#### Check for updates

#### OPEN ACCESS

EDITED BY Francesco Prattichizzo, MultiMedica Holding SpA (IRCCS), Italy

#### REVIEWED BY

Phiwayinkosi V. Dludla, South African Medical Research Council, South Africa Theocharis Koufakis, Aristotle University of Thessaloniki, Greece

\*CORRESPONDENCE Linong Ji jiln@bjmu.edu.cn

#### SPECIALTY SECTION

This article was submitted to Clinical Diabetes, a section of the journal Frontiers in Endocrinology

RECEIVED 15 July 2022 ACCEPTED 21 September 2022 PUBLISHED 12 October 2022

#### CITATION

Chai S, Zhang R, Zhang Y, Carr RD, Zheng Y, Rajpathak S and Ji L (2022) Effect of dipeptidyl peptidase-4 inhibitors on postprandial glucagon level in patients with type 2 diabetes mellitus: A systemic review and meta-analysis. *Front. Endocrinol.* 13:994944. doi: 10.3389/fendo.2022.994944

#### COPYRIGHT

© 2022 Chai, Zhang, Zhang, Carr, Zheng, Rajpathak and Ji. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

# Effect of dipeptidyl peptidase-4 inhibitors on postprandial glucagon level in patients with type 2 diabetes mellitus: A systemic review and meta-analysis

# Shangyu Chai<sup>1</sup>, Ruya Zhang<sup>1</sup>, Ye Zhang<sup>1</sup>, Richard David Carr<sup>2</sup>, Yiman Zheng<sup>1</sup>, Swapnil Rajpathak<sup>3</sup> and Linong Ji<sup>4\*</sup>

<sup>1</sup>Merck Research Laboratories (MRL) Global Medical Affairs, Merck Sharp & Dohme (MSD) China, Shanghai, China, <sup>2</sup>Hatter Cardiovascular Institute, University College London, UK and Ulster University, Coleraine, United Kingdom, <sup>3</sup>Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ, United States, <sup>4</sup>Department of Endocrinology, People's Hospital of Peking University, Beijing, China

**Aims:** Hyperglucagonemia occurs in the pathogenesis of type 2 diabetes mellitus (T2DM). In this meta-analysis, we summarized the effects of DPP4 inhibitors on glucagon levels in patients with T2DM.

**Materials and methods:** Randomized controlled trials (RCTs) comparing the influence of DPP4 inhibitors on circulating glucagon levels with placebo or other oral antidiabetic drugs (OADs) in patients with T2DM were identified by searches of Medline (PubMed), Embase (Ovid), and CENTER (Cochrane Library). Only studies reporting changes in glucagon level presented as total area under the curve (AUC<sub>glucagon</sub>) using a meal or oral glucose tolerance test were included. Results were combined using a random-effects model that incorporated potential heterogeneity among the included studies.

**Results:** A total of 36 RCTs with moderate to high quality were included. Overall, the numbers of T2DM patients included for the meta-analyses comparing DPP4 inhibitors with placebo and other OADs were 4266 and 1652, respectively. Compared to placebo, DPP4 inhibitors significantly reduced circulating glucagon levels (standard mean difference [SMD]: -0.32, 95% CI: -0.40 to -0.24, *P*<0.001; I<sup>2</sup> = 28%). Analysis of subgroups revealed that study characteristics had no significant effect on results, such as study design (parallel group or crossover), number of patients, mean patient age, proportion of men, baseline HbA1c, duration of diabetes, background therapy, treatment duration, or methods for glucagon measurement (all *P* for subgroup differences >0.05). Moreover, DPP4 inhibitors significantly reduced glucagon levels compared to other OADs (SMD: -0.35, 95% CI: -0.53 to -0.16, *P*<0.001; I<sup>2</sup> = 66%), and the reduction in glucagon was greater in comparison with insulin

secretagogues than in comparison with non-insulin secretagogues (P for subgroup difference = 0.03).

Systematic review registration: https://inplasy.com/, identifier INPLASY202280104.

**Conclusions:** DPP4 inhibitors are effective at reducing the circulating postprandial glucagon level in T2DM patients.

KEYWORDS

dipeptidyl peptidase-4 inhibitor, glucagon, hyperglucagonemia, randomized controlled trials, meta-analysis

# Introduction

Currently, type 2 diabetes mellitus (T2DM) is one of the key factors contributing to morbidity and mortality worldwide (1, 1). It has conventionally been believed that insulin resistance and impaired insulin secretion are the key mechanisms underlying T2DM development (2, 3). Despite this common knowledge, abnormally elevated serum levels of glucagon (hyperglucagonemia) also contribute to diabetes pathogenesis (4-6), which may reflect  $\alpha$ -cell dysfunction within the pancreatic islets. Clinical discussions often focus on insulin, but glucagon has an equally important role to play in understanding T2DM (7). Actually, all types of poorly controlled diabetes are associated with hyperglucagonemia (8). Therefore, treatment targeting hyperglucagonemia may also become an established antidiabetic strategy (9). There are several potential mechanisms for hyperglucagonemia in T2DM, including  $\beta$ -cell dysfunction, disturbances in  $\alpha$ -cell/  $\beta$ -cell interplay, and dysfunctional incretin effect (10–13). Knowing the role of glucagon is crucial to appreciating differences in glucose-lowering therapies' mechanisms of action. Amongst oral anti-diabetic drugs (OADs), dipeptidylpeptidase 4 (DPP-4) inhibitors are a well-applied class of glucose-lowering medications that function by inhibiting the DPP-4-induced degradation of incretin hormone glucagonlike peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). The benefits of DPP-4 inhibitors in T2DM are not only limited to their regulation of insulin secretion in a glucose-dependent manner, but also include their efficacies in attenuating  $\beta$ -cell loss and improving glycemic durability (14, 15). Moreover, through increasing endogenous levels of the incretin hormones (10, 16), DPP-4 inhibitors have been suggested to suppress endogenous glucagon production in T2DM.

Compared with insulin, our understanding, research and detection methods for glucagon are not so well established. To the best of our knowledge, no consensus or gold standard has been reached regarding the optimal methods for measuring the serum glucagon concentration. In spite of the fact that plasma glucagon levels are not used in clinical stratification of diabetes treatment, health care providers may gain clinical insight by understanding how to control plasma glucagon levels pharmacologically in T2DM patients. In patients with T2DM, glucagon levels typically rise during fasting and then fail to decrease appropriately or even rise during oral glucose tolerance testing (OGTT) or after ingestion of a carbohydrate-rich meal, leading to undesirably high plasma glucagon with hyperglycemia. Typically, the effects of antidiabetic treatment on the postprandial glucagon level are measured by the changes in glucagon total area under the curve (AUC<sub>glucagon</sub>) using a meal tolerance test (MTT) or a standard OGTT (17-19). Although there have been few small-scale randomized controlled trials (RCTs) evaluating the effect of DPP-4 inhibitors on plasma glucagon levels in patients with type 2 diabetes (20-55), little is known about the summarized efficacy of DPP4 inhibitors on AUC compared to placebo. There are also other oral glucose-lowering drug classes that affect glucagon secretion (positively or negatively), including sulfonylureas and sodium-glucose cotransporter 2 inhibitors (SGLT2is). Therefore, the summarized efficacy of DPP4 inhibitors on AUCglucagon compared to other OADs also seems interesting. To the best of our knowledge, no systematic review and meta-analysis has been published to date regarding the influence of DPP4 inhibitors on AUC<sub>glucagon</sub> in patients with T2DM. Accordingly, the aim of this study was to examine systematically the influence of DPP4 inhibitors on AUC<sub>glucagon</sub> in T2DM patients by performing a meta-analysis of RCTs.

Abbreviations: CI, confidence interval; DPP-4, dipeptidyl-peptidase 4; GIP, glucose-dependent insulinotropic polypeptide; GLP-1, glucagon-like peptide-1; MTT, meal tolerance test; OADs, oral anti-diabetic drugs; OGTT, oral glucose tolerance test; RCTs, randomized controlled trials; SGLT2is, sodium-glucose cotransporter 2 inhibitors; SMD, standard mean difference; T2DM, type 2 diabetes mellitus.

# **Methods**

This study adhered to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) (56) and Cochrane Handbook (57) guidelines during its design and implementation. The protocol of the meta-analysis was registered at the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY, https://inplasy.com/) with the registration number of INPLASY202280104. The PRISMA 2020 Checklist has been provided in the Supplementary Material.

## Search strategy

In order to search Medline (PubMed), Embase (Ovid), and CENTER (Cochrane Library), the following strategies were used: (1) "DPP4" OR "DPP-4" OR "dipeptidyl peptidase-4 inhibitors" OR "sitagliptin" OR "vildagliptin" OR "linagliptin" OR "saxagliptin" OR "alogliptin" OR "dutogliptin" OR "aemigliptin" OR "anagliptin" OR "teneligliptin" OR "trelagliptin" OR "omarigliptin" OR "gemigliptin" OR "trelagliptin" OR "omarigliptin" OR "gemigliptin" OR "evogliptin"; (2) " $\alpha$  cell" OR " $\alpha$ -cell" OR "glucagon" OR "alpha cell" OR "islet" OR "hormone" OR "hormonal" OR "meal" OR "prandial" OR "postprandial" OR "Oral Glucose Tolerance Test" OR "OGTT"; and (3) "random" OR "randomized" OR "randomised" OR "randomly". Only studies including human subjects were considered. As part of the final database search, references to related reviews and original articles were also searched. The final database search was carried out on August 25, 2022.

## Study selection

We included studies that met the following criteria: (1) English-language articles with full-length content; (2) RCTs with parallel groups or crossovers; (3) Adults with T2DM were randomly assigned to DPP4 inhibitors or placebo groups, or other OADS, for treatment; and (4) reported the changes of AUCglucagon from baseline after treatment utilizing MTT or OGTT in participants in the interventional and control arms. In this review, we included studies with patients who are drugnave or with T2DM patients who are receiving background OAD therapy. However, studies including T2DM patients on concurrent antidiabetic injection treatment, such as insulin and GLP-1 receptor agonists (GLP-1RAs) were excluded from the current meta-analysis. Our meta-analysis did not include studies that included patients treated with single-dose or single-day DPP4 inhibitors, since we weren't planning to evaluate the acute effects of DPP4 inhibitors on circulating glucagon. In addition, non-randomized studies, studies including non-T2DM patients, or those without a measurement of AUCglucagon during MTT or OGTT setting were also excluded.

# Data collection and quality evaluation

Database searches, data collection, and quality assessment were carried out by two authors independently. Discussions with the corresponding author were conducted if disagreements occurred. We collected data of study information (first author, publication year, and study country), study design (blind or open-label, crossover or parallel group), patient information (number of patients, mean age, sex, baseline hemoglobin A1c [HbA1c], and T2DM duration), details of background antidiabetic treatments, drugs and doses of DPP4 inhibitors used, regimens of controls, treatment durations, and methods for circulating glucagon measurement. The Cochrane Risk of Bias Tool was used to determine the quality of the included RCTs (57) according to the following aspects: assigning random sequences; concealing allocations; blinding participants and personnel; blinding outcomes assessors; incomplete outcomes data; and selective outcome reporting.

# Statistical analysis

The effects of DPP4 inhibitors on circulating glucagon levels compared to controls in T2DM patients were presented as a standard mean difference (SMD) with 95% confidence interval (CI) because the methods and durations for measuring AUCglucagon varied among the included RCTs. Heterogeneity was assessed using Cochrane's Q test (58). It was also calculated the  $I^2$  statistic, and an  $I^2 > 50\%$  indicates significant heterogeneity. A random-effects model was used when calculating pooled analyses, since it incorporates potential heterogeneity and provides more generalized results (57). Analyses of sensitivity were conducted by excluding one study at a time from the meta-analysis to evaluate the effect of each study on the pooled results (57). Additionally, sensitivity analyses limited to studies with FDA-approved DPP4 inhibitors and dosages were also performed, including sitagliptin 100 mg once daily, saxagliptin 5 mg once daily, linagliptin 5 mg once daily, and alogliptin 25 mg once daily. Analysis of predefined subgroups was conducted to determine whether study characteristics could influence the results, including study characteristics such as study design (parallel group or crossover), number of patients, mean patient age, proportion of men, baseline HbA1c, duration of diabetes, background therapy, treatment duration, and methods for glucagon measurement. For continuous variables, medians were selected as cutoffs for defining of subgroups. For a metaanalysis comparing DPP4 inhibitors and other OADs, subgroup analyses were performed according to whether the OADs taken by controls were insulin secretagogues or non-insulin secretagogues. An evaluation of publication bias was conducted via visual inspection of funnel plots and Egger's regression asymmetry test (59). For studies including multiple dose groups of DPP4 inhibitors, the shared control groups were equally split and included as independent comparisons to overcome a unit-of-analysis error, according to the instruction of Cochrane's Handbook (57). Differences for which P<0.05 were considered statistically significant. Statistical analyses were conducted using the RevMan (Version 5.1; Cochrane, Oxford, UK) software.

# Results

#### Literature search

Figure 1 illustrates the process of searching databases and identifying studies. Briefly, database searches yielded 2492 articles, and 1834 were retrieved after the duplicate records were excluded. Thirteen hundred eighty-four articles were subsequently excluded based on titles and abstracts, primarily because they were unrelated to the goal of the meta-analysis.

Then, 414 articles out of the 450 that received full-text reviews were further excluded for the reasons illustrated in Figure 1. Finally, 36 RCTs (20–55) were deemed to be eligible for the meta-analysis.

# Study characteristics and data quality

An overview of the included studies can be found in Table 1. Overall, 23 studies compared DPP4 inhibitors with placebo (20– 22, 25–27, 30–42, 44–47). Eight studies compared DPP4 inhibitors with other OADs (28, 48–55), and the other five studies included both comparisons with placebo and other OADs (23, 24, 28, 29, 43).

