and functional
changes in the ovary at
different stages

Histomorphological aspects of the ovary

In a study of human ovarian histomorphology, the ovaries of

fetuses at 9-40 weeks of gestation are mostly almond-shaped and

arranged obliquely in the fetal period (81). In the abdominal

cavity, the ovaries usually descend slowly from the anterior

ureter and above the common iliac artery with increasing

volume until after birth. The ovaries have a smooth surface

without ovulation until puberty, and menarche is an important

sign of the onset of ovulation. In adolescence, the ovaries have a

grayish-white, flattened oval appearance, begin to ovulate, and

gradually have periodicity (82). Due to the extrusion of oocytes,

the ovarian surface becomes uneven, and empty ovulation can be

observed (83). In the absence of pregnancy, the ovaries of

healthy adult women undergo extensive dynamic tissue

remodeling during each menstrual cycle throughout the

reproductive period (approximately 40 years) (84). The ovary
Frontiers in Endocrinology 04
consists of four layers from the outer to the central section: the

germinal epithelium layer, the nonvascularized and thick

fibrous-rich layer called tunica albuginea, the cortex

containing ovarian follicles, and the medulla containing loose

connective tissue and blood vessels (85). Studies have shown that

ovarian fibrosis and stiffness increase with age in the mammalian

ovary and depend on the age-related increase in collagen and the

decrease in hyaluronan matrices (86, 87). As women enter the

perimenopausal period from the reproductive period, obvious

morphological and structural degeneration of the ovary occurs.

Owing to the decrease in the number and diameter of follicles,

aging ovaries shrink and show a wrinkled, nonglossy

appearance (88).

Ovarian follicles are structural and functional units of the

ovary, in which somatic cells and germ cells are well interrelated

and interdependent (89). Human primordial germ cells

differentiate into oogonia and proliferate, and this

differentiation occurs continuously through mitosis and

meiosis, stopping at the diplotene stage of meiotic prophase I

(MI), and may last for decades until the oocyte is ovulated (90).

Follicular development includes oocyte development, extensive

proliferation and differentiation of granulosa cells (GCs), and

theca cells with highly vascularized and specialized tissue layers

generated by stromal cells (84). At the 20th week of fetal

development, approximately 6-7 million oocytes in the ovary

are surrounded by a layer of flat granulosa cells to form PMFs

(91). After that, most PMFs are rapidly lost via apoptosis in the

second half of fetal life, leaving only 1-2 million PMFs at birth

(92). After birth, this high rate of follicle loss slows somewhat,

and some PMFs can be recruited into the growing follicular pool

and develop into antral follicles, most of which will inevitably

enter the atresia stage. Most PMFs undergo degeneration or

atresia at any stage of ovarian folliculogenesis. With the help of

HPO axis regulation, ovarian function gradually matures, and

approximately 300,000-400,000 PMFs are retained at menarche

(93). Menstruation gradually became regular from the beginning

of irregularity, with the decline of PMFs stabilized, but then

gradually accelerated (94). Only 400-500 follicles reach the

ovulatory phase during the reproductive span of healthy

women (84). The ovulation process involves the expansion of

the oocyte-cumulus complex, digestion of the follicle wall,

resumption of oocyte meiosis, extrusion of meiotic prophase II

oocytes, remodeling of the extracellular matrix, etc. (95–97).

Among them, cumulus expansion and oocyte maturation are the

key processes of ovulation (98).
Functional aspects of the ovary

The ovary has both reproductive and endocrine functions.

Ovarian reproductive function is mainly controlled by the

hypothalamic-pituitary-ovarian (HPO) axis during the regular

menstrual cycle (99). Ovarian endocrine function involves the
frontiersin.org

https://doi.org/10.3389/fendo.2022.952471
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wu et al. 10.3389/fendo.2022.952471
secretion of steroid hormones, including estrogen, progesterone,

a small amount of androgen, and various cytokines (100). These

substances affect the development and function of the female

vagina, uterus, oviduct, breast, and other organs.

