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Human islet transplantations into rodent models are an essential tool to aid in

the development and testing of islet and cellular-based therapies for diabetes

prevention and treatment. Through the ability to evaluate human islets in an in

vivo setting, these studies allow for experimental approaches to answer

questions surrounding normal and disease pathophysiology that cannot be

answered using other in vitro and in vivo techniques alone. Intravital

microscopy enables imaging of tissues in living organisms with dynamic

temporal resolution and can be employed to measure biological processes in

transplanted human islets revealing how experimental variables can influence

engraftment, and transplant survival and function. A key consideration in

experimental design for transplant imaging is the surgical placement site,

which is guided by the presence of vasculature to aid in functional

engraftment of the islets and promote their survival. Here, we review

transplantation sites and mouse models used to study beta cell biology in

vivo using intravital microscopy and we highlight fundamental observations

made possible using this methodology.
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Introduction

Diabetes is a growing public health concern, with an estimated 536.6 million people

currently diagnosed worldwide and a projected increased incidence to 783.2 million

people by 2045 (1). Both type 1 and type 2 diabetes are characterized by failure of beta

cells within the islets of Langerhans of the pancreas, resulting in defective insulin

secretion from the beta cells that leads to clinical hyperglycemia. Although significant

progress has been made in treatments for both type 1 and type 2 diabetes, we do not yet

have a full picture of the pathophysiology of either disease. In fact, we, as a field, have only
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recently begun to fully understand what constitutes a normal

pancreatic islet (2). This is due, at least in part, to caveats with

the models used to study diabetes and in particular the nature of

how islets are often examined in isolation. For the study of

human islets, we are limited by the relative inaccessibility of the

pancreas as well as obvious ethical issues that require evaluation

of islets only after their removal from cadaveric donors.

Although evaluation of isolated islets has provided a wealth of

valuable fundamental information, this approach makes it

difficult to answer questions that are intrinsic to the in vivo

islet niche. Proper functioning of endocrine cells within the islets

requires crosstalk with numerous cell types found in the local

microenvironment, including vascular cells, neuronal cells,

immune cells, and the exocrine pancreas (3).

Therefore, models to study islet function and dysfunction

should take the islet niche, and connections with other cell types

beyond the islet, into consideration to allow for physiologically

relevant evaluation of both function and dysfunction. One way

to mimic the local islet microenvironment is to transplant the

isolated islets into a rodent to provide an environment

containing some of the same cell types of the pancreatic niche.

Importantly, when using islets isolated from human donors, an

immunodeficient or humanized mouse model must be used to

prevent rejection. While neither of these models allow for perfect

recreation of the local islet microenvironment, both can be used

as powerful tools to study beta cell biology, allowing for

interaction with the local vasculature and effective

engraftment. Humanized mouse models also al low

incorporation of immune cell-islet interactions by attempting

to replicate a host immune system (4). Although not yet shown

with transplanted human islets, reinnervation has been

demonstrated with mouse islets allografts transplanted under

the kidney capsule of inbred wild type mice (5). Thus, current
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models used to transplant islets to study beta cell biology can

recapitulate many cell-cell interactions found in the local islet

microenvironment, and future developments are likely to

continue to increase capabilities.