Accordingly, a total of 28 RCTs were available for the metaanalysis comparing the influence of DPP4 inhibitors with placebo on postprandial glucagon (20–47). The characteristics of these studies are presented in the upper panel of Table 1. Briefly, these studies were all RCTs including T2DM patients which were published between 2007 and 2018. Seven of them



## Comparisons between DPP4 inhibitors and placebo treatment

| Study              | Country            | Design           | Patient<br>number | Mean<br>age<br>year | Male<br>% | Baseline<br>HbA1c<br>% | T2DM<br>duration<br>years | Background<br>treatment                      | Intervention                          | Control | Treatment<br>duration<br>days | Postprandial<br>glucagon measuring |
|--------------------|--------------------|------------------|-------------------|---------------------|-----------|------------------------|---------------------------|----------------------------------------------|---------------------------------------|---------|-------------------------------|------------------------------------|
| He 2007            | USA                | R, DB,<br>PC, CO | 12                | 53.5                | 46.2      | NR                     | 7.2                       | Treatment naïve or with<br>OAD               | Vildagliptin 10mg, 25mg<br>Bid        | Placebo | 28                            | MTT-4h, RIA                        |
| Vella 2007         | USA                | R, DB,<br>PC, CO | 14                | 53.1                | 35.7      | 6.1                    | NR                        | Treatment naïve or with OAD (metformin etc.) | Vildagliptin 50mg Bid                 | Placebo | 10                            | MTT-5h, RIA                        |
| Defronzo<br>2009   | USA                | R, DB,<br>PC     | 401               | 54.6                | 50.1      | 8                      | 6.5                       | Metformin                                    | Saxagliptin 2.5mg, 5mg Qd             | Placebo | 147                           | OGTT-3h, RIA                       |
| Ahren 2009         | Sweden             | R, DB,<br>PC, CO | 25                | 65.5                | 88        | 6.3                    | 5.6                       | Treatment naïve                              | Vildagliptin 50mg Bid                 | Placebo | 28                            | MTT-2h, RIA                        |
| Rosenstock<br>2009 | USA                | R, DB,<br>PC     | 201               | 53.6                | 52.5      | 7.9                    | 2.6                       | Treatment naïve                              | Saxagliptin 2.5mg, 5mg Qd             | Placebo | 168                           | OGTT-2h, RIA                       |
| Jadzinsky<br>2009  | Argentina          | R, DB,<br>PC     | 269               | 51.9                | 50.6      | 9.4                    | 1.9                       | Metformin                                    | Saxagliptin 5mg Qd                    | Placebo | 168                           | OGTT-3h, RIA                       |
| Kikuchi<br>2009    | Japan              | R, DB,<br>PC     | 78                | 59                  | 67        | 7.4                    | 5.3                       | Treatment naïve                              | Vildagliptin 10mg, 25mg,<br>50mg Bid  | Placebo | 84                            | MTT-2h, RIA                        |
| Hollander<br>2009  | USA                | R, DB,<br>PC     | 384               | 54                  | 49.5      | 8.3                    | 5.2                       | Thiazolidinedione                            | Saxagliptin 2.5mg, 5mg Qd             | Placebo | 168                           | OGTT-3h, RIA                       |
| Iwamoto<br>2010    | Japan              | R, DB,<br>PC     | 129               | 59.7                | 62.3      | 7.6                    | 5.5                       | Treatment naïve                              | Sitagliptin 25mg, 50mg,<br>100mg Qd   | Placebo | 84                            | MTT-2h, RIA                        |
| Seino<br>2011a     | Japan              | R, DB,<br>PC     | 230               | 62.2                | 61.7      | 8                      | 7.7                       | Voglibose                                    | Alogliptin 12.5mg, 25mg<br>Qd         | Placebo | 84                            | MTT-2h, RIA                        |
| Seino<br>2011b     | Japan              | R, DB,<br>PC     | 318               | 58.9                | 73.1      | 7.9                    | 6.6                       | Treatment naïve                              | Alogliptin 6.25mg, 12.5mg,<br>25mg Qd | Placebo | 84                            | MTT-2h, RIA                        |
| Henry 2011         | USA                | R, DB,<br>PC     | 36                | 55.6                | 38.9      | 6.8                    | 3.2                       | Treatment naïve                              | Saxagliptin 5mg Qd                    | Placebo | 84                            | OGTT-5h, RIA                       |
| Tremblay<br>2011   | Canada             | R, DB,<br>PC, CO | 36                | 58.1                | 83.3      | 6.8                    | NR                        | Metformin                                    | Sitagliptin 100mg Qd                  | Placebo | 42                            | MTT-8h, RIA                        |
| Rauch 2012         | Germany            | R, DB,<br>PC     | 80                | NR                  | NR        | 7.3                    | NR                        | Treatment naïve or with<br>OAD               | Linagliptin 5mg Qd                    | Placebo | 28                            | MTT-2h, RIA                        |
| Eto 2012           | Japan              | R, DB,<br>PC     | 99                | 57.2                | 84.8      | 8.3                    | 6.8                       | Treatment naïve                              | Teneligliptin 10mg, 20mg<br>Qd        | Placebo | 28                            | MTT-2h, RIA                        |
| Bunck 2012         | The<br>Netherlands | R, DB,<br>PC     | 59                | 57.2                | 59.3      | 6                      | 1                         | Treatment naïve                              | Vildagliptin 100mg Qd                 | Placebo | 350                           | MTT-2h, RIA                        |
| Alba 2013          | USA                | R, DB,<br>PC     | 94                | 54.9                | 57.1      | 7.9                    | 2.4                       | Treatment naïve or with<br>OAD               | Sitagliptin 100mg Qd                  | Placebo | 147                           | MTT-3h, RIA                        |

(Continued)

10.3389/fendo.2022.994944

06

## TABLE 1 Continued

## Comparisons between DPP4 inhibitors and placebo treatment

| Study              | Country            | Design           | Patient<br>number | Mean<br>age<br>year | Male<br>% | Baseline<br>HbA1c<br>% | T2DM<br>duration<br>years | Background<br>treatment        | Intervention                          | Control                     | Treatment<br>duration<br>days | Postprandial<br>glucagon measuring |
|--------------------|--------------------|------------------|-------------------|---------------------|-----------|------------------------|---------------------------|--------------------------------|---------------------------------------|-----------------------------|-------------------------------|------------------------------------|
| Kadowaki<br>2013   | Japan              | R, DB,<br>PC     | 324               | 58.2                | 65.7      | 7.8                    | 6.2                       | Treatment naïve or with<br>OAD | Teneligliptin 10mg, 20mg,<br>40 mg Qd | Placebo                     | 84                            | MTT-2h, RIA                        |
| Sjostrand<br>2014  | China              | R, DB,<br>PC     | 431               | 52.9                | 50.2      | 7.9                    | 3.7                       | Metformin                      | Saxagliptin 5mg Qd                    | Placebo                     | 168                           | MTT-3h, RIA                        |
| Van Raalte<br>2014 | The<br>Netherlands | R, DB,<br>PC     | 49                | 58.9                | 71.4      | 6.7                    | NR                        | Metformin and other OAD        | Alogliptin 25mg Qd                    | Placebo                     | 112                           | MTT-8h, RIA                        |
| Vardarli<br>2014   | Germany            | R, DB,<br>PC, CO | 20                | 59                  | 80        | 7                      | 5                         | Treatment naïve or with<br>OAD | Sitagliptin 100mg Qd                  | Placebo                     | 5                             | OGTT-4h, RIA                       |
| Kadowaki<br>2014   | Japan              | R, DB,<br>PC     | 194               | 59.4                | 66        | 8.4                    | 8.8                       | Glimepiride                    | Teneligliptin 20mg Qd                 | Placebo                     | 84                            | MTT-2h, RIA                        |
| Hansen<br>2014     | Sweden             | R, DB,<br>PC     | 312               | 54                  | 47        | 8.9                    | 7.3                       | Dapagliflozin and metformin    | Saxagliptin 5mg Qd                    | Placebo                     | 168                           | MTT-3h, RIA                        |
| Nishimura<br>2016  | Japan              | R, OL            | 38                | 63.4                | 72.5      | 7.7                    | 7.6                       | Repaglinide                    | Sitagliptin 100mg Qd                  | No treatment                | 168                           | MTT-3h, RIA                        |
| Forst 2017         | Germany            | R, DB,<br>PC     | 44                | 63.8                | 90.9      | 8.1                    | 9.7                       | Empagliflozin                  | Linagliptin 5mg Qd                    | Placebo                     | 28                            | MTT-3h, RIA                        |
| Ahn 2017           | Korea              | R, DB,<br>PC, CO | 10                | 56.5                | 30        | 7.2                    | 11.8                      | Treatment naïve or with<br>OAD | Gemigliptin                           | Placebo                     | 28                            | MTT-4h, RIA                        |
| Farngren<br>2018   | Sweden             | R, DB,<br>PC, CO | 28                | 73.6                | 61        | 6.9                    | 9.2                       | Metformin                      | Sitagliptin 100mg Qd                  | Placebo                     | 28                            | MTT-2h, RIA                        |
| Dou 2018           | China              | R, DB,<br>PC     | 231               | 50.1                | 66.5      | 9.4                    | 0.8                       | Metformin                      | Saxagliptin 5mg Qd                    | Placebo                     | 168                           | MTT-3h, RIA                        |
|                    |                    |                  |                   |                     |           | Comp                   | arisons betw              | ween DPP4 inhibitors a         | nd other OADs                         |                             |                               |                                    |
| Ahren 2010         | Sweden             | R, DB            | 259               | 57.5                | 53.4      | 7.3                    | 5.7                       | Metformin                      | Vildagliptin 50mg Bid                 | Glimepiride 6mg<br>Qd (max) | 657                           | MTT-2h, RIA                        |
| Seino<br>2011b     | Japan              | R, DB            | 326               | 58.9                | 71.9      | 7.9                    | 6.5                       | Treatment naïve                | Alogliptin 6.25mg, 12.5mg, 25mg Qd    | Voglibose 0.2mg<br>Tid      | 84                            | MTT-2h, RIA                        |
| Alba 2013          | USA                | R, DB            | 95                | 53.4                | 51.4      | 8                      | 2.4                       | Treatment naïve or with<br>OAD | Sitagliptin 100mg Qd                  | Pioglitazone 30mg<br>Qd     | 147                           | MTT-3h, RIA                        |
| Okada<br>2013      | Japan              | R, OL            | 34                | 65.5                | 38.2      | 7.8                    | 8.2                       | Treatment naïve or with<br>OAD | Sitagliptin 50mg Qd                   | Miglitol 50mg Tid           | 70                            | MTT-2h, RIA                        |
| Forst 2014         | Germany            | R, OL            | 39                | 64                  | 69.2      | 7.4                    | 7.8                       | Metformin                      | Linagliptin 5mg Qd                    | Glimepiride 4mg<br>Qd (max) | 84                            | MTT-5h, RIA                        |
| Vardarli<br>2014   | Germany            | R, DB,<br>CO     | 20                | 59                  | 80        | 7                      | 5                         | Treatment naïve or with<br>OAD | Sitagliptin 100mg Qd                  | Metformin 500mg<br>Bid~Qid  | 5                             | OGTT-4h, RIA                       |

10.3389/fendo.2022.994944

## Comparisons between DPP4 inhibitors and placebo treatment

| Study            | Country        | Design       | Patient<br>number | Mean<br>age<br>year | Male<br>% | Baseline<br>HbA1c<br>% | T2DM<br>duration<br>years | Background<br>treatment        | Intervention                                   | Control                           | Treatment<br>duration<br>days | Postprandial<br>glucagon measuring |
|------------------|----------------|--------------|-------------------|---------------------|-----------|------------------------|---------------------------|--------------------------------|------------------------------------------------|-----------------------------------|-------------------------------|------------------------------------|
| Hansen<br>2014   | Sweden         | R, DB        | 306               | 55                  | 49        | 8.9                    | 7.5                       | Metformin                      | Saxagliptin 5mg Qd                             | Dapagliflozin 10mg<br>Qd          | 168                           | MTT-3h, RIA                        |
| Akiyama<br>2016  | Japan          | R, OL,<br>CO | 16                | 66                  | 62.5      | 6.6                    | 11.5                      | Pioglitazone or metformin      | Sitagliptin 50 and 100mg<br>Qd each for a week | Mitiglinide 10mg<br>Tid           | 14                            | OGTT-3h, RIA                       |
| Xiao 2016        | China          | R, OL        | 41                | 68.9                | 56.1      | 7.2                    | Newly<br>diagnosed        | Metformin                      | Sitagliptin 100mg Qd                           | Glimepiride 1-4mg<br>Qd           | 168                           | OGTT-2h, ELISA                     |
| Alsalim<br>2018  | Sweden         | R, DB,<br>CO | 28                | 63                  | 71.4      | 6.8                    | 5.8                       | Metformin                      | Vildagliptin 50mg Bid                          | Dapagliflozin 10mg<br>Qd          | 14                            | MTT-4h, RIA                        |
| Dou 2018         | China          | R, DB        | 229               | 49.8                | 66.1      | 9.5                    | 0.7                       | Treatment naïve                | Saxagliptin 5mg Qd                             | Metformin 500-<br>2000 mg per day | 168                           | MTT-3h, RIA                        |
| Scott 2018       | New<br>Zealand | R, DB        | 173               | 67.1                | 57.9      | 7.8                    | 10.6                      | Metformin                      | Sitagliptin 100mg Qd                           | Dapagliflozin 5-<br>10mg Qd       | 168                           | MTT-2h, RIA                        |
| Nakagawa<br>2019 | Japan          | R, OL        | 22                | 61.2                | 40.9      | 7                      | 5.3                       | Treatment naïve or with<br>OAD | Anagliptin 100mg Bid                           | Metformin 500mg<br>Bid            | 28                            | MTT-3h, LC-HRMS                    |

DPP4, dipeptidyl-peptidase 4; HbA1c, glycosylated hemoglobin; T2DM, type 2 diabetes mellitus; R, randomized; DB, double blind; OL, open label; PC, placebo-controlled; CO, crossover; NR, not reported; OAD, oral antidiabetic drug; Bid, twice daily; Qd, once daily; Tid, three times daily; Qid, four times daily; MTT, meal tolerance test; OGTT, oral glucose tolerance test; RIA, radioimmunoassay; LC-HRMS, liquid chromatography-high resolution mass spectrometry.