Ovary reproductive function is the result of numerous

interactions, among which follicular reserve plays a

fundamental role. It is known that the PMF pool constitutes

the ovarian reserve, and both reproductive and endocrine

functions are limited by the PMF pool (4). Multiple cellular

components of follicles coordinate and interact to regulate

ovarian hormone secretion and affect oocyte development and

maturation. As the number of follicles decreases, the quality of

oocytes diminishes as well, especially after the age of 35 years

(93). Research has shown that the decline in follicle numbers is a

biexponential function of age, and this change occurs at the

critical value of 25 000 follicles at the age of 37.5 years (94). The

menopause transition marks a period of physiological change,

during which the ovaries undergo incremental natural aging,

and the PMF pool experiences a continuous irreversible decline

(101). Subsequently, the rate of ovarian aging was unexpectedly

accelerated. At the age of 51 years, the number of follicles

decreased to 1000, which can be used as a threshold for

menopause, as it corresponds to the average age of menopause

in women (93, 102).

Ovarian endocrine function is jointly affected by ovarian

sympathetic innervation, feedback regulation of the HPO axis,

and complex interactions of the hormone axis (99). Follicles are

not only the source of supply for female germ cells but also

secrete essential hormones necessary to maintain normal

endocrine function (103). The accelerated depletion of follicles

in the PMF pool during the subfertility period may be related to

increased sympathetic nerve excitement. Currently, studies have

confirmed the presence of sympathetic innervation of the ovary,

including the ovarian plexus nerve (projecting to the ovarian

vasculature) and the superior ovarian nerve (projecting to the

follicle), which can regulate ovarian blood flow and directly

regulate steroid hormone production (104).

Ovarian aging is linked to changes in the HPO axis and a

progressive decline in ovarian endocrine function, especially

disorders of sex hormone levels. Among many sex hormones,

anti-Müllerian hormone (AMH) is still the preferred ovarian

reserve indicator in various clinical situations (105). AMH is

produced by granulosa cells of small antral follicles in the ovary,

not controlled by the hypothalamus or by gonadotropins, and

independent of the menstrual cycle (106). A clinical trial showed

that serum AMH levels in women aged 21-41 years declined by

5.6% per year (107). In addition, the complex interaction of

follicle-stimulating hormone (FSH) and luteinizing hormone

(LH) in the hypothalamus, anterior pituitary gland, and

reproductive organs has complementary effects on ovarian

folliculogenesis and ovulation (108). With age, women will
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experience early menopause transition, characterized by

fluctuations in estrogen levels but generally sufficient, and

ovulation generally occurs during the menstrual cycle (109).

Finally, menopause is the final manifestation and hallmark event

of ovarian aging, which manifests as a permanent cessation of

the menstrual cycle and a serious decline in hormone secretion

after the loss of follicular activity, especially the decline in

estrogen levels (110).
Clinical symptoms and mechanisms
of ovarian aging

Clinical symptoms of ovarian aging

The female reproductive system, especially the ovaries, is

aging before any other organ system. This phenomenon has

obvious clinical significance and may lead to infertility, abortion,

birth defects, menstrual cycle disorders, or even amenorrhea and

systemic deterioration caused by estrogen deficiency (111). A

cohort study of 751 women who were artificially inseminated

showed that the probability of pregnancy decreased rapidly after

31 years of age, and the probability of adverse pregnancy

outcomes began to increase (112). In addition, ovarian aging

may manifest as a shortened or prolonged menstrual cycle,

irregular cycle, excessive or insufficient menstrual volume, and

perimenopausal abnormal uterine bleeding (113). Ovarian aging

leads to estrogen deficiency, which not only directly affects the

tissues and organs with estrogen receptors, such as the ovary,

endometrium, vaginal epithelium, skin, hypothalamus, and

urinary tract but also influences other aspects of the organism,

including the cardiovascular, musculoskeletal, and immune

systems, emotional and sleep patterns, cognitive ability, and

energy metabolism (114). For example, degenerative skin

changes occur with estrogen deficiency, characterized by skin

atrophy and accelerated skin aging, including collagen atrophy,

elasticity and epidermal thickness decrease, elongation increase,

wrinkles, and dryness (115). In the cardiovascular system,

estrogen deficiency can downregulate the production of nitric

oxide, reduce endothelial-dependent vascular function and

adversely affect cytokine-mediated cell adhesion and

antiatherosclerosis activity (116). Estrogen deficiency can also

lead to bone loss, articular cartilage degeneration, and increased

risk of fracture, possibly causing pain, loss of mobility, and the

development of osteoporosis (117). In muscle, estrogen has a

significant effect on the stability of muscle membranes and can

reduce or delay leukocyte infiltration after muscle injury (118).