The initial engraftment of islets is a highly stressful period

when islet viability is challenged and limited by multiple factors

that can vary depending on site of transplantation, with one

major factor being revascularization of the xenografts. Vascular

cells have been shown to play a significant role in regulation and

support of several physiological processes in beta cells, including

proliferation, differentiation, insulin secretion, and viability (6–

9). With vasculature being a major factor in determining proper

islet engraftment, survival, and function, highly vascularized

areas such as the kidney capsule and the anterior chamber of

the eye (ACE) provide promising sites for transplantation of

islets, as highlighted in Figure 1. Also highlighted in Figure 1 are

the pinna of the ear and the subcutaneous space, sites that are

not well-vascularized innately, but may be induced to vascularize

islet xenografts. In the sections below, we will highlight studies of

human islets in each of these transplant sites, with a particular

focus on the use of intravital microscopy as an approach to study

their function. Intravital microscopy is a method in which

conventional confocal, widefield fluorescence, or multiphoton

microscopy are employed to collect images within living

organisms, providing comprehensive insight into dynamic

processes occurring within the body (28–32). Since first

introduced by Antony van Leeuwenhoek to image nearly

translucent tissues with bright-field transillumination (33), the

technique of intravital microscopy has progressed significantly

with advances in microscope technology. This technological

advancement has occurred in parallel with expansion of

experimental imaging techniques, significantly increasing a

researcher’s capability to study complex biological interactions
FIGURE 1

Islet Transplantation Sites for Intravital Microscopy Purposes. Multiple sites of islet transplantation may be used to perform intravital imaging
studies to elucidate mechanisms of islet biology, several of which are highlighted along with relevant references numbered. Although the pinna
of the ear has not been used as a transplantation site to image human islets in vivo to date, there is potential for this site with several studies
demonstrating that the xenografts are functional and can be readily imaged. Image was created using BioRender.com.
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over time. Of note, the development of both optical fiber

implantation (34) and imaging windows have allowed for

longitudinal monitoring of dynamic physiological processes in

vivo. Prior to these advancements, intravital microscopy was

only possible for a single session due to requirement of terminal

surgeries. The ability to longitudinally image a physiological

event in vivo was first introduced seven decades ago with use of

the dorsal skin window chamber model, allowing angiogenesis to

be observed in real time (35). To date, intravital imaging utilizing

these longitudinal techniques has now been used to study an

array of tissue types and organ systems, including the skin, brain

(36), mammary gland (37), lung (38), pancreas (25), kidney (39),

liver (40), lymph nodes (41), bones such as the femur (42), and

embryos (43–46). Although these studies were imperative to

push the field of intravital microscopy forward, in this review,

will focus solely on intravital microscopy studies of transplanted

islets. We will also highlight how these approaches have

improved our understanding of human islet biology and

discuss how technological advancements continue to move the

field forward in this realm.
Intravital microscopy as a tool to
study transplanted islets

To study islet physiology and alterations in function during

disease pathogenesis and stress response, intravital microscopy

has emerged as a powerful tool for discovery, containing

different microscope options to optimize user experience. In

combination with fluorescent probes, widefield fluorescence,

confocal or multiphoton microscopy are the most used

options for intravital microscopy (47–49). Widefield

fluorescence microscopy uses a powerful light source (mercury

or xenon lamp) to illuminate fluorophores within living tissue,

potentially causing tissue damage during prolongated imaging.

However, despite this potential drawback, big area overviews can

be imaged simultaneously at relatively high speeds, with detailed

structural morphologies visualized. Currently, no work has been

published utilizing widefield fluorescent microscopy of engrafted

islets due to limitations of this approach and low system

availability. Confocal microscopy utilizes lasers with a pinhole

technology as a light source, illuminating highly defined areas of

interest within a tissue. This technology allows for an increase in

spatial resolution and reconstructed 3D views of the objects but

has limitations in the laser light penetration depth and

potentially causes phototoxic effects during prolonged imaging

sessions. Using an excitation wavelength in the infrared

spectrum, a multiphoton system can penetrate deeper into a

tissue of interest, achieving depths of over several hundred mm
(31), thus providing unprecedented access to tissues in the

context of live animal imaging. Also unique to multiphoton

imaging systems, structures such as fibrillar collagen, myosin,
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and myelin may be visualized without addition of any exogenous