Chai et al.

were crossover studies (20, 24, 25, 27, 31, 37, 45), whilst the remaining studies were parallel-group RCTs. The mean ages of the patients varied between 51 and 74 years. Various DPP4 inhibitors were used among these studies, such as vildagliptin, saxagliptin, linagliptin, sitagliptin, alogliptin, teneligliptin, and gemigliptin, whilst placebo was used as the control in all of the included RCTs except one study which received no treatment (42). The treatment durations varied between 5 and 350 days, and circulating postprandial glucagon was measured with radioimmunoassay in MTT/OGTT settings. Using Cochrane's Risk of Bias Tool, Table 2 provides a detailed analysis of the included RCTs.

A total of 13 studies compared circulating glucagon levels in T2DM patients treated with a DPP4 inhibitor or other OAD (23, 24, 28, 29, 43, 48–55). Vildagliptin, sitagliptin, linagliptin, saxagliptin, alogliptin, and anagliptin were used as treatments, while glimepiride, voglibose, pioglitazone, dapagliflozin, miglitol and metformin were used as controls. The mean ages of the patients varied between 51 and 69 years. The follow-up durations varied from 5–657 days. Circulating glucagon levels were measured by radioimmunoassay (23, 24, 28, 29, 43, 48–51, 53, 54), enzyme-linked immunosorbent assay (ELISA) (55), or liquid chromatography-high resolution mass spectrometry (52) in a MTT/OGTT setting. A detailed risk of bias assessment of the included RCTs can also be found in Table 2.

# Comparisons between DPP4 inhibitors and placebo on circulating postprandial glucagon

Because 10 studies reported data according to multiple dosages of DPP4 inhibitors separately (20-23, 26, 30, 35, 38,

TABLE 2 Details of study quality evaluation via the Cochrane's Risk of Bias Tool.

| Comparisons | between | DPP4 | inhibitors | and | other | OADs |
|-------------|---------|------|------------|-----|-------|------|
|-------------|---------|------|------------|-----|-------|------|

| Study              | Random<br>sequence<br>generation | Allocation concealment | Blinding of participants | Blinding of<br>outcome<br>assessment | Incomplete outcome<br>data addressed | Selective reporting | Other<br>sources of<br>bias |
|--------------------|----------------------------------|------------------------|--------------------------|--------------------------------------|--------------------------------------|---------------------|-----------------------------|
| He 2007            | Unclear                          | Unclear                | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Vella 2007         | Unclear                          | Low                    | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Defronzo<br>2009   | Unclear                          | Unclear                | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Ahren 2009         | Unclear                          | Unclear                | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Rosenstock<br>2009 | Unclear                          | Unclear                | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Jadzinsky<br>2009  | Unclear                          | Unclear                | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Kikuchi<br>2009    | Unclear                          | Unclear                | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Hollander<br>2009  | Unclear                          | Unclear                | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Iwamoto<br>2010    | Unclear                          | Unclear                | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Seino<br>2011a     | Low                              | Unclear                | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Seino<br>2011b     | Unclear                          | Unclear                | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Henry 2011         | Unclear                          | Unclear                | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Tremblay<br>2011   | Unclear                          | Unclear                | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Rauch 2012         | Unclear                          | Unclear                | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Eto 2012           | Unclear                          | Unclear                | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Bunck 2012         | Unclear                          | Unclear                | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Alba 2013          | Unclear                          | Unclear                | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Kadowaki<br>2013   | Unclear                          | Unclear                | Low                      | Low                                  | Low                                  | Low                 | Low                         |

(Continued)

#### TABLE 2 Continued

#### Comparisons between DPP4 inhibitors and other OADs

| Study              | Random<br>sequence<br>generation | Allocation<br>concealment | Blinding of participants | Blinding of<br>outcome<br>assessment | Incomplete outcome<br>data addressed | Selective reporting | Other<br>sources of<br>bias |
|--------------------|----------------------------------|---------------------------|--------------------------|--------------------------------------|--------------------------------------|---------------------|-----------------------------|
| Sjostrand<br>2014  | Unclear                          | Unclear                   | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Van Raalte<br>2014 | Unclear                          | Unclear                   | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Vardarli<br>2014   | Unclear                          | Unclear                   | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Kadowaki<br>2014   | Unclear                          | Unclear                   | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Hansen<br>2014     | Unclear                          | Unclear                   | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Nishimura<br>2016  | Low                              | Unclear                   | High                     | High                                 | Low                                  | Low                 | Low                         |
| Forst 2017         | Unclear                          | Unclear                   | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Ahn 2017           | Unclear                          | Unclear                   | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Farngren<br>2018   | Unclear                          | Unclear                   | Low                      | Low                                  | Low                                  | Low                 | Low                         |
| Dou 2018           | Unclear                          | Unclear                   | Low                      | Low                                  | Low                                  | Low                 | Low                         |
|                    |                                  | Compar                    | isons between D          | PP4 inhibitors an                    | d other OADs                         |                     |                             |

| Study            | Random<br>sequence<br>generation | Allocation concealment | Blinding of<br>participants | Blinding of<br>outcome<br>assessment | Incomplete outcome<br>data addressed | Selective reporting | Other<br>sources of<br>bias |
|------------------|----------------------------------|------------------------|-----------------------------|--------------------------------------|--------------------------------------|---------------------|-----------------------------|
| Ahren 2010       | Low                              | Low                    | Low                         | Low                                  | Low                                  | Low                 | Low                         |
| Seino<br>2011b   | Unclear                          | Unclear                | Low Low                     |                                      | Low                                  | Low                 | Low                         |
| Alba 2013        | Unclear                          | Unclear                | Low                         | Low                                  | Low                                  | Low                 | Low                         |
| Okada<br>2013    | Unclear                          | Unclear                | High                        | High                                 | Low                                  | Low                 | Low                         |
| Forst 2014       | Unclear                          | Unclear                | High                        | High                                 | Low                                  | Low                 | Low                         |
| Vardarli<br>2014 | Unclear                          | Unclear                | Low Low Low                 |                                      | Low                                  | Low                 | Low                         |
| Hansen<br>2014   | Unclear                          | Unclear                | Low                         | Low                                  | Low                                  | Low                 | Low                         |
| Akiyama<br>2016  | Unclear                          | Unclear                | High                        | High                                 | Low                                  | Low                 | Low                         |
| Xiao 2016        | Unclear                          | Unclear                | High                        | High                                 | Low                                  | Low                 | Low                         |
| Alsalim<br>2018  | Unclear                          | Unclear                | Low                         | Low                                  | Low                                  | Low                 | Low                         |
| Dou 2018         | Unclear                          | Unclear                | Low                         | Low                                  | Low                                  | Low                 | Low                         |
| Scott 2018       | Unclear                          | Unclear                | Low                         | Low                                  | Low                                  | Low                 | Low                         |
| Nakagawa<br>2019 | Unclear                          | Unclear                | High                        | High                                 | Low                                  | Low                 | Low                         |

41, 46), these datasets were included into the meta-analysis independently. Accordingly, 42 datasets from 28 RCTs were available comparing the effects of DPP4 inhibitors and placebo on circulating glucagon levels in T2DM patients (20–47). Studies included in this review showed mild heterogeneity (P for

Cochrane's Q test =0.05,  $I^2 = 28\%$ ). Pooled results showed that compared to placebo treatment, DPP4 inhibitors significantly reduced the circulating postprandial glucagon level in patients with T2DM (AUC<sub>glucagon</sub>: SMD=-0.32, 95% CI: -0.40 to -0.24, P<0.001; Figure 2A). The results were not significantly affected