In the central nervous system, decreased estrogen levels

influence cognition, sleep and mood and affect many

neuropsychiatric disorders, including Alzheimer’s disease,

schizophrenia, and depression (119, 120).
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Potential mechanism of ovarian aging

The lifespan of the ovary depends on the delicate balance

between the survival and death of oocytes. PMF activation is the

basis for ovarian folliculogenesis and maintenance of fertility

(121). However, damage during ovarian folliculogenesis,

including the activation, recruitment, and development of

early follicles, has a complex relationship with ovarian aging.

In addition, depletion of the PMF pool caused by massive

follicular atresia and periodic ovulation is the fundamental

cause of ovarian aging.

Since the first use of [3H]-thymidine ([3H]-TdR) incubation

to distinguish between slow-growing follicles and dormant

PMFs, studies related to ovarian folliculogenesis have been

conducted for more than 30 years. The regulatory mechanism

of folliculogenesis, especially PMF activation, remains difficult to

uncover due to the sophisticated process. Otsuka and Shimasaki

demonstrated that the mitotic activities of oocyte-derived bone

morphogenetic protein-15 and GC-derived kit ligand depend on

the oocyte-GC communication system, which may play a pivotal

role in ovarian folliculogenesis (122). Additionally, a series of

protein and polypeptide hormones secreted by the pituitary

gland, such as prolactin (PRL), growth hormone (GH), FSH,

and LH, are essential for the activation and initial recruitment of

PMFs and the development of growing follicles (123, 124).

Studies also suggest that cytokines such as epidermal growth

factor (EGF), transforming growth factor-alpha (TGF alpha),

basic fibroblast growth factor (bFGF), and IGF-1 are involved in

folliculogenesis and ovulation (125–128).

Forkhead box L2 (FOXL2), a winged helix/forkhead domain

transcription factor, is preferentially expressed in the ovary,

eyelids, and pituitary gland (129). Studies have shown that

FOXL2 participates in multiple stages of ovarian development

and function and the differentiation of pregranulosa cells (91). A

sufficient number of pregranulosa cells expressing FOXL2 and

primary oocytes arrested at the diploid stage of MI are two

indispensable prerequisites for pregranulosa cells to break

through germline cysts and move around primary oocytes

(130). Additionally, research has demonstrated that the short-

term treatment of mouse ovaries with a phosphatase and tensin

homolog deleted on chromosome 10 (PTEN) inhibitor or a

phosphatidylinositol-3-kinase (PI3K) activator could increase

the phosphorylation of protein kinase B (AKT) and the

nuclear export of downstream forkhead box O3 (FOXO3)

protein, thereby effectively activating dormant PMFs (131, 132).

Obviously, abnormal follicular activation and atresia are the

intrinsic mechanisms of ovarian aging, which may involve

endocrine, paracrine, or autocrine signaling pathways.

Follicular atresia is closely related to autophagy or apoptosis

(133). Autophagy, a highly conserved intracellular process that

maintains homeostasis by removing useless, senescent organelles

and macromolecules, is a unique pathway to cell death as well as
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an adaptive response that promotes cell survival (134).

Numerous autophagosomes and autophagic responses were

reported to be mainly observed and detected in dead oocytes,

especially in primordial and primary follicle oocytes (135). Cell

apoptosis appeared only in GCs around the secondary or antral

follicles, suggesting that both apoptosis and autophagy can

mediate the onset of follicular atresia, while cell apoptosis may

be the main form of postnatal follicular atresia (136).

Cell apoptosis, especially the intrinsic mitochondrial

pathway, is regulated by B-cell lymphoma-2 (BCL-2) family

proteins (137). Myeloid cell leukemia-1 (MCL-1), an

antiapoptotic protein of BCL-2 family members, has a

prosurvival effect in various cell types (138). MCL-1 deficiency

activated apoptosis in early PMFs, increased markers of

mitochondrial dysfunction and autophagy in growing oocytes,

activated the apoptosis cascade reaction, and increased

sensitivity to cell fragmentation in ovulated oocytes (139).