probes due to its unique second harmonic generation capabilities

(50, 51). Third harmonic generation is also possible due to the

high-power output of infrared pulse lasers, and this technique

allows visualization of lipid droplets as well as the species

discussed for second harmonic generation. The combination of

these unique techniques with conventional fluorophores

increases the potential observation parameters to study with

multiphoton microscopy. Intravital microscopy can be used to

study many physiological events in live animals, allowing

researchers to detect changes in complex biological processes

as they occur in the organism and has been used to study many

aspects of islet biology, including immune interactions in

diabetes pathogenesis (52–55), islet vasculature morphology

and flow rate (56), and changes in redox state and calcium

dynamics (25). However, with the rapid pace of advancement in

microscope technology, image analysis software, fluorescent

probes, and biosensors, there are continuously evolving

biological applications and potential for discovery using

this approach.
Transplantation sites for fluorescent
imaging purposes

Kidney capsule

In murine studies, the most common transplant site for

human islets is beneath the kidney capsule (57). The kidney

capsule provides a smooth surface that is beneficial for imaging,

and the islets become well vascularized (26, 58), provided with

the necessary nutrients to thrive and function. In the

endogenous pancreas, a well vascularized environment also

allows for efficient dissemination of insulin released from the

islets (10), with numerous studies demonstrating transplant

restoration of euglycemia in several diabetic immunodeficient

mouse models (58–60). With sufficient vascularization,

transplanted islet grafts are stable and can survive for over a

month within the host animals (61, 62), with the current longest

reported time of survival being over 300 days (60).

After successful transplantation, intravital microscopy can

be employed as a tool to measure beta cell biology and disease

pathophysiology in vivo. To study specific mechanisms of islet

physiology, various virally packaged biosensors have been used

successfully to study islet and beta cell responses to stimuli. With

transplanted islets, a biosensor of interest can be used to

transduce islets in vitro prior to transplant into the animal (25,

27). Following transplantation, we have found that within 2-3

weeks, islets become properly vascularized and gain optimal

biosensor expression (25). To perform terminal intravital

microscopy on islets transplanted under the kidney capsule,

live animals under anesthesia require only a minimally invasive
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surgery to externalize the kidney for imaging. While placed upon

the microscope stage, various treatments, antibodies, and

fluorescent probes can then be introduced into the animal

utilizing multiple routes of administration that include retro-

orbital, intraperitoneal, and subcutaneous injection (Figure 2A).

This highlights the importance of a well-vascularized

environment surrounding the transplanted islets, because

without sufficient vascularization, not only will the graft

undergo cell death in the immediate post-transplantation

period, but the injected reagents would also be unable to reach

their target within the transplanted islets.

Abdominal imaging windows may also be surgically

implanted for intravital imaging, allowing longitudinal

monitoring of biological processes in human islets

transplanted under the kidney capsule (26). The abdominal

imaging windows are typically constructed of the glass

coverslip supported by the titanium frame, which is surgically

inserted and sutured on top of the organ of interest (63).

However, this conventional window construct is limited due to

the rigidity of the materials, which can lead to window

detachment and further complications of skin irritation, tissue

degradation, and inflammatory responses. To address those

limitations, flexible imaging windows, previously used to

image organs such as the pancreas, open a new avenue for the

longitudinal intravital imaging of transplanted islets under the

kidney capsule of mice (64).
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Islets transplanted under the kidney capsule are fully