| Charles and Carls and                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DPP4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | inhibito                                                                                                                                                                                                                                                   | s                                                                                                                                                               |                                                                                                                                                                                                 | Control                                                                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                 | Std. Mean Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Std. Mean                   | Difference              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|
| Study or Subgr                                                                                                                                                                                                                                                                                                                                                           | oup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SD<br>65.0                                                                                                                                                                                                                                                 | rotal                                                                                                                                                           | Mean                                                                                                                                                                                            | SD<br>02.5                                                                                                                                                                  | rotal                                                                                                                                                                              | weight                                                                                                                                                          | IV. Random, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IV. Rando                   | m. 95% Cl               |
| He 2007-10mg E                                                                                                                                                                                                                                                                                                                                                           | 5IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65.8                                                                                                                                                                                                                                                       | 12                                                                                                                                                              | 361                                                                                                                                                                                             | 93.5                                                                                                                                                                        | 12                                                                                                                                                                                 | 0.9%                                                                                                                                                            | -0.64 [-1.47, 0.18]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                         |
| Vella 2007                                                                                                                                                                                                                                                                                                                                                               | Jiu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50.9                                                                                                                                                                                                                                                       | 14                                                                                                                                                              | 23.7                                                                                                                                                                                            | 4.9                                                                                                                                                                         | 14                                                                                                                                                                                 | 1.0%                                                                                                                                                            | -0.50 [-1.7 1, -0.02]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | _                       |
| Defronzo 2009-2                                                                                                                                                                                                                                                                                                                                                          | 2.5mg Qd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -5.511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.690.5                                                                                                                                                                                                                                                    | 140                                                                                                                                                             | -4.315                                                                                                                                                                                          | 2.619.7                                                                                                                                                                     | 62                                                                                                                                                                                 | 4.1%                                                                                                                                                            | -0.35 [-0.65, -0.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                         |
| Defronzo 2009-5                                                                                                                                                                                                                                                                                                                                                          | örng Qd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -5,704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,688.7                                                                                                                                                                                                                                                    | 138                                                                                                                                                             | -4,315                                                                                                                                                                                          | 2,598.5                                                                                                                                                                     | 61                                                                                                                                                                                 | 4.1%                                                                                                                                                            | -0.41 [-0.71, -0.10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                         |
| Ahren 2009                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,370                                                                                                                                                                                                                                                      | 25                                                                                                                                                              | 740                                                                                                                                                                                             | 1,210                                                                                                                                                                       | 25                                                                                                                                                                                 | 1.7%                                                                                                                                                            | -0.45 [-1.01, 0.11]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | -                       |
| Rosenstock 200                                                                                                                                                                                                                                                                                                                                                           | 9-2.5 mg Qd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -4,751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,529.5                                                                                                                                                                                                                                                    | 69                                                                                                                                                              | -3,575                                                                                                                                                                                          | 2,379.6                                                                                                                                                                     | 30                                                                                                                                                                                 | 2.6%                                                                                                                                                            | -0.36 [-0.79, 0.07]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | -                       |
| Rosenstock 200                                                                                                                                                                                                                                                                                                                                                           | 9-5 mg Qd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -4,615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,535.6                                                                                                                                                                                                                                                    | 71                                                                                                                                                              | -3,575                                                                                                                                                                                          | 2,481.5                                                                                                                                                                     | 31                                                                                                                                                                                 | 2.6%                                                                                                                                                            | -0.32 [-0.74, 0.11]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | -                       |
| Jadzinsky 2009                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,207                                                                                                                                                                                                                                                      | 136                                                                                                                                                             | -135                                                                                                                                                                                            | 3,207.2                                                                                                                                                                     | 133                                                                                                                                                                                | 5.2%                                                                                                                                                            | -0.20 [-0.44, 0.04]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                         |
| Kikuchi 2009-10                                                                                                                                                                                                                                                                                                                                                          | mg Bid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.1                                                                                                                                                                                                                                                       | 18                                                                                                                                                              | -3                                                                                                                                                                                              | 12                                                                                                                                                                          | 6                                                                                                                                                                                  | 0.7%                                                                                                                                                            | -0.74 [-1.70, 0.21]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                         |
| Kikuchi 2009-25<br>Kikuchi 2000 50                                                                                                                                                                                                                                                                                                                                       | mg Bid<br>mg Bid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.8                                                                                                                                                                                                                                                       | 19                                                                                                                                                              | -3                                                                                                                                                                                              | 12.2                                                                                                                                                                        | 4                                                                                                                                                                                  | 0.7%                                                                                                                                                            | -0.94 [-1.85, -0.03]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | -                       |
| Hollander 2009-50                                                                                                                                                                                                                                                                                                                                                        | 2 5ma Od                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 100 6                                                                                                                                                                                                                                                    | 142                                                                                                                                                             | -265                                                                                                                                                                                            | 2 102 0                                                                                                                                                                     | 59                                                                                                                                                                                 | 1 1%                                                                                                                                                            | -0.08 [-1.09, 0.08]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | _                       |
| Hollander 2009-                                                                                                                                                                                                                                                                                                                                                          | 5ma Od                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 100 1                                                                                                                                                                                                                                                    | 124                                                                                                                                                             | -265                                                                                                                                                                                            | 2 192 9                                                                                                                                                                     | 59                                                                                                                                                                                 | 4.0%                                                                                                                                                            | -0.25 [-0.56, 0.06]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | -                       |
| Iwamoto 2010-2                                                                                                                                                                                                                                                                                                                                                           | 5ma Qd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 73.2                                                                                                                                                                                                                                                       | 37                                                                                                                                                              | 0.1                                                                                                                                                                                             | 53.5                                                                                                                                                                        | 11                                                                                                                                                                                 | 1.2%                                                                                                                                                            | -0.25 [-0.92, 0.43]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                         |
| Iwamoto 2010-5                                                                                                                                                                                                                                                                                                                                                           | 0mg Qd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -27.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 76.1                                                                                                                                                                                                                                                       | 31                                                                                                                                                              | 0.1                                                                                                                                                                                             | 53.5                                                                                                                                                                        | 10                                                                                                                                                                                 | 1.1%                                                                                                                                                            | -0.38 [-1.09, 0.34]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                         |
| Iwamoto 2010-1                                                                                                                                                                                                                                                                                                                                                           | 00mg Qd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -23.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78.2                                                                                                                                                                                                                                                       | 30                                                                                                                                                              | 0.1                                                                                                                                                                                             | 53.5                                                                                                                                                                        | 10                                                                                                                                                                                 | 1.1%                                                                                                                                                            | -0.32 [-1.04, 0.40]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                         |
| Seino 2011a-12.                                                                                                                                                                                                                                                                                                                                                          | .5mg Qd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42.7                                                                                                                                                                                                                                                       | 76                                                                                                                                                              | -0.4                                                                                                                                                                                            | 64.2                                                                                                                                                                        | 38                                                                                                                                                                                 | 2.9%                                                                                                                                                            | -0.37 [-0.76, 0.02]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                         |
| Seino 2011a-25                                                                                                                                                                                                                                                                                                                                                           | mg Qd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42                                                                                                                                                                                                                                                         | 79                                                                                                                                                              | -0.4                                                                                                                                                                                            | 64.2                                                                                                                                                                        | 37                                                                                                                                                                                 | 2.9%                                                                                                                                                            | -0.40 [-0.79, -0.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                         |