Therefore, MCL-1 is considered to be a basic survival factor

for maintaining the postnatal ovarian reserve, survival of

growing follicles, and effective mitochondrial function of

oocytes (139). Endogenous advanced glycation end products

(AGEs) and the receptor for AGEs are expressed in luteinized

and theca cells as well as GCs derived from ovaries, and AGEs

can induce ROS chain reactions and increase inflammation,

resulting in protein, lipid, and nucleotide damage during aging

in the ovarian microenvironment (140–142). The accumulation

of age-related AGEs in ovarian follicles triggers ovarian aging,

which may be related to the regulation of AMH and AMHRII

expression to affect ovarian reserve, reduce ovarian vascular

supply and decrease glucose uptake in GCs (143, 144).
Potential retrieval strategies for
ovarian aging

Delaying childbearing among women has become a

universal phenomenon due to sociodemographic, economic,

medical, lifestyle and behavioral factors (145, 146). Human

female fertility and reproductive lifespan decline with

physiological aging and pathological failure, accompanied by a

decline in birth rates and an increase in the number of childless

adults (147–149). Attention to aging, especially ovarian aging,

and finding potential retrieval strategies to improve fertility and

healthy life expectancy has become an urgent task in the

reproductive field (4, 150).
Dietary interventions

Calorie restriction, the reduction of dietary intake to below

energy requirements while maintaining optimal nutrition, is

considered one of the most promising nutrit ional
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interventions to attenuate aging (151, 152). Despite its

simplicity, a constant reduction in calorie or food intake is not

easy to maintain in the long run. Recently, fasting-related

interventions, such as prolonged fasting, time-restricted eating,

and intermittent fasting, have emerged as alternatives to calorie

restriction (153). Many studies based on animal models confirm

that calorie restriction can delay the progression of diabetes,

stroke, neurodegeneration, sarcopenia, and cardiovascular

disease; reduce the cytotoxicity of chemotherapy; and alleviate

immune system disorders (154, 155). In addition, calorie

restriction can reduce the activation of PMFs and increase the

number of quiescent PMFs in mice, which is beneficial to the

protection of ovarian reserve and may be a potential way to delay

menopause (156).
GH/IGF-1 axis interventions

The mechanistic links between GH and aging mainly involve

the evolutionarily conserved insulin/IGF-1 and mTOR signaling

pathways that affect growth, immunity, metabolism,

homeostasis and aging (157, 158). The secretion of both GH

and IGF-1 peaks at puberty and gradually decreases in

adulthood until only low levels are detectable in individuals

aged ≥60 years (159, 160). IGF-1 levels in vivo are regulated by

GH, and IGF-1 also has a negative feedback regulation on GH

secretion (161, 162). Studies have shown that IGF-1 has

important effects on the healthy growth and function of cells

and tissue in model organisms (163–165). GH can not only

directly affect human oocytes and cumulus cells but also

indirectly influence oocyte quality and maintain oocyte DNA

integrity by activating IGF-1 synthesis or promoting ovarian

steroidogenesis (166–168). Studies confirm that the GH/IGF-1

axis not only inhibits ROS accumulation and apoptosis in GCs

but also regulates steroidogenesis and follicular proliferation in

polycystic ovary syndrome (169, 170).
mTOR/S6 kinase pathway interventions

mTOR is a highly conserved serine/threonine-protein kinase

(171). mTOR acts as a signal transduction center that integrates

environmental and intracellular nutrients and growth factor

signals and regulates various processes, including cell

proliferation, metabolism, immunity, cellular senescence, and

protein synthesis (172, 173). In addition, mTOR can

phosphorylate and activate ribosomal protein S6 kinase (S6K),

which is the key regulatory element of cellular transcript

translation and protein synthesis (174). The AKT/mTOR

signaling pathway controls ovarian folliculogenesis by

maintaining the PMF pool, including PMF activation, GC

proliferation, and oocyte-GC intercellular communication

(175). Studies have shown significant activation of the AKT/
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mTOR/S6K signaling pathway in humans with POI (176).