functional and biological response to stressors can be

monitored. Lentivirus containing human insulin promoter–

GFP (HIP-GFP) has been employed to aid in the marking of

transplanted human islets under the kidney capsule, allowing

researchers to inject Texas Red-conjugate dextran to visualize

vascularization following engraftment (65). With respect to

function, we have found that transplanted mouse islets

expressing a beta cell selective GRX1-roGFP2 biosensor to

detect reactive oxygen species (ROS) respond rapidly to

systemic administration of the toxic glucose analog and ROS-

generator, alloxan (25). Similar to mouse islets, human islets

from cadaveric organ donors are also well engrafted and express

GRX1-roGFP2 sensor robustly two weeks after transplant

surgery (Figure 2B). Though no studies currently exist

evaluating human islet function in the kidney capsule using

genetically encoded fluorescent biosensors, the components are

in place for future discovery in this context.
Anterior chamber of the eye

Just over ten years ago, groundbreaking research identified

the anterior chamber of the eye (ACE) as a site for successful islet

transplantation and this discovery has progressed into clinical

trials in T1D patients (66, 67). Indeed, the eye is widely used as a
A B

FIGURE 2

Imaging Scheme for Intravital Imaging of Transplanted Human Islets Under the Kidney Capsule. (A) Human islets isolated from a cadaveric
donor can be transduced with a virally packaged biosensor as desired to visualize function in vivo. Transduced islets then remain in viral media
overnight to gain optimal biosensor expression before transplantation into a recipient animal the following day. If the experimental design does
not include transduction, islets can be transplanted after overnight recovery from shipment. Following delivery of the islets to the recipient, a 2–
3-week period is required for islet engraftment and recovery. During this time, the islets become optimally vascularized, and transduced
biosensors mature. For terminal imaging experiments, the recipient animal is anesthetized, and the kidney is externalized and sutured for stable
positioning during image acquisition. After externalization, the kidney is placed upon a glass bottom dish, and the animal is transferred to the
microscope stage. Once upon the stage, various treatments, fluorescent probes, and antibodies can be injected for evaluation of islet
physiology and cellular response to stimuli. Image was created using Biorender.com. (B) Representative example of human islets engrafted into
the kidney capsule of an NSG mouse. In both the tiled image of a large region of the pancreas, as well as in the zoomed in view, islet beta cells
can be observed expressing a ratiometric biosensor to measure reactive oxygen species under the control of a rat insulin promoter [Ins-GRX1-
roGFP2 (25)] with vasculature marked by IV-injected albumin conjugated to AlexaFluor-647.
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transplantation site for longitudinal islet studies (68, 69). The

ACE is an oxygen-rich and metabolic stress reducing

environment that has also been described as an immune-

privileged environment (65, 70), meaning that allografts may

resist rejection through limited immune cell migration from

systemic circulation via the blood-ocular barrier (71, 72).

However, this has been challenged by observations of rejection

(73, 74) and visualization of immune attack (75) when

transplanting islets in the ACE. After transplantation, islets

readily engraft on the iris, a highly innervated and

vascularized structure. Using the ACE as a transplant site

allows for less invasive longitudinal imaging than in other

sites, utilizing the eye as a natural imaging window (11).

Animals undergo a minimally invasive surgery to transplant

the islets into the ACE and recipient animals recover quickly,

permitting single-cell resolution imaging within days after

transplantation. Repeated imaging of islets transplanted into

the ACE also does not require additional surgery or maintenance

of an imaging window, making it an appealing method for in

vivo imaging of transplanted islets. Both human and murine

islets transplanted into the ACE become well vascularized (12,

13), allowing for physiological interaction with vascular

endothe l i a l c e l l s and per i cy t e s a s in the na t i ve

microenvironment. In murine islets, angiogenesis begins

roughly one day after transplantation (14), but vascular

density similar to what is seen in the native islet environment

is not observed until roughly four weeks following delivery (76).

Studies have also shown that the highly innervated iris provides

a supply of sympathetic and parasympathetic nerves to

transplanted mouse islets (15), with no studies to date showing

this result with human islets. To ensure that the surgical

procedure does not lead to sustained interocular pressure

(IOP) within the eye, researchers have utilized contact lenses

equipped with a strain sensor to measure IOP and found that it

was slightly elevated after the procedure, but this mild increase

was diminished two weeks following islet transplantation (16).

This result is reassuring, suggesting that the surgery does not

cause lasting damage to the recipient due to buildup of

ocular pressure.

Many imaging experiments to study beta cell biology have

been performed using transplanted human islets in the ACE,

including the study of NAD(P)H response (12), calcium

dynamics (17), and beta cell mass (18). Much as with the

transplantation of islets under the kidney capsule, biosensors

can be utilized to infect islets prior to transplantation to report

upon islet responses to stimuli (19). For example, an adenoviral

calcium biosensor, GCaMP6m, has been used to infect human

islets transplanted into the ACE of immunocompromised mice,

demonstrating that islet calcium dynamics were functionally

conserved (20). Also, once the animal is being imaged, injection

of various treatments and probes may be employed to study beta

cell biology during imaging, such as injection of a vasculature

dye or cell death marker (21). Aside from using islets isolated
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from cadaveric donors, human induced pluripotent stem cells

(hiPSCs) can be differentiated in vitro into islet-like structures

for transplantation purposes, potentially reducing the burden to

obtain human tissue for future studies (21), making exciting

future discoveries using these cells possible.
Pinna

Advances in ear reconstructive surgery to correct congenital

malformation or injury highlight the capacity for this tissue to

support remodeling and acceptance of recipient tissue (77, 78).