| Seino 2011b-6.2                                                                                                                                                                                                                                                                                                                                                          | 5mg Qd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37.5                                                                                                                                                                                                                                                       | 79                                                                                                                                                              | -15.8                                                                                                                                                                                           | 36.9                                                                                                                                                                        | 25                                                                                                                                                                                 | 2.4%                                                                                                                                                            | 0.11 [-0.34, 0.56]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         |
| Seino 2011b-12.                                                                                                                                                                                                                                                                                                                                                          | .5mg Qd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38.5                                                                                                                                                                                                                                                       | 84                                                                                                                                                              | -15.8                                                                                                                                                                                           | 36.9                                                                                                                                                                        | 25                                                                                                                                                                                 | 2.4%                                                                                                                                                            | 0.29 [-0.15, 0.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         |
| Seino 2011b-25                                                                                                                                                                                                                                                                                                                                                           | mg Qd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47.2                                                                                                                                                                                                                                                       | 80                                                                                                                                                              | -15.8                                                                                                                                                                                           | 36.9                                                                                                                                                                        | 25                                                                                                                                                                                 | 2.4%                                                                                                                                                            | 0.07 [-0.38, 0.52]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         |
| Tromblow 2011                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 105 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4,470                                                                                                                                                                                                                                                      | 20                                                                                                                                                              | 1,101                                                                                                                                                                                           | 4,430                                                                                                                                                                       | 10                                                                                                                                                                                 | 1.2%                                                                                                                                                            | -0.74 [-1.42, -0.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                         |
| Rauch 2012                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -17.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41.2                                                                                                                                                                                                                                                       | 40                                                                                                                                                              | 13                                                                                                                                                                                              | 40.2                                                                                                                                                                        | 40                                                                                                                                                                                 | 2.5%                                                                                                                                                            | -0.23 [-0.72, 0.21]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | _                       |
| Eto 2012-10mg                                                                                                                                                                                                                                                                                                                                                            | Od                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35.6                                                                                                                                                                                                                                                       | 34                                                                                                                                                              | 6.2                                                                                                                                                                                             | 37.8                                                                                                                                                                        | 16                                                                                                                                                                                 | 1.5%                                                                                                                                                            | -0.30 [-0.90, 0.30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                         |
| Eto 2012-20mg                                                                                                                                                                                                                                                                                                                                                            | Qd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36.2                                                                                                                                                                                                                                                       | 33                                                                                                                                                              | 6.2                                                                                                                                                                                             | 37.8                                                                                                                                                                        | 16                                                                                                                                                                                 | 1.5%                                                                                                                                                            | -0.30 [-0.90, 0.30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                         |
| Bunck 2012                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.2                                                                                                                                                                                                                                                        | 29                                                                                                                                                              | -4.2                                                                                                                                                                                            | 6.6                                                                                                                                                                         | 30                                                                                                                                                                                 | 2.0%                                                                                                                                                            | -0.17 [-0.68, 0.34]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                         |
| Alba 2013                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45.7                                                                                                                                                                                                                                                       | 48                                                                                                                                                              | 12.5                                                                                                                                                                                            | 44.9                                                                                                                                                                        | 39                                                                                                                                                                                 | 2.5%                                                                                                                                                            | -0.65 [-1.08, -0.22]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                         |
| Kadowaki 2013-                                                                                                                                                                                                                                                                                                                                                           | 10mg Qd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56.8                                                                                                                                                                                                                                                       | 84                                                                                                                                                              | 10.6                                                                                                                                                                                            | 33.1                                                                                                                                                                        | 26                                                                                                                                                                                 | 2.5%                                                                                                                                                            | -0.29 [-0.74, 0.15]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | _                       |
| Kadowaki 2013-                                                                                                                                                                                                                                                                                                                                                           | 20mg Qd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28.4                                                                                                                                                                                                                                                       | 79                                                                                                                                                              | 10.6                                                                                                                                                                                            | 33.8                                                                                                                                                                        | 27                                                                                                                                                                                 | 2.5%                                                                                                                                                            | -0.46 [-0.90, -0.02]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                         |
| Kadowaki 2013-                                                                                                                                                                                                                                                                                                                                                           | 40mg Qd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58.5                                                                                                                                                                                                                                                       | 81                                                                                                                                                              | 10.6                                                                                                                                                                                            | 33.8                                                                                                                                                                        | 27                                                                                                                                                                                 | 2.5%                                                                                                                                                            | -0.27 [-0.71, 0.16]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | -                       |
| Sjostrand 2014                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 886.9                                                                                                                                                                                                                                                      | 204                                                                                                                                                             | -9                                                                                                                                                                                              | 1,033.7                                                                                                                                                                     | 185                                                                                                                                                                                | 6.0%                                                                                                                                                            | -0.33 [-0.54, -0.13]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                         |
| Van Raalte 2014                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                          | 25                                                                                                                                                              | 1.4                                                                                                                                                                                             | 6.9                                                                                                                                                                         | 24                                                                                                                                                                                 | 1.6%                                                                                                                                                            | -0.93 [-1.53, -0.34]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                         |
| Vardarii 2014                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,109.1                                                                                                                                                                                                                                                    | 20                                                                                                                                                              | -1,429                                                                                                                                                                                          | 863.1                                                                                                                                                                       | 20                                                                                                                                                                                 | 1.4%                                                                                                                                                            | -0.25 [-0.88, 0.37]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                         |
| Hancon 2014                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 921 2                                                                                                                                                                                                                                                    | 160                                                                                                                                                             | 2 246                                                                                                                                                                                           | 59469                                                                                                                                                                       | 152                                                                                                                                                                                | 4.4%                                                                                                                                                            | -0.50 [-0.79, -0.22]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                         |
| Nishimura 2016                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 348                                                                                                                                                                                                                                                      | 19                                                                                                                                                              | 2,040                                                                                                                                                                                           | 10 528                                                                                                                                                                      | 19                                                                                                                                                                                 | 1.3%                                                                                                                                                            | -0.45 [-0.00, -0.25]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                         |
| Forst 2017                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -26.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.3                                                                                                                                                                                                                                                       | 22                                                                                                                                                              | 1.6                                                                                                                                                                                             | 37.2                                                                                                                                                                        | 22                                                                                                                                                                                 | 1.5%                                                                                                                                                            | -0.81 [-1.43, -0.20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                         |
| Ahn 2017                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.7                                                                                                                                                                                                                                                       | 10                                                                                                                                                              | 22                                                                                                                                                                                              | 18.7                                                                                                                                                                        | 10                                                                                                                                                                                 | 0.8%                                                                                                                                                            | -0.01 [-0.89, 0.86]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                         |
| Farngren 2018                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 672                                                                                                                                                                                                                                                        | 28                                                                                                                                                              | 708                                                                                                                                                                                             | 608.5                                                                                                                                                                       | 28                                                                                                                                                                                 | 1.8%                                                                                                                                                            | -0.59 [-1.12, -0.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                         |
| Dou 2018                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 716.4                                                                                                                                                                                                                                                      | 120                                                                                                                                                             | -99.1                                                                                                                                                                                           | 716.4                                                                                                                                                                       | 111                                                                                                                                                                                | 4.8%                                                                                                                                                            | 0.22 [-0.04, 0.48]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         |