Therefore, regulating the AKT/mTOR/S6K signaling pathways,

such as AKT activators and mTOR activators, can induce further

follicular maturation and development in women with

POI (176).
AMPK or specific sirtuin interventions

AMPK, a serine/threonine-protein kinase, is one of the key

energy sensors in eukaryotic cells and organisms and plays

critical roles in regulating growth and reprogramming

metabolic processes, such as autophagy, mitochondrial

biogenesis, and lipid, cholesterol, and glucose metabolism

(177). For example, AMPK activation in multiple tissues can

autonomously and involuntarily induce autophagy, allowing

cellular components to be recycled for energy production

under nutrient-limited conditions (178, 179). With increasing

age, the responsiveness of AMPK signaling decreases, and the

aging process increases, leading to impaired maintenance of

cellular homeostasis (180). Studies have confirmed that

modulation of AMPK signaling can activate autophagy in

GCs, affect human ovarian function, and lead to abnormal

folliculogenesis (181). Furthermore, AMPK is necessary for the

normal response to steroid hormones, and its intervention has

potential significance for delaying ovarian aging (182).

Sirtuins are a family of NAD-dependent histone deacetylases

that modulate cellular functions, such as genomic stability,

mitochondrial biogenesis, cellular metabolism, autophagy or

apoptosis, and the inflammatory response (183). Seven sirtuin

isoforms catalyze specific lysine substrate deacetylation in

mammals (184, 185). As a promising target for the prevention

of aging-related diseases, sirtuin 1 is the most commonly studied

isoform (186, 187). Several plant-derived polyphenol

compounds, including resveratrol, butein, fisetin, and

quercetin, can activate sirtuin 1 and exert beneficial effects on

longevity (188). Studies have shown that resveratrol can enhance

luteinization-related gene expression and ovarian progesterone

secretion and improve the quality of cryopreserved ovarian

tissue and embryo outcome in mice after transplantation

through anti-inflammatory and antioxidant mechanisms

(189, 190).
Stem cell interventions

The exploration of stem cell and stem cell-derived

extracellular vesicle therapy in reproductive medicine has

shown great promise and availability in preclinical and clinical

trials to delay, prevent or even reverse ovarian aging (191, 192).

In preclinical trials, rhesus monkeys provide a suitable model for

studying ovarian aging (193). Research has observed that using

juvenile bone-marrow-derived mesenchymal stem cells (BM-
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MSCs) to treat macaques with ovarian aging can increase

ovarian volume, strengthen hormonal regulation, and promote

follicular regeneration in senescent macaques (194). Recently,

several clinical trials using autologous BM-MSCs and allogeneic

human umbilical cord-derived mesenchymal stem cells (UC-

MSCs) in the treatment of patients with premature ovarian

failure have demonstrated encouraging preliminary data in the

rescue of overall ovarian function, as evidenced by increased

ovarian volume, resumed menstruation, improved levels of

estradiol and AMH, increased number of stimulating antral

follicles, and alleviated menopausal symptoms (195–198).
Embryos, oocytes, or ovarian
tissue cryopreservation

The possibility of freezing oocytes and embryos has been

available for a long time, and the first birth with thawed oocytes

was achieved in 1983 (199). However, ovarian translocation and

cryopreservation of embryos and oocytes are not suitable for

prepubertal girls and women requiring urgent initiation of cancer

treatment (85, 200). At present, ovarian tissue cryopreservation is

a potential therapeutic option for ovarian function recovery in

POI patients without ovarian stimulation or subsequent delay in

the start of cancer treatment (201). The cryopreserved ovarian

cortex can be thawed and autotransplanted, which has been

proven to restore fertility, preserve ovarian endocrine function,

and avoid the incidence of premature menopause, thereby

delaying ovarian aging (202). However, the main challenges for

ovarian transplantation are the massive loss of PMFs during

ischemia and hypoxia and the risk of reintroduction of

malignant cells with transplanted tissues (203, 204).
Conclusion and perspectives

The ovary is the core reproductive organ of women and is

crucial for maintaining normal reproductive and endocrine

function stability. With the increase in lifespan expectancy,

ovarian aging has gradually become a key health problem for

women and is associated with a progressive age-related
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decline in the number and quality of oocytes. When these

processes occur earlier or accelerate, their clinical correlation

is the diminished ovarian reserve and/or triggers POI.

Therefore, clarifying the hallmarks of aging, further

studying the molecular mechanisms of ovarian aging and

optimizing ovarian aging interventions are of profound

significance for inhibiting aging-related diseases, reversing

or preventing ovarian aging, and promoting female health

and longevity.
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