To date, two research groups have performed pioneering studies

of murine islets transplanted into the pinna of the ear, a site that

is advantageous for the potential of performing non-invasive

intravital imaging. In one instance, the islets were transplanted

into the pinna without any additional supportive matrices and

insulin positive cells persisted at 12 weeks post transplantation as

detected by immunofluorescent staining (22). In this study,

multiphoton intravital microscopy resolved fluorescent T-cell

infiltration within the transplanted islets, demonstrating that

this transplantation site is indeed suitable for non-invasive in

vivo imaging studies (22). Of note, in other studies when islets

were again transplanted with no additional matrices, the islets

were not able to restore STZ-induced hyperglycemia (23). This

suggested a defect in microenvironment of the islets that

impacted stimulus/secretion coupling or engraftment and

precluded optimal function. However, when this group co-

transplanted the islets with epididymal fat pad, basement

membrane matrix, rat tail collagen and basic fibroblast growth

factor or rat tail collagen and vascular endothelial growth factor,

they found that hyperglycemia was reversed (23). Subsequent

intravital imaging on transplanted islets expressing GFP

confirmed that this transplantation site can be used for

intravital microscopy studies.
Subcutaneous space

Another minimally invasive and easily accessible area of islet

transplantation is the subcutaneous space. Although

subcutaneous islet transplant studies commonly involve the

study of euglycemia restoration following diabetes induction,

this method of transplantation has also been utilized in intravital

microscopy studies involving photoacoustic imaging due to

proximity to surface (24). However, to date, this method of

imaging has only been used to study transplant revascularization

in syngeneic recipient animals (24). The major drawback of

using this site for islet transplantation is the relative avascularity

of this environment compared to other transplantation sites

discussed above. Thus, an additional method must first be

deployed to ensure engraftment, such as the induction of an

immune response driving angiogenesis with insertion of a
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hollow nylon catheter (24) or through the use of a viability

matrix with transplantation (23). Additionally, co-

transplantation of islets and adipose-derived microvessels into

the subcutaneous space may be employed to accelerate the

establishment of a host-graft vascular network (79). When the

initial hypoxic graft response is reduced, an environment

mimicking native islet vascular conditions can be maintained.

The subcutaneous space is thus of significant interest for its ease

of access, and studies of human islets alone (79) or in islet

containment devices (80) for studies focused on therapeutic islet

replacement have produced promising and exciting results in

recent years.
Mouse models used for
transplantation

Several mouse models can be employed as experimental

hosts in the study of human islet transplantation, including both

immunodeficient and humanized strains of mice. While

immunodeficient mice are selected as hosts for transplantation

to prevent rejection of an islet xenograft, studies of human islets

and their interaction with the immune system can be performed

using humanized mice models.
Immunodeficient mice

To transplant human islets into mice, an immunodeficient

mouse model must be used to prevent xenograft rejection. The

most common immunodeficient mouse model for islet

xenografts is the NOD.Cg-PrkdcscidIl2rgtm1Wjl mouse model,

also known as NOD-scid gamma (NSG) mouse strain. In this

severely immunodeficient model, the Il2rg, or the IL-2 receptor

gene, is knocked out completely, resulting in a lack of mature

natural killer (NK) cells. Also, the severe combined

immunodeficiency, or scid, mutation is present in Pkrdc, a

DNA repair protein. With this mutation, there is a severe

combined immune depletion of both B and T cells, hence the

scid designation. Several studies have used this strain for human

islet transplants without rejection reported (26, 59, 60, 81).

However, for longer term studies, graft vs host disease

(GVHD) is still a concern. MHC class I/II null mice have been

developed to address this (82) and are now commercially

available from Jackson Labs.

Several additional models with various degrees of immune

depletion have also been used for human islet transplant studies.