|                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                         |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                            | 2625                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                                                             | 1641                                                                                                                                                                               | 100.0%                                                                                                                                                          | -0.32 [-0.40, -0.24]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · ·                 |                         |
| Heterogeneity: I                                                                                                                                                                                                                                                                                                                                                         | au <sup>2</sup> = 0.02; Chi <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 56.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , df = 41 (                                                                                                                                                                                                                                                | P = 0.                                                                                                                                                          | )5); l² =                                                                                                                                                                                       | 28%                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1 -0.5 0                   | 0.5 1                   |
| rest for overall e                                                                                                                                                                                                                                                                                                                                                       | aneci. z = 7.79 (r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 001)                                                                                                                                                                                                                                                       |                                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                                 | Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | avours DPP4 inhibitors      | Favours conti           |
|                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DPP4 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nhibitors                                                                                                                                                                                                                                                  |                                                                                                                                                                 | с                                                                                                                                                                                               | ontrol                                                                                                                                                                      |                                                                                                                                                                                    | 5                                                                                                                                                               | td. Mean Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Std Moon                    | Difference              |
| D                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                            | otal                                                                                                                                                            |                                                                                                                                                                                                 | 60                                                                                                                                                                          |                                                                                                                                                                                    | `                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | atti, wipan i               |                         |
| BStudy or Subar                                                                                                                                                                                                                                                                                                                                                          | N guo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SD T                                                                                                                                                                                                                                                       | ottai                                                                                                                                                           | wean                                                                                                                                                                                            | 30                                                                                                                                                                          | lotal \                                                                                                                                                                            | Veight                                                                                                                                                          | IV. Random. 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IV. Rando                   | m. 95% Cl               |
| B<br>Defronzo 2009-5                                                                                                                                                                                                                                                                                                                                                     | moup Ni<br>5mgQd -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lean<br>5,704 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>SD 1</u><br>688.7                                                                                                                                                                                                                                       | 138                                                                                                                                                             | Mean<br>4,315                                                                                                                                                                                   | 2,598.5                                                                                                                                                                     | 61                                                                                                                                                                                 | 7.2%                                                                                                                                                            | IV, Random, 95% CI<br>-0.41 [-0.71, -0.10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IV, Rando                   | m, 95% Cl               |
| B<br>Study or Subgr<br>Defronzo 2009-5<br>Rosenstock 200                                                                                                                                                                                                                                                                                                                 | roup M<br>5mg Qd -5<br>19-5 mg Qd -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mean<br>5,704 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>SD 1</u><br>,688.7<br>,535.6                                                                                                                                                                                                                            | 138                                                                                                                                                             | Mean<br>-4,315<br>-3,575                                                                                                                                                                        | 2,598.5<br>2,481.5                                                                                                                                                          | 61<br>31                                                                                                                                                                           | 7.2%<br>5.1%                                                                                                                                                    | IV, Random, 95% CI<br>-0.41 [-0.71, -0.10]<br>-0.32 [-0.74, 0.11]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IV. Rando                   | m, 95% Cl               |
| B<br>Study or Subgr<br>Defronzo 2009-5<br>Rosenstock 200<br>Jadzinsky 2009                                                                                                                                                                                                                                                                                               | roup M<br>5mg Qd -5<br>9-5 mg Qd -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean<br>5,704 3<br>1,615 3<br>-782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>SD 1</u><br>,688.7<br>,535.6<br>3,207                                                                                                                                                                                                                   | 138<br>71<br>136                                                                                                                                                | Mean<br>-4,315<br>-3,575<br>-135                                                                                                                                                                | 2,598.5<br>2,481.5<br>3,207.2                                                                                                                                               | 61<br>61<br>31<br>133                                                                                                                                                              | 7.2%<br>5.1%<br>8.6%                                                                                                                                            | IV. Random. 95% CI<br>-0.41 [-0.71, -0.10]<br>-0.32 [-0.74, 0.11]<br>-0.20 [-0.44, 0.04]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IV. Rando                   | m. 95% Cl               |
| B<br><u>Study or Subgr</u><br>Defronzo 2009-5<br>Rosenstock 200<br>Jadzinsky 2009<br>Hollander 2009-                                                                                                                                                                                                                                                                     | Toup M<br>5mg Qd -5<br>9-5 mg Qd -4<br>5mg Qd                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean<br>5,704 3<br>1,615 3<br>-782<br>-983 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>SD 1</u><br>,688.7<br>,535.6<br>3,207<br>,100.1                                                                                                                                                                                                         | 138<br>71<br>136<br>124                                                                                                                                         | Mean<br>-4,315<br>-3,575<br>-135<br>-265                                                                                                                                                        | 2,598.5<br>2,481.5<br>3,207.2<br>2,192.9                                                                                                                                    | 61<br>31<br>133<br>59                                                                                                                                                              | 7.2%<br>5.1%<br>8.6%<br>7.0%                                                                                                                                    | U, Random, 95% Cl<br>-0.41 [-0.71, -0.10]<br>-0.32 [-0.74, 0.11]<br>-0.20 [-0.44, 0.04]<br>-0.25 [-0.56, 0.06]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IV. Rando                   | m, 95% Cl               |
| B<br>Study or Subgr<br>Defronzo 2009-5<br>Rosenstock 2000<br>Jadzinsky 2009<br>Hollander 2009-<br>Iwamoto 2010-1                                                                                                                                                                                                                                                         | roup M<br>5mg Qd -5<br>19-5 mg Qd -4<br>5mg Qd -<br>00mg Qd -                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mean<br>5,704 3<br>1,615 3<br>-782<br>-983 3<br>-23.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>SD 1</u><br>,688.7<br>,535.6<br>3,207<br>,100.1<br>78.2                                                                                                                                                                                                 | 138<br>71<br>136<br>124<br>30                                                                                                                                   | Mean<br>-4,315<br>-3,575<br>-135<br>-265<br>0.1                                                                                                                                                 | 2,598.5<br>2,481.5<br>3,207.2<br>2,192.9<br>53.5                                                                                                                            | 61<br>31<br>133<br>59<br>10                                                                                                                                                        | 7.2%<br>5.1%<br>8.6%<br>7.0%<br>2.4%                                                                                                                            | IV. Random, 95% CI<br>-0.41 [-0.71, -0.10]<br>-0.32 [-0.74, 0.11]<br>-0.20 [-0.44, 0.04]<br>-0.25 [-0.56, 0.06]<br>-0.32 [-1.04, 0.40]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IV. Rando                   | m, 95% Cl               |
| B <u>Study or Subgr</u><br>Defronzo 2009-5<br>Rosenstock 200<br>Jadzinsky 2009<br>Hollander 2009-<br>Iwamoto 2010-1<br>Seino 2011a-25                                                                                                                                                                                                                                    | roup N<br>5mg Qd -5<br>9-5 mg Qd -4<br>5mg Qd -<br>00mg Qd -<br>mg Qd -                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mean<br>5,704 3<br>1,615 3<br>-782<br>-983 3<br>-23.7<br>-20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>SD 1</u><br>5,688.7<br>3,535.6<br>3,207<br>5,100.1<br>78.2<br>42                                                                                                                                                                                        | 138<br>71<br>136<br>124<br>30<br>79                                                                                                                             | 4,315<br>-3,575<br>-135<br>-265<br>0.1<br>-0.4                                                                                                                                                  | 2,598.5<br>2,481.5<br>3,207.2<br>2,192.9<br>53.5<br>64.2                                                                                                                    | 61<br>31<br>133<br>59<br>10<br>37                                                                                                                                                  | 7.2%<br>5.1%<br>8.6%<br>7.0%<br>2.4%<br>5.5%                                                                                                                    | IV, Random, 95% Cl<br>-0.41 [-0.71, -0.10]<br>-0.32 [-0.74, 0.11]<br>-0.20 [-0.44, 0.04]<br>-0.25 [-0.56, 0.06]<br>-0.32 [-1.04, 0.40]<br>-0.40 [-0.79, -0.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IV. Rando                   | m <u>, 95% Cl</u>       |
| B <u>Study or Subgr</u><br>Defronzo 2009-5<br>Rosenstock 200<br>Jadzinsky 2009<br>Hollander 2009-<br>Iwamoto 2010-1<br>Seino 2011a-25<br>Seino 2011b-25                                                                                                                                                                                                                  | roup     N       5mg Qd     -5       9-5 mg Qd     -4       5mg Qd     -4       00mg Qd     -       mg Qd     -       mg Qd     -                                                                                                                                                                                                                                                                                                                                                                             | Mean<br>5,704 3<br>1,615 3<br>-782<br>-983 3<br>-23.7<br>-20.5<br>-12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>SD 1</u><br>;688.7<br>;535.6<br>3,207<br>;100.1<br>78.2<br>42<br>47.2                                                                                                                                                                                   | 138<br>71<br>136<br>124<br>30<br>79<br>80                                                                                                                       | 4,315<br>-3,575<br>-135<br>-265<br>0.1<br>-0.4<br>-15.8                                                                                                                                         | 2,598.5<br>2,481.5<br>3,207.2<br>2,192.9<br>53.5<br>64.2<br>36.9                                                                                                            | 61<br>31<br>133<br>59<br>10<br>37<br>25                                                                                                                                            | Veight<br>7.2%<br>5.1%<br>8.6%<br>7.0%<br>2.4%<br>5.5%<br>4.7%                                                                                                  | V. Random, 95% Cl<br>-0.41 [-0.71, -0.10]<br>-0.32 [-0.74, 0.11]<br>-0.20 [-0.44, 0.04]<br>-0.25 [-0.56, 0.06]<br>-0.32 [-1.04, 0.40]<br>-0.40 [-0.79, -0.00]<br>0.07 [-0.38, 0.52]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Std. mean<br>IV. Rando      | m <u>, 95% Cl</u>       |
| B <u>Study or Subgr</u><br>Defronzo 2009-5<br>Rosenstock 200<br>Jadzinsky 2009<br>Hollander 2009-<br>Iwamoto 2010-1<br>Seino 2011a-25<br>Seino 2011b-25<br>Henry 2011                                                                                                                                                                                                    | roup     N       5mg Qd     -5       9-5 mg Qd     -4       5mg Qd     00mg Qd       00mg Qd     -       mg Qd     -       mg Qd     -                                                                                                                                                                                                                                                                                                                                                                        | Mean<br>5,704 3<br>1,615 3<br>-782<br>-983 3<br>-23.7<br>-20.5<br>-12.6<br>2,191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>SD 1</u><br>5688.7<br>535.6<br>3,207<br>5,100.1<br>78.2<br>42<br>47.2<br>4,476                                                                                                                                                                          | 138<br>71<br>136<br>124<br>30<br>79<br>80<br>20                                                                                                                 | 4,315<br>-3,575<br>-135<br>-265<br>0.1<br>-0.4<br>-15.8<br>1,161                                                                                                                                | 2,598.5<br>2,481.5<br>3,207.2<br>2,192.9<br>53.5<br>64.2<br>36.9<br>4,436                                                                                                   | 61<br>31<br>133<br>59<br>10<br>37<br>25<br>16                                                                                                                                      | Veight<br>7.2%<br>5.1%<br>8.6%<br>7.0%<br>2.4%<br>5.5%<br>4.7%<br>2.6%                                                                                          | V. Random, 95% Cl<br>-0.41 [-0.71, -0.10]<br>-0.32 [-0.74, 0.11]<br>-0.20 [-0.44, 0.04]<br>-0.25 [-0.56, 0.06]<br>-0.32 [-1.04, 0.40]<br>-0.40 [-0.79, -0.00]<br>0.07 [-0.38, 0.52]<br>-0.74 [-1.42, -0.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | m, 95% Cl               |
| B<br>Study or Subgr<br>Defronzo 2009-3<br>Rosenstock 200<br>Jadzinsky 2009<br>Hollander 2009-<br>Iwamoto 2011-1<br>Seino 2011b-25<br>Henry 2011<br>Tremblay 2011                                                                                                                                                                                                         | roup     N       5mg Qd     -5       9-5 mg Qd     -4       5mg Qd     -4       00mg Qd     -       mg Qd     -       mg Qd     -       1     -2       1     -2                                                                                                                                                                                                                                                                                                                                               | lean       5,704     3       6,615     3       -782     -       -983     3       -23.7     -       -20.5     -       -12.6     -       -191     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>SD 1</u><br>(688.7<br>(535.6<br>3,207<br>(100.1<br>78.2<br>42<br>47.2<br>4,476<br>41.2                                                                                                                                                                  | 138<br>71<br>136<br>124<br>30<br>79<br>80<br>20<br>36                                                                                                           | 4,315<br>-3,575<br>-135<br>-265<br>0.1<br>-0.4<br>-15.8<br>1,161<br>116.8                                                                                                                       | 2,598.5<br>2,481.5<br>3,207.2<br>2,192.9<br>53.5<br>64.2<br>36.9<br>4,436<br>48.2                                                                                           | 61<br>31<br>133<br>59<br>10<br>37<br>25<br>16<br>36                                                                                                                                | Veight<br>7.2%<br>5.1%<br>8.6%<br>7.0%<br>2.4%<br>5.5%<br>4.7%<br>2.6%<br>4.6%                                                                                  | IV. Random. 95% CI       -0.41 [-0.71, -0.10]       -0.32 [-0.74, 0.11]       -0.20 [-0.44, 0.04]       -0.25 [-0.56, 0.06]       -0.32 [-1.04, 0.40]       -0.40 [-0.79, -0.00]       -0.70 [-1.42, -0.05]       -0.76 [-1.42, -0.05]       -0.75 [-0.72, 0.21]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | m. 95% Cl               |
| B <u>study or Subar</u><br>Defronzo 2009-<br>Rosenstock 200<br>Jadzinsky 2009<br>Hollander 2009-<br>Iwarnoto 2010-1<br>Seino 2011a-25<br>Seino 2011a-25<br>Henry 2011<br>Tremblay 2011<br>Rauch 2012                                                                                                                                                                     | roup     N       5mg Qd     -5       9-5 mg Qd     -4       5mg Qd     -4       5mg Qd     -4       00mg Qd     -       mg Qd     -       mg Qd     -                                                                                                                                                                                                                                                                                                                                                         | Ilean     3       5,704     3       4,615     3       -782     -       -983     3       -23.7     -       -20.5     -       -12.6     -       2,191     -       05.4     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SD 1<br>,688.7<br>,535.6<br>3,207<br>,100.1<br>78.2<br>42<br>47.2<br>4,476<br>41.2<br>41.7<br>                                                                                                                                                             | 138<br>71<br>136<br>124<br>30<br>79<br>80<br>20<br>36<br>40                                                                                                     | Mean<br>-4,315<br>-3,575<br>-135<br>-265<br>0.1<br>-0.4<br>-15.8<br>1,161<br>116.8<br>1.3                                                                                                       | 2,598.5<br>2,481.5<br>3,207.2<br>2,192.9<br>53.5<br>64.2<br>36.9<br>4,436<br>48.2<br>72.7                                                                                   | 61<br>31<br>133<br>59<br>10<br>37<br>25<br>16<br>36<br>40                                                                                                                          | Veight<br>7.2%<br>5.1%<br>8.6%<br>7.0%<br>2.4%<br>5.5%<br>4.7%<br>2.6%<br>4.6%<br>4.6%                                                                          | IV, Random, 95% CI<br>-0.41 [-0.71, -0.10]<br>-0.32 [-0.74, 0.11]<br>-0.20 [-0.44, 0.04]<br>-0.25 [-0.56, 0.06]<br>-0.32 [-1.04, 0.40]<br>-0.40 [-0.79, -0.00]<br>-0.70 [-0.38, 0.52]<br>-0.74 [-1.42, -0.05]<br>-0.25 [-0.72, 0.21]<br>-0.31 [-0.75, 0.13]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV. medii<br>IV. Rando      | m. 95% Cl               |
| B <u>study or Subar</u><br>Defronzo 2009-6<br>Rosenstock 200<br>Hollander 2009-<br>Iwamote 2010-1<br>Seino 20118-25<br>Seino 20118-25<br>Henry 2011<br>Tremblay 2011<br>Tremblay 2012<br>Alba 2013<br>Alba 2013                                                                                                                                                          | roup N<br>5mg Qd -5<br>9-5 mg Qd -4<br>5mg Qd 00mg Qd -<br>mg Qd -<br>mg Qd -<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2                                                                                                                                                                                                                                                                                                                                                   | Itean     3       5,704     3       1,615     3       -782     -       -983     3       -23.7     -       -20.5     -       -12.6     -       -17.4     -       -17.4     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SD 1<br>6688.7<br>535.6<br>3,207<br>5,100.1<br>78.2<br>42<br>47.2<br>4,476<br>41.2<br>41.7<br>45.7<br>000.0                                                                                                                                                | 138<br>71<br>136<br>124<br>30<br>79<br>80<br>20<br>36<br>40<br>48                                                                                               | Mean<br>-4,315<br>-3,575<br>-135<br>-265<br>0.1<br>-0.4<br>-15.8<br>1,161<br>116.8<br>1.3<br>12.5                                                                                               | 2,598.5<br>2,481.5<br>3,207.2<br>2,192.9<br>53.5<br>64.2<br>36.9<br>4,436<br>48.2<br>72.7<br>44.9                                                                           | 100 al 1<br>61<br>31<br>133<br>59<br>10<br>37<br>25<br>16<br>36<br>40<br>39<br>105                                                                                                 | Veight<br>7.2%<br>5.1%<br>8.6%<br>7.0%<br>2.4%<br>5.5%<br>4.7%<br>4.6%<br>4.6%<br>4.6%<br>5.0%<br>5.0%                                                          | IV. Random. 95% Cl       -0.41 [-0.71, -0.10]       -0.32 [-0.74, 0.11]       -0.20 [-0.44, 0.04]       -0.25 [-0.56, 0.06]       -0.32 [-1.04, 0.40]       -0.40 [-0.79, -0.00]       0.07 [-0.38, 0.52]       -0.74 [-1.42, -0.05]       -0.35 [-0.75, 0.13]       -0.65 [-1.06, 0.02]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ju. mean<br>N. Rando<br>    | m <u>, 95% Cl</u>       |
| B <u>study or Subar</u><br>Defronzo 2009-5<br>Rosenstock 200<br>Hollander 2009-<br>Iwamote 2010-1<br>Seino 2011a-25<br>Seino 2011a-25<br>Seino 2011a-25<br>Henry 2011<br>Tremblay 2011<br>Rauch 2012<br>Alba 2013<br>Sjostrand 2014<br>Vers Detrat 201                                                                                                                   | roup N<br>5mg Qd -5<br>99-5 mg Qd -4<br>5mg Qd<br>00mg Qd -<br>mg Qd -<br>mg Qd -<br>1<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2                                                                                                                                                                                                                                                                                                                                                            | Mean       5,704     3       -782     -       -983     3       -23.7     -       -12.6     -       2,191     -       05.4     -       -17.2     -       -331     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SD 1<br>,688.7<br>,535.6<br>3,207<br>,100.1<br>78.2<br>42<br>47.2<br>4,476<br>41.2<br>41.7<br>45.7<br>886.9                                                                                                                                                | 138<br>71<br>136<br>124<br>30<br>79<br>80<br>20<br>36<br>40<br>48<br>204<br>25                                                                                  | Mean<br>4,315<br>-3,575<br>-135<br>-265<br>0.1<br>-0.4<br>-15.8<br>1,161<br>116.8<br>1.3<br>12.5<br>-9<br>1.4                                                                                   | 2,598.5<br>2,481.5<br>3,207.2<br>2,192.9<br>53.5<br>64.2<br>36.9<br>4,436<br>48.2<br>72.7<br>44.9<br>1,033.7                                                                | 1011 1<br>61<br>31<br>133<br>59<br>10<br>37<br>25<br>16<br>36<br>40<br>39<br>185<br>24                                                                                             | Veight<br>7.2%<br>5.1%<br>8.6%<br>7.0%<br>2.4%<br>5.5%<br>4.7%<br>2.6%<br>4.6%<br>4.9%<br>5.0%<br>9.5%                                                          | V. Random. 95% CI<br>-0.41 [-0.71, -0.10]<br>-0.32 [-0.74, 0.11]<br>-0.20 [-0.74, 0.11]<br>-0.25 [-0.56, 0.06]<br>-0.32 [-1.04, 0.40]<br>-0.40 [-0.79, -0.00]<br>-0.74 [-1.42, -0.05]<br>-0.74 [-1.42, -0.05]<br>-0.75 [-0.38, 0.52]<br>-0.31 [-0.75, 0.13]<br>-0.55 [-1.08, -0.22]<br>-0.33 [-0.54, -0.13]<br>-0.33 [-0.54, -0.13]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ju. medii<br>IV. Rando<br>  | m <u>, 95% Cl</u>       |
| B <u>Study or Subar</u><br>Defronzo 2009-4<br>Rosenstock 200<br>Jadžinsky 2009<br>Hollander 2009-<br>Ivarmoto 2010-1<br>Seino 20110-25<br>Seino 20110-25<br>Henry 2011<br>Tremblay 2011<br>Tremblay 2011<br>Alba 2013<br>Sjostrand 2014<br>Van Raalte 2011<br>Van Raalte 2012                                                                                            | soup     N       Smg Qd     -5       99-5 mg Qd     -4       Smg Qd     -6       00mg Qd     -       mg Qd     -       mg Qd     -       -2     -2       -3     -2       -4     -2       -4     -3                                                                                                                                                                                                                                                                                                            | Mean       5,704     3       1,615     3       -782     -983     3       -23.7     -20.5     -12.6       :12.6     :12.6     -17.4       -17.2     -331     -5.7       -697     1     697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SD T<br>,688.7<br>,535.6<br>,100.1<br>78.2<br>42<br>47.2<br>4,476<br>41.2<br>41.7<br>45.7<br>886.9<br>8<br>109.1                                                                                                                                           | 138<br>71<br>136<br>124<br>30<br>79<br>80<br>20<br>36<br>40<br>48<br>204<br>25<br>20                                                                            | Mean<br>4,315<br>-3,575<br>-135<br>-265<br>0.1<br>-0.4<br>-15.8<br>1,161<br>116.8<br>1.3<br>12.5<br>-9<br>1.4<br>1.429                                                                          | 2,598.5<br>2,481.5<br>3,207.2<br>2,192.9<br>53.5<br>64.2<br>36.9<br>4,436<br>48.2<br>72.7<br>44.9<br>1,033.7<br>6.9<br>863.1                                                | 10000000000000000000000000000000000000                                                                                                                                             | Veight<br>7.2%<br>5.1%<br>8.6%<br>7.0%<br>2.4%<br>5.5%<br>4.7%<br>2.6%<br>4.6%<br>4.6%<br>4.9%<br>5.0%<br>3.3%<br>3.0%                                          | V, Random, 95% Cl<br>-0.41 [-0.71, -0.10]<br>-0.32 [-0.74, 0.11]<br>-0.20 [-0.44, 0.04]<br>-0.25 [-0.66, 0.06]<br>-0.22 [-1.04, 0.40]<br>-0.25 [-0.66, 0.06]<br>-0.25 [-0.78, 0.52]<br>-0.74 [-1.42, -0.05]<br>-0.25 [-0.72, 0.21]<br>-0.35 [-0.75, 0.13]<br>-0.35 [-0.74, -0.13]<br>-0.33 [-0.54, -0.13]<br>-0.33 [-0.54, -0.13]<br>-0.33 [-0.54, -0.13]<br>-0.33 [-0.54, -0.13]<br>-0.33 [-0.58, -0.13]<br>-0.33 [-0.58, -0.13]<br>-0.33 [-0.58, -0.13]<br>-0.33 [-0.58, -0.13]<br>-0.33 [-0.58, -0.13]<br>-0.35 [-0.58, -0.58]<br>-0.35 [-0.58, -0.58] | Ju. mean<br>N. Rando<br>    | m. 95% Cl               |
| B <u>Study or Subar</u><br>Defronzo 2009-4<br>Rosenstock 200<br>Jadzinsky 2009<br>Hollander 2009-<br>Iwarnoto 2011a-25<br>Seino 2011b-25<br>Henry 2011<br>Tremblay 2011<br>Rauch 2012<br>Alba 2013<br>Sjostrand 2014<br>Vardarli 2014<br>Vardarli 2014                                                                                                                   | youp     N       Smg Qd     -5       99-5 mg Qd     -4       Smg Qd     -4       O0mg Qd     -       mg Qd     -       mg Qd     -       -22     -2       1     -2       -3     -2       4     -1                                                                                                                                                                                                                                                                                                             | Mean       5,704     3       -782     -       -983     3       -23.7     -       -20.5     -       -12.6     -       2,191     -       05.4     -       -17.4     -       -331     -       -5.7     -       ,687     1       -289     5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SD 1<br>,688.7<br>,535.6<br>3,207<br>,100.1<br>78.2<br>42<br>47.2<br>4,476<br>41.2<br>41.7<br>45.7<br>886.9<br>8<br>109.1<br>821.2                                                                                                                         | 138<br>71<br>136<br>124<br>30<br>79<br>80<br>20<br>36<br>40<br>48<br>204<br>25<br>20<br>160                                                                     | Mean<br>4,315<br>-3,575<br>-135<br>-265<br>0.1<br>-0.4<br>-15.8<br>1,161<br>116.8<br>1.3<br>12.5<br>-9<br>1.4<br>-9<br>1.429<br>2 346                                                           | 2,598.5<br>2,481.5<br>3,207.2<br>2,192.9<br>53.5<br>64.2<br>36.9<br>4,436<br>48.2<br>72.7<br>44.9<br>1,033.7<br>6.3<br>863.1<br>863.1                                       | Iotal     N       61     31       133     59       10     37       25     16       36     40       39     185       24     20       152     152                                    | Veight<br>7.2%<br>5.1%<br>8.6%<br>7.0%<br>2.4%<br>5.5%<br>4.7%<br>2.6%<br>4.6%<br>4.9%<br>5.0%<br>9.5%<br>3.3%<br>8.9%                                          | $\begin{array}{c} \textbf{V}, Random, 95\% (C)\\ -0.41 [-0.71, 0.10]\\ -0.32 [-0.74, 0.11]\\ -0.20 [-0.44, 0.04]\\ -0.25 [-0.56, 0.06]\\ -0.32 [-1.04, 0.40]\\ -0.40 [-0.79, -0.00]\\ -0.40 [-0.79, -0.00]\\ -0.40 [-0.79, -0.00]\\ -0.40 [-0.79, -0.00]\\ -0.40 [-0.79, -0.00]\\ -0.40 [-0.79, -0.00]\\ -0.40 [-0.70, -0.00]\\ -0.40 [-0.70, -0.00]\\ -0.40 [-0.70, -0.00]\\ -0.40 [-0.70, -0.00]\\ -0.25 [-0.80, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.68, -0.20]\\ -0.45 [-0.48, -0.20]\\ -0.45 [-0.48, -0.20]\\ -0.45 [-0.48, -0.20]\\ -0.45 [-0.48, -0.20]\\ -0.45 [-0.48, -0.20]\\ -0.45 [-0.48, -0.20$                                                                                                                                                                                     | U. mean<br>IV. Rando<br>    | m <u>. 95% Cl</u>       |
| B <u></u>                                                                                                                                                                                                                                                                                                                                                                | oup     N       mg Qd     -5       99-5 mg Qd     -4       5mg Qd     -6       00mg Qd     -       mg Qd     -       mg Qd     -       1     -2       4     -1                                                                                                                                                                                                                                                                                                                                                | Mean       5,704     3       -782     -       -983     3       -23.7     -       -20.5     -       -12.6     -       2,191     -       05.4     -       -17.4     -       -331     -       -5.7     -       ,687     1       -289     5       0.075     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SD T       (688.7)       (535.6)       3,207       (100.1)       78.2       42       47.2       4,476       41.2       41.2       41.7       45.7       886.9       8       (109.1)       (821.2)       8.348                                              | 138<br>71<br>136<br>124<br>30<br>79<br>80<br>20<br>36<br>40<br>48<br>204<br>25<br>20<br>160<br>19                                                               | Mean<br>4,315<br>-3,575<br>-135<br>-265<br>0.1<br>-0.4<br>-15.8<br>1,161<br>116.8<br>1.3<br>12.5<br>9<br>1.4<br>-1,429<br>2,346<br>2,001                                                        | 2,598.5<br>2,598.5<br>3,207.2<br>2,192.9<br>53.5<br>64.2<br>36.9<br>4,436<br>48.2<br>72.7<br>44.9<br>1,033.7<br>6.9<br>863.1<br>5,846.8                                     | Iotal     N       61     31       133     59       10     37       25     16       36     40       39     185       24     20       152     19                                     | Veight<br>7.2%<br>5.1%<br>8.6%<br>7.0%<br>2.4%<br>5.5%<br>4.7%<br>2.6%<br>4.6%<br>4.9%<br>5.0%<br>9.5%<br>3.3%<br>8.9%<br>2.8%                                  | $\begin{array}{c} \textbf{V}, Random, 95\% (C1)\\ -0.41 (-0.71, -0.10)\\ -0.32 [-0.74, 0.11]\\ -0.25 [-0.56, 0.06]\\ -0.25 [-0.56, 0.06]\\ -0.32 [-1.04, 0.40]\\ -0.40 [-0.79, -0.00]\\ -0.74 [-1.42, -0.05]\\ -0.25 [-0.72, 0.21]\\ -0.25 [-0.72, 0.21]\\ -0.31 [-0.75, 0.13]\\ -0.65 [-1.08, 0.37]\\ -0.33 [-0.54, -0.13]\\ -0.33 [-0.58, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.23]\\ -0.5 [-0.28, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-0.68, 0.3$                                                                                                                                                                                 | Ju. medii<br>IV. Rando      | m. 95% Cl<br>-<br>-<br> |
| B<br><u>Study or Subar</u><br>Rosenstock 200<br>Jadzinsky 2009<br>Hollander 2009-<br>Iwarmoto 2010-1<br>Seino 2011a-25<br>Seino 2011a-25<br>Seino 2011a-25<br>Seino 2011a-25<br>Henry 2011<br>Rauch 2012<br>Alba 2013<br>Sjostrand 2014<br>Vardarii 2014<br>Hansen 2014<br>Nishimura 2016<br>Forst 2017                                                                  | toup     N       Sing Qd     -5       9-5 mg Qd     -4       Sing Qd     -5       00mg Qd     -       mg Qd     -       mg Qd     -       mg Qd     -       mg Qd     -       1     -       -     -       4     -1                                                                                                                                                                                                                                                                                            | Mean       5,704     3       -,615     3       -,983     3       -,983     3       -,20,5     -12,6       -,112,6     -12,6       -,112,6     -33,1       -,17,4     -17,2       -,331     -5,7       -,687     1       -28,9     5       -,075     -26,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SD T<br>(688.7<br>(535.6<br>3,207<br>(100.1<br>78.2<br>42<br>47.2<br>4,476<br>41.2<br>41.7<br>45.7<br>886.9<br>8<br>(109.1<br>(821.2<br>8,348<br>29.3                                                                                                      | 138<br>71<br>136<br>124<br>30<br>79<br>80<br>20<br>36<br>40<br>48<br>204<br>25<br>20<br>160<br>19<br>22                                                         | Mean<br>4,315<br>-3,575<br>-265<br>0.1<br>-0.4<br>-15.8<br>1,161<br>116.8<br>1.3<br>12.5<br>-9<br>1.4<br>-1,429<br>2,306<br>2,001<br>1.6                                                        | 2,598.5<br>2,598.5<br>3,207.2<br>2,192.9<br>53.5<br>64.2<br>36.9<br>4,436<br>48.2<br>72.7<br>44.9<br>1,033.7<br>6.9<br>863.1<br>5,846.8<br>10,528<br>37.2                   | otal     61       31     133       59     10       37     25       16     36       40     39       185     24       20     152       19     22                                     | Verght<br>7.2%<br>5.1%<br>8.6%<br>2.4%<br>5.5%<br>4.7%<br>2.6%<br>4.6%<br>5.0%<br>9.5%<br>3.3%<br>3.0%<br>8.9%<br>2.8%<br>2.8%                                  | $\begin{array}{c} \textbf{V}, Random, 95\% C1\\ -0.41 [-0.71, -0.10]\\ -0.32 [-0.74, 0.11]\\ -0.20 [-0.44, 0.04]\\ -0.25 [-0.56, 0.06]\\ -0.32 [-1.06, 0.06]\\ -0.32 [-1.08, 0.52]\\ -0.74 [-1.42, -0.06]\\ -0.74 [-1.42, -0.05]\\ -0.74 [-1.42, -0.05]\\ -0.75 [-0.72, 0.21]\\ -0.31 [-0.75, 0.13]\\ -0.65 [-1.08, -0.22]\\ -0.33 [-0.55, -0.34]\\ -0.25 [-0.88, 0.37]\\ -0.25 [-0.88, 0.37]\\ -0.45 [-0.68, 0.23]\\ -0.45 [-0.68, 0.23]\\ -0.45 [-0.68, 0.23]\\ -0.45 [-0.68, 0.23]\\ -0.45 [-0.68, 0.23]\\ -0.45 [-0.68, 0.23]\\ -0.45 [-0.68, 0.23]\\ -0.68 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.03]\\ -0.85 [-1.28, 0.$                                                                                                                                                                                 | J.U. medin<br>IV. Rando     | m <u>. 95% Cl</u>       |
| B                                                                                                                                                                                                                                                                                                                                                                        | Soup     N       Simg Qd     -5       9-5 mg Qd     -4       5mg Qd     -0       00mg Qd     -       mg Qd     -2       1     -2       -1     -2       4     -1                                                                                                                                                                                                                                                                                                                                               | Mean       5,704     3       -782     -       -983     3       -23.7     -       -20.5     -12.6       2,191     005.4       -17.4     -       -17.4     -       -331     -       -5.7     -       ,687     1       -289     5       ,075     -       -26.1     327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SD T       ,688.7       ,535.6       3,207       ,100.1       78.2       42       47.2       47.2       41.2       41.7       45.7       886.9       8       ,109.1       ,821.2       8,348       29.3       672                                          | 138<br>71<br>136<br>124<br>30<br>79<br>80<br>20<br>40<br>48<br>204<br>25<br>20<br>40<br>48<br>204<br>25<br>20<br>160<br>19<br>22<br>28                          | Mean<br>4,315<br>-3,575<br>-265<br>0.1<br>-0.4<br>-15.8<br>1,161<br>116.8<br>1.3<br>12.5<br>-9<br>1.4<br>-1,429<br>2,346<br>2,040<br>1.6<br>708                                                 | 2,598.5<br>2,481.5<br>3,207.2<br>2,192.9<br>53.5<br>64.2<br>36.9<br>4,436<br>48.2<br>72.7<br>44.9<br>1,033.7<br>6.9<br>863.1<br>5,846.8<br>10,528<br>37.2<br>608.5          | otal     61       61     31       133     59       10     37       25     16       36     40       39     185       24     20       152     19       22     28                     | Veight<br>7.2%<br>5.1%<br>8.6%<br>2.4%<br>5.5%<br>4.7%<br>2.6%<br>4.9%<br>5.0%<br>9.5%<br>3.3%<br>3.0%<br>8.9%<br>2.8%<br>3.1%<br>3.8%                          | $\begin{array}{c} V. Random. 95\% C1\\ -0.41 [-0.71, -0.10]\\ -0.32 [-0.74, -0.11]\\ -0.20 [-0.74, -0.11]\\ -0.25 [-0.56, -0.06]\\ -0.32 [-1.04, -0.40]\\ -0.40 [-0.79, -0.00]\\ -0.74 [-1.42, -0.05]\\ -0.74 [-1.42, -0.05]\\ -0.74 [-1.42, -0.05]\\ -0.75 [-0.72, 0.21]\\ -0.31 [-0.75, 0.13]\\ -0.55 [-1.08, -0.22]\\ -0.33 [-0.54, -0.13]\\ -0.65 [-1.08, -0.22]\\ -0.33 [-0.54, -0.13]\\ -0.45 [-0.68, -0.23]\\ -0.45 [-0.68, -0.23]\\ -0.45 [-0.68, -0.23]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]\\ -0.45 [-1.43, -0.20]$                                                                                                                                                                                           | J.U. medal<br>IV. Rando<br> | m, 95% Cl<br>-<br><br>  |
| B                                                                                                                                                                                                                                                                                                                                                                        | toup     N       Sing Qd     -5       9-5 mg Qd     -4       Sing Qd     -       mg Qd     -       mg Qd     -       mg Qd     -       -22     -2       1     -2       -2     -2       4     -4                                                                                                                                                                                                                                                                                                               | Mean     Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SD T       ,688.7       ,535.6       3,207       ,100.1       78.2       42       47.2       4,476       41.7       45.7       886.9       8       ,109.1       8,21.2       8,348       29.3       672       716.4                                        | 138<br>71<br>136<br>124<br>30<br>79<br>80<br>20<br>40<br>48<br>204<br>25<br>20<br>40<br>48<br>204<br>25<br>20<br>160<br>19<br>22<br>28<br>120                   | Mean<br>4,315<br>-3,575<br>-135<br>-265<br>0.1<br>-0.4<br>-15.8<br>1,161<br>116.8<br>1.3<br>12.5<br>-9<br>1.4<br>-1,429<br>2,346<br>2,001<br>1.6<br>708<br>-99.1                                | 2,598.5<br>2,481.5<br>3,207.2<br>2,192.9<br>53.5<br>64.2<br>36.9<br>4,436<br>48.2<br>72.7<br>44.9<br>1,033.7<br>6,9<br>863.1<br>5,846.8<br>10,528<br>37.2<br>608.5<br>716.4 | otal     61       31     133       59     10       37     25       16     36       40     39       185     24       20     152       19     22       28     111                    | Veight<br>7.2%<br>5.1%<br>8.6%<br>7.0%<br>2.4%<br>5.5%<br>4.7%<br>4.6%<br>4.6%<br>4.9%<br>5.0%<br>9.5%<br>3.3%<br>8.9%<br>2.8%<br>3.1%<br>3.8%                  | $\begin{array}{c} \textbf{V}, Random, 95\% C1\\ -0.41 [-0.71, -0.10]\\ -0.32 [-0.74, 0.11]\\ -0.20 [-0.44, 0.04]\\ -0.25 [-0.56, 0.06]\\ -0.32 [-1.04, 0.40]\\ -0.25 [-0.56, 0.06]\\ -0.32 [-1.05, 0.10]\\ -0.25 [-0.75, 0.13]\\ -0.40 [-0.79, -0.00]\\ -0.74 [-1.42, -0.05]\\ -0.25 [-0.72, 0.21]\\ -0.35 [-0.75, 0.13]\\ -0.65 [-1.08, -0.22]\\ -0.35 [-0.75, 0.13]\\ -0.45 [-0.66, -0.23]\\ -0.45 [-0.66, -0.23]\\ -0.45 [-0.66, -0.23]\\ -0.58 [-1.32, -0.24]\\ -0.59 [-1.12, -0.05]\\ -0.25 [-0.40, 0.46]\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J.U. medal<br>IV. Rando<br> | n, 95% Cl<br><br><br>   |
| B <u>Study or Subar</u><br>Defronzo 2009-4<br>Rosenstock 200<br>Jadzinsky 2009<br>Hollander 2009-<br>Iwamoto 2010-1<br>Seino 20110-25<br>Seino 20110-25<br>Henry 2011<br>Tremblay 2011<br>Rauch 2012<br>Alba 2013<br>Sjostrand 2014<br>Vardaril 2014<br>Hansen 2014<br>Nishimur 2016<br>Forst 2017<br>Farngren 2018<br>Dou 2018                                          | oup     N       Song Qd     -5       9-5 mg Qd     -4       Smg Qd     -0       mg Qd     -       mg Qd     -       -1     -1       -4     -4                                                                                                                                                                                                                                                                                                                                                                 | Mean       5,704     3       1,615     3       -782     -983       -983     3       -23.7     -20.5       -12.6     2,191       05.4     -17.4       -17.4     -331       -5.7     -687       -687     1       -289     5       -075     -26.1       327     56.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SD T       ,688.7       ,535.6       3,207       ,100.1       78.2       42       47.2       4,476       41.7       45.7       886.9       8       ,109.1       ,821.2       8,348       29.3       672       716.4                                        | 138<br>71<br>136<br>124<br>30<br>79<br>80<br>20<br>20<br>36<br>40<br>40<br>48<br>204<br>25<br>20<br>40<br>48<br>204<br>25<br>20<br>160<br>19<br>22<br>28<br>120 | Mean<br>4,315<br>-3,575<br>-135<br>-265<br>0.1<br>-0.4<br>-15.8<br>1,161<br>116.8<br>1.3<br>12.5<br>-9<br>1.4<br>-1,429<br>2,346<br>2,001<br>1.6<br>708<br>-99.1                                | 2,598.5<br>2,481.5<br>3,207.2<br>2,192.9<br>53.5<br>64.2<br>36.9<br>4,436<br>48.2<br>72.7<br>44.9<br>1,033.7<br>6.9<br>863.1<br>5,846.8<br>10,528<br>37.2<br>608.5<br>716.4 | 61<br>31<br>133<br>59<br>10<br>37<br>25<br>16<br>36<br>40<br>39<br>185<br>24<br>20<br>152<br>19<br>22<br>28<br>111                                                                 | Veight<br>7.2%<br>5.1%<br>8.6%<br>7.0%<br>2.4%<br>5.5%<br>4.7%<br>2.6%<br>4.6%<br>4.6%<br>4.9%<br>5.0%<br>9.5%<br>3.3%<br>8.9%<br>2.8%<br>3.1%<br>3.8%<br>8.1%  | $\begin{array}{c} \textbf{V}, Random, 95\% (C)\\ -0.41 [-0.71, 0.10]\\ -0.32 [-0.74, 0.11]\\ -0.20 [-0.44, 0.04]\\ -0.25 [-0.56, 0.06]\\ -0.32 [-1.04, 0.40]\\ -0.40 [-0.79, -0.00]\\ -0.40 [-0.79, -0.00]\\ -0.40 [-0.79, -0.00]\\ -0.40 [-0.79, -0.00]\\ -0.40 [-1.42, -0.05]\\ -0.40 [-1.42, -0.05]\\ -0.25 [-0.72, 0.21]\\ -0.31 [-0.75, 0.13]\\ -0.25 [-0.73, -0.34]\\ -0.25 [-0.88, 0.37]\\ -0.45 [-1.68, 0.03]\\ -0.45 [-1.68, 0.03]\\ -0.45 [-1.42, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0.58 [-1.22, -0.05]\\ -0$                                                                                                                                                                                    | J.U. medal<br>IV. Rando<br> | m, 95% Cl               |
| B <u>Study or Subar</u><br>Defronzo 2009-4<br>Rosenstock 200<br>Jadzinsky 2009<br>Hollander 2009-<br>Iwarmoto 20110-25<br>Seino 20110-25<br>Seino 20110-25<br>Henry 2011<br>Tremblay 2011<br>Rauch 2012<br>Alba 2013<br>Sjostrand 2014<br>Van Raalte 2011<br>Vardaril 2014<br>Hansen 2014<br>Nishimura 2016<br>Forst 2017<br>Farrgren 2018<br>Dua 2018<br>Total (95% Cl) | Noup     N       Smg Od     -5       Smg Od     -5       Smg Od     -5       Smg Od     -6       O0mg Od     -       mg Od     -       mg Od     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -       -     -  -     -     -       -     -     -       -     -     -       -     -     -       -     -     - | Mean     Spectrum     Spectrum <th< td=""><td>SD 1       ,688.7       ,535.6       3,207       ,100.1       78.2       42       47.2       4,476       41.7       45.7       886.9       ,109.1       ,821.2       8,348       29.3       672       716.4       1</td><td>138<br/>71<br/>136<br/>124<br/>30<br/>79<br/>80<br/>20<br/>36<br/>40<br/>48<br/>204<br/>25<br/>20<br/>160<br/>19<br/>22<br/>28<br/>120<br/>400</td><td>Mean<br/>4,315<br/>-3,575<br/>-135<br/>-265<br/>0.1<br/>-0.4<br/>-15.8<br/>1,161<br/>116.8<br/>1.3<br/>12.5<br/>-9<br/>1.4<br/>1,429<br/>2,346<br/>2,001<br/>1.6<br/>708<br/>-99.1</td><td>2,598.5<br/>2,481.5<br/>3,207.2<br/>2,192.9<br/>53.5<br/>64.2<br/>36.9<br/>4,436<br/>48.2<br/>72.7<br/>44.9<br/>1,033.7<br/>6.9<br/>863.1<br/>5,846.8<br/>10,528<br/>37.2<br/>608.5<br/>716.4</td><td>otal     61       31     33       59     10       37     25       16     36       40     39       185     24       20     152       19     22       111     1048</td><td>Vergitt<br/>7.2%<br/>5.1%<br/>8.6%<br/>7.0%<br/>2.4%<br/>5.5%<br/>4.7%<br/>2.6%<br/>4.7%<br/>2.6%<br/>4.6%<br/>4.9%<br/>9.5%<br/>3.3%<br/>3.0%<br/>2.8%<br/>3.1%<br/>3.8%<br/>8.1%</td><td><math display="block">\begin{array}{c} \textbf{V}, Random, 95\% C1\\ -0.41 [-0.71, -0.10\\ -0.32 [-0.74, 0.11]\\ -0.20 [-0.44, 0.04]\\ -0.25 [-0.56, 0.06]\\ -0.32 [-1.04, 0.40]\\ -0.32 [-1.04, 0.40]\\ -0.40 [-0.79, -0.00]\\ -0.74 [-1.42, -0.05]\\ -0.25 [-0.72, 0.21]\\ -0.35 [-0.75, 0.13]\\ -0.65 [-1.08, -0.22]\\ -0.33 [-1.28, -0.33]\\ -0.45 [-0.68, -0.73]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-1.43, -0.20]\\ -0.58 [-1.12, -0.05]\\ -0.25 [-0.44, 0.48]\\ -0.34 [-0.47, -0.22]\\ \end{array}</math></td><td></td><td>m, 95% Cl</td></th<> | SD 1       ,688.7       ,535.6       3,207       ,100.1       78.2       42       47.2       4,476       41.7       45.7       886.9       ,109.1       ,821.2       8,348       29.3       672       716.4       1                                        | 138<br>71<br>136<br>124<br>30<br>79<br>80<br>20<br>36<br>40<br>48<br>204<br>25<br>20<br>160<br>19<br>22<br>28<br>120<br>400                                     | Mean<br>4,315<br>-3,575<br>-135<br>-265<br>0.1<br>-0.4<br>-15.8<br>1,161<br>116.8<br>1.3<br>12.5<br>-9<br>1.4<br>1,429<br>2,346<br>2,001<br>1.6<br>708<br>-99.1                                 | 2,598.5<br>2,481.5<br>3,207.2<br>2,192.9<br>53.5<br>64.2<br>36.9<br>4,436<br>48.2<br>72.7<br>44.9<br>1,033.7<br>6.9<br>863.1<br>5,846.8<br>10,528<br>37.2<br>608.5<br>716.4 | otal     61       31     33       59     10       37     25       16     36       40     39       185     24       20     152       19     22       111     1048                   | Vergitt<br>7.2%<br>5.1%<br>8.6%<br>7.0%<br>2.4%<br>5.5%<br>4.7%<br>2.6%<br>4.7%<br>2.6%<br>4.6%<br>4.9%<br>9.5%<br>3.3%<br>3.0%<br>2.8%<br>3.1%<br>3.8%<br>8.1% | $\begin{array}{c} \textbf{V}, Random, 95\% C1\\ -0.41 [-0.71, -0.10\\ -0.32 [-0.74, 0.11]\\ -0.20 [-0.44, 0.04]\\ -0.25 [-0.56, 0.06]\\ -0.32 [-1.04, 0.40]\\ -0.32 [-1.04, 0.40]\\ -0.40 [-0.79, -0.00]\\ -0.74 [-1.42, -0.05]\\ -0.25 [-0.72, 0.21]\\ -0.35 [-0.75, 0.13]\\ -0.65 [-1.08, -0.22]\\ -0.33 [-1.28, -0.33]\\ -0.45 [-0.68, -0.73]\\ -0.45 [-0.68, 0.37]\\ -0.45 [-1.43, -0.20]\\ -0.58 [-1.12, -0.05]\\ -0.25 [-0.44, 0.48]\\ -0.34 [-0.47, -0.22]\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | m, 95% Cl               |
| B<br><u>Study or Subar</u><br>Defronzo 2009-9-<br>Rosenstock 200<br>Jadzinsky 2009<br>Hollander 2009-<br>Iwamoto 2011a-25<br>Seino 2011a-25<br>Henry 2011<br>Tremblay 2011<br>Rauch 2012<br>Alba 2013<br>Sjostrand 2014<br>Vardaril 2014<br>Vardaril 2014<br>Nishimura 2016<br>Forst 2017<br>Farngren 2018<br>Dou 2018<br>Total (95% Cl)<br>Heterogeneity: T             | Noup     N       Sing Od     -5       9-5 mg Od     -6       Sing Od     00mg Od       omg Od     -       mg Od     -       mg Od     -       mg Od     -       4     -       fau <sup>2</sup> = 0.03; Chi <sup>2</sup> -                                                                                                                                                                                                                                                                                     | Mean       5,704     3       -782    983       -983     3       -20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SD T       ,688.7       ,535.6       3,207       ,100.1       78.2       42       47.2       4,476       41.2       41.2       41.7       45.7       886.9       ,109.1       ,821.2       8,348       29.3       672       716.4       1       0, df = 18 | 138<br>71<br>136<br>124<br>30<br>79<br>80<br>20<br>36<br>40<br>48<br>204<br>25<br>20<br>160<br>19<br>22<br>28<br>120<br>400<br>(P = 0                           | Mean<br>4,315<br>3,575<br>-135<br>-265<br>0.1<br>-265<br>0.1<br>-15.8<br>1,161<br>116.8<br>1.3<br>12.5<br>-9<br>1.4<br>-1,429<br>2,346<br>2,001<br>1.6<br>708<br>-99.1<br>01); I <sup>2</sup> = | 2,598.5<br>2,481.5<br>3,207.2<br>2,192.9<br>53.5<br>64.2<br>36.9<br>4,436<br>48.2<br>72.7<br>44.9<br>1,033.7<br>6.9<br>863.1<br>5,846.8<br>10,528<br>37.2<br>608.5<br>716.4 | lotal     4       61     31       133     59       10     37       25     16       36     40       39     185       24     20       152     19       22     28       111     10448 | Vergitt<br>7.2%<br>5.1%<br>8.6%<br>7.0%<br>2.4%<br>4.7%<br>2.6%<br>4.7%<br>2.6%<br>4.6%<br>4.9%<br>5.0%<br>9.5%<br>3.3%<br>8.9%<br>2.8%<br>3.1%<br>8.1%         | $\begin{array}{c} \textbf{V}, Random, 95\% & C1\\ -0.41 & [-0.71, 0.10]\\ -0.32 & [-0.74, 0.11]\\ -0.20 & [-0.44, 0.04]\\ -0.25 & [-0.56, 0.06]\\ -0.32 & [-1.08, 0.52]\\ -0.74 & [-1.42, -0.05]\\ -0.74 & [-1.42, -0.05]\\ -0.75 & [-0.72, 0.21]\\ -0.31 & [-0.75, 0.13]\\ -0.55 & [-0.72, 0.21]\\ -0.31 & [-0.75, 0.13]\\ -0.55 & [-0.78, 0.33]\\ -0.55 & [-0.88, 0.37]\\ -0.55 & [-0.88, 0.37]\\ -0.55 & [-1.82, -0.05]\\ -0.54 & [-0.48, -0.22]\\ -0.34 & [-0.47, -0.22]\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                         |