This includes CB17.Cg-PrkdcscidLystbg-J/Crl (SCID beige) mice, a

congenic line that results in defective NK cells, T cells, and B cells

through mutations in Pkrdc and Lysbtg (79, 83, 84). Another

immunocompromised mouse model occasionally used in

human islet transplants is the CAnN.Cg-Foxn1nu/Crl (BALB/c
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nu/nu) mouse model (85, 86). This mouse lacks a functional

thymus, rendering the animals incapable of forming functional T

cells. Like the BALB/c Nude mice, the outbred Crl : NU-Foxn1nu

(NU/NU) mouse has also been used for human islet

transplantation experiments (20, 87). Originally believed to be

a congenic BALB/c line, this mouse model is outbred and lacks a

functional thymus, leading to T cell deficiency.

The NOD-Rag1null IL2rgnull Ins2+/Akita, or NRG-Akita,

strain is uniquely suited to studies of xenograft performance in

the absence of an endogenous complement of beta cells to

maintain glycemia. These mice develop spontaneous

hyperglycemia due to a mutation in the insulin 2 gene that

leads to improper proinsulin folding and severe ER stress-

induced beta cel l death. These mice are rendered

immunodeficient by null mutations of Rag1 and perforin 1

(Prf1) genes, leading to inactivated NK cells and immature B

cells and T cells. Several studies have used this line for human

islet transplants since it prevents transplant rejection while

maintaining the disease state of hyperglycemia through

ablation of endogenous beta cells (79, 88). Under these

conditions, the transplant bears the full burden of insulin

secretion to obtain normoglycemia. While this effect can be

obtained in other models by endogenous beta cell ablation using

the toxic glucose analogue, streptozotocin (STZ), prior to islet

transplant, some researchers may prefer the simplicity of

endogenous beta cell death without the necessity of the use of

a biohazard such as STZ.
Humanized mice

Although mice provide many valuable insights into

biological processes, many findings from studies in mice do

not translate well into clinical settings. To study aspects of

human biology in vivo, humanized mice were created, allowing

the study of the human immune system in several disease

contexts, such as autoimmune disorders, cancer, and infectious

diseases. Humanized mice are defined as immunodeficient

mouse models that are engrafted with peripheral blood

mononuclear cells (PBMCs) or hematopoietic stem cells,

allowing for study of the human immune response in certain

contexts, such as immune interaction with transplanted islets

(4). PBMCs are comprised of multiple types of immune cells

such as T cells, B cells, NK cells, and monocytes. While

commonly used to study mechanisms of xenograft rejection

and immunosuppressive agents as preclinical therapeutics (89–

92), these models can readily be used to study interactions

between human immune cells and transplanted human islets

in vivo with intravital microscopy. When utilizing these models

to perform intravital imaging, several aspects of the immune

response can be studied, providing mechanistic insight on how

the human immune system reacts to allogenic transplants.

Although studies have not been performed using intravital
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microscopy of transplanted human islets in humanized mice to

date, several studies have been conducted using intravital

imaging of humanized mice in different contexts (93, 94),

showing that these mouse models may be used for human islet

intravital imaging experiments in the future. As the race to

develop cell-based insulin replacement therapies continues,

intravital imaging of transplanted beta cells or islet-like

structures will likely be a valuable tool to readily assess

function, immune response, and efficacy of matrices or other

interventions geared to protect the transplanted material.
Discussion and limitations

With beta cell dysfunction present in both T1D and T2D, a

need exists to study the pathophysiology of beta cell failure. One

emerging molecular technique to address this need is human

islet transplantation into rodents coupled with intravital

microscopy, an imaging approach to study the tissues of live

animals in real time. Utilizing virally packaged biosensor

technology, pre-transplant transduction of engraftable tissue

allows processes of interest to be monitored via changes in

spectral emission or intensity following treatment. More

dynamic processes of sub-cellular function such as ion

signaling, autophagic flux, and ROS production, among others,

can therefore be quantitatively evaluated. Although virally

packaged biosensors provide useful insight on cellular

processes, it is important to note that biosensor expression is

not as stable as with generation of a transgenic mouse line.