Forest plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo on circulating glucagon levels in T2DM patients. (A) Forest plots for the overall meta-analysis; and (B) forest plots for the sensitivity analyses limited to studies with FDA-approved DPP4 inhibitors and dosages.

by excluding one dataset at a time during the sensitivity analysis (SMD: -0.31 ~ -0.34, all P<0.05). Sensitivity analyses limited to studies with FDA-approved DPP4 inhibitors and dosages showed consistent results (SMD = -0.34, 95% CI: -0.47 to -0.22, P<0.001; Figure 2B). Subgroup analyses showed that the results were not significantly affected by study characteristics such as study design (parallel group or crossover), number of patients, mean patient age, proportion of men, baseline HbA1c, duration of diabetes, background therapy, treatment duration, or methods for glucagon measurement (all P for subgroup difference >0.05; Table 3).

# Comparisons between DPP4 inhibitors and other OADs on circulating postprandial glucagon

One study reported data according to multiple dosages of DPP4 inhibitors separately (23), and these three datasets were included into the meta-analysis independently. Overall, the pooled results of 15 datasets from 13 RCTs (23, 24, 28, 29, 43, 48–55) showed that compared with other OADs, DPP4 inhibitors significantly reduced the circulating postprandial glucagon level in patients with T2DM (AUC<sub>glucagon</sub>: SMD=-0.35, 95% CI: -0.53

|                           | Datasets | SMD (95% CI)         | P for subgroup effect | $I^2$ | P for subgroup difference |
|---------------------------|----------|----------------------|-----------------------|-------|---------------------------|
| Design                    |          |                      |                       |       |                           |
| Crossover                 | 8        | -0.42 [-0.65, -0.20] | < 0.001               | 0%    |                           |
| Parallel group            | 34       | -0.31 [-0.40, -0.22] | < 0.001               | 37%   | 0.37                      |
| Mean age (years)          |          |                      |                       |       |                           |
| ≤ 55                      | 19       | -0.29 [-0.40, -0.19] | < 0.001               | 35%   |                           |
| > 55                      | 22       | -0.36 [-0.49, -0.23] | < 0.001               | 25%   | 0.47                      |
| Male (%)                  |          |                      |                       |       |                           |
| ≤ 65                      | 21       | -0.33 [-0.42, -0.24] | < 0.001               | 0%    |                           |
| > 65                      | 20       | -0.32 [-0.48, -0.16] | < 0.001               | 57%   | 0.89                      |
| Baseline HbA1c (%)        |          |                      |                       |       |                           |
| ≤ 7.0                     | 8        | -0.45 [-0.65, -0.25] | < 0.001               | 0%    |                           |
| 7.0~8.0                   | 23       | -0.32 [-0.41, -0.23] | < 0.001               | 0%    |                           |
| > 8.0                     | 9        | -0.26 [-0.45, -0.07] | 0.007                 | 65%   | 0.37                      |
| T2DM duration (years)     |          |                      |                       |       |                           |
| ≤ 6                       | 17       | -0.29 [-0.41, -0.17] | < 0.001               | 32%   |                           |
| > 6                       | 21       | -0.35 [-0.46, -0.24] | < 0.001               | 21%   | 0.46                      |
| Background treatment      |          |                      |                       |       |                           |
| Drug naïve                | 16       | -0.24 [-0.40, -0.09] | 0.002                 | 16%   |                           |
| With OAD                  | 16       | -0.34 [-0.46, -0.21] | < 0.001               | 53%   |                           |
| Drug naïve or with OAD    | 10       | -0.41 [-0.58, -0.24] | < 0.001               | 0%    | 0.38                      |
| Treatment duration (days) |          |                      |                       |       |                           |
| $\leq 84$                 | 28       | -0.34 [-0.44, -0.24] | < 0.001               | 2%    |                           |
| > 84                      | 14       | -0.30 [-0.43, -0.17] | < 0.001               | 54%   | 0.66                      |
| Glucagon measuring        |          |                      |                       |       |                           |
| MTT                       | 33       | -0.34 [-0.45, -0.23] | < 0.001               | 38%   |                           |
| OGTT                      | 9        | -0.28 [-0.39, -0.16] | < 0.001               | 0%    | 0.44                      |

TABLE 3 Subgroup analysis for comparing DPP4 inhibitors with placebo treatment on circulating glucagon.

DPP4, dipeptidyl-peptidase 4; HbA1c, glycosylated hemoglobin; T2DM, type 2 diabetes mellitus; OAD, oral antidiabetic drug; MTT, meal tolerance test; OGTT, oral glucose tolerance test; SMD, standard mean difference; CI, confidence interval.

to -0.16, P<0.001; I<sup>2</sup> = 66%; Figure 3A). Sensitivity analysis by excluding one dataset at a time did not significantly change the results (SMD: -0.30 ~ -0.39, all P<0.05). Subgroup analyses showed that compared with either insulin secretagogues or non-insulin secretagogues, DPP4 inhibitors still significantly reduce glucagon levels in T2DM patients, and the reduction of glucagon was more remarkable compared with insulin secretagogues (SMD: -0.76, 95% CI: -1.21 to -0.31, P<0.001) than with non-insulin secretagogues (SMD: -0.22, 95% CI: -0.42 to -0.02, P=0.03; P for subgroup difference =0.03; Figure 3B).

# **Publication bias**

The funnel plots for the meta-analyses comparing DPP4 inhibitors with placebo and other OADs were symmetrical, suggesting low-risk of publication biases (Figures 4A, B). Egger's regression tests also suggested low risk of publication biases (P=0.167 and 0.156, respectively).

# Discussion

Based on a pooled analysis of RCT results, this meta-analysis concluded that DPP4 inhibitors are effective at reducing postprandial glucagon levels in T2DM patients compared to placebo, as evidenced by a significantly reduced AUC<sub>glucagon</sub> in MTT/OGTT settings in patients allocated to the DPP4 inhibitor arm. Moreover, multiple sensitivity and subgroup analyses confirmed the stability of the findings, which were not significantly driven by any one of the included studies or significantly affected by predefined study characteristics, such as study design (parallel group or crossover), number of patients, mean patient age, proportion of men, baseline HbA1c, duration of diabetes, background therapy, treatment duration, or methods for glucagon measurement. In addition, the pooled results of 13 eligible RCTs showed that DPP4 inhibitors may also significantly reduce the circulating postprandial glucagon level in T2DM patients as compared to other OADs. Researchers have suggested that factors originating from nutrient stimulation of



the digestive tract may play a key role in this process, namely, that postprandial glucagon production may be gut-derived, not originating from the pancreas (60, 61). Therefore, we divided other OADs into two groups for subgroup analysis. The results of this subgroup analysis showed that DPP4 inhibitors significantly reduced glucagon levels in T2DM patients compared to both the insulin and non-insulin secretagogues, separately, and the reduction in glucagon level was more noteworthy compared to that achieved with insulin secretagogues than with non-insulin secretagogues. Taken together, these results indicate that DPP4 inhibitors are effective at reducing postprandial glucagon levels in T2DM patients, which may be an additional mechanism underlying their benefits in patients with T2DM. As far as we know, this is the first meta-analysis examining how DPP4 inhibitors affect circulating postprandial glucagon levels in people with T2DM. Unlike pharmacological studies in healthy volunteers with a single dose of the medication, we only included studies with T2DM patients who were treated for a stable period with DPP4 inhibitors, aiming to show that the possible glucagon-lowering efficacy of DPP4 inhibitors is clinically relevant. Because the relevant data on glucagon levels after fasting is limited and the circulating level of glucagon is variable according to feeding status, we chose AUC<sub>glucagon</sub> using standard MTT/OGTT as the measurement rather than plasma glucagon level at a certain time to comprehensively reflect the dynamic status of postprandial glucagon (62). Studies including patients with concurrent insulin, GLP-1RAs or pramlintide



#### FIGURE 4

Funnel plots for the meta-analysis evaluating the influences of DPP4 inhibitors on circulating glucagon in T2DM patients. (A) Funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo; and (B) funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo; and (B) funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo; and (B) funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo; and (B) funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo; and (B) funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo; and (B) funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo; and (B) funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo; and (B) funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo; and (B) funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo; and (B) funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo; and (B) funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo; and (B) funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo; and (B) funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo; and (B) funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo; and (B) funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo; and (B) funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo; and (B) funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo; and (B) funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors and placebo; and (B) funnel plots for the meta-analysis comparing the effects of DPP4 inhibitors a

injections were also excluded, because the imbalance of these treatments between groups may significantly affect the circulating glucagon levels (63, 64). These methodological considerations minimized the possible confounding effects of other clinical factors on the level of glucagon. The glucagonsuppressing effect of DPP4 inhibitors in T2DM patients observed in this meta-analysis could be explained by the pharmacological mechanisms of the drugs and confirmed that DPP4 inhibitors improve glycemic control at least partially via influencing glucagon levels. As part of its biological function, GLP-1 stimulates insulin secretion and inhibits glucagon action when secreted by the small intestine's L-cells. By inhibiting the DPP-4-induced degradation of GLP-1, DPP4 inhibitors enhance the inhibitory effect of GLP-1 on glucagon, which may be more remarkable in a hyperglucagonaemic state in T2DM patients (64). Interestingly, glucose-dependent insulinotropic polypeptide also increases glucagon secretion under hypoglycemic and euglycemic conditions, but not under hyperglycemic conditions (65-67). This specific mechanism is rarely reported for other OADs, which is also consistent with our findings that DPP4 inhibitors significantly reduced circulating postprandial glucagon levels in T2DM patients as