However, when working with human islets, this genetically

encoded form of biosensor expression is not a possibility.

Additionally, during imaging, fluorescently conjugated probes

and antibodies can also be injected to allow for further analysis

in areas of interest like vascularity, immune infiltration, and

cellular stress response in the beta cell. It is important to note

that although fluorescent probes and antibodies are easier to

acquire due to higher availability, these approaches do not allow

for as much information on dynamic processes due to time

required to reach targets and limited capabilities to combine

fluorophores on the same probe or antibody. The ability to inject

various treatments and study impact on beta cell function in real

time enables physiologically relevant evaluation of novel drugs

in the preclinical setting.

Along with the many benefits to using intravital microscopy

as a tool to study beta cells in vivo, there are also many

limitations when studying transplanted islets that have yet to

be addressed. One major limitation of islet transplantation is the

inability to transplant back into the endogenous environment

due to the release of digestive enzymes from penetrating the

pancreas. Many studies have shown that there is important

crosstalk between the endocrine and exocrine tissues of the

pancreas (95), and this communication is lost following

transplantation. Furthermore, several transplant sites, such as
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the pinna of the ear and the subcutaneous space, require

additional modulation to promote vascularization and

successful engraftment. In mouse islet transplantation studies,

reinnervation seems to never reach physiological levels, with

studies showing that six weeks following transplantation, density

of sympathetic nerves are only 60% that of endogenous islets in

the pancreas (5). Together, this suggests that future studies need

to address limitations with islet transplantation before intravital

imaging may be performed to its peak potential.

The mouse models used for islet transplantation studies are

also a limitation themselves, with most transplantation studies

being performed in immunocompromised animals. Since type 1

diabetes is an autoimmune disorder, an important aspect of

studying the disease in a relevant manner is diminished with

transplantation of human islets into immunodeficient mice.

With the development of humanized mouse models for

studying immune interaction with transplanted islets, these

concerns are somewhat ameliorated. However, continued

development of these models to allow for robust evaluation of

iPSC-derived beta cell clusters in the context of immune cells

from the same donor will be critical to push the field forward.

Although this literary review has focused on the technique of

performing intravital microscopy on transplanted human islets,

it is important to note that other methods of non-invasive in vivo

imaging have been performed. For example, researchers have

conducted bioluminescence imaging, captured with IVIS

imaging systems, on transplanted human islets expressing

adenoviral luciferase under the cytomegalovirus (CMV)

promoter, showing changes in islet mass following

transplantation (96). To observe beta cell mass with higher

accuracy following transplantation, researchers have employed

the use of positron emission tomography (PET) imaging to

study these changes with glucagon-like peptide agonist Exendin-

4 in vivo (97). With PET imaging being a safe and efficacious way

to monitor processes within the islet in vivo, this method has

been used clinically to study endogenous changes in beta cell

function within human subjects with T1D (98). Although

magnetic resonance imaging (MRI) is an appealing clinically

relevant model to image physiological processes in vivo, few MRI

studies have been performed on transplanted human islets since

the method was first introduced in 2011 (99). This lack of

current research is due to challenges associated with

generation of radiolabels, however, with the increased

development of targeted nanoparticles in the field (100–102),

there is a promising future for this imaging method (103).

Although these discussed imaging studies have made

important contributions to the field of diabetes with studies in

islet mass following transplantation, these methods of non-

invasive imaging lack the ability to acquire high-resolution

images, losing the potential to visualize detailed dynamic

processes occurring within the islets in real time.

In summary, though not without drawbacks, human islet

transplantation into rodent models represents an exciting
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approach to study human islets in a physiologically relevant

manner that currently cannot be recapitulated by in vitro

approaches. When coupled to high-resolution imaging

techniques such as intravital microscopy, these models

represent an approach that has the potential to revolutionize

our understanding of both basic islet biology as well as

mechanisms of diabetes pathogenesis. Future development of

both the models/approaches for human islet transplants in this

context and the technologies to functionally evaluate the

transplanted islets will undoubtedly revolutionize our ability to

develop novel therapies to not only treat but also to prevent islet

dysfunction and immune attack.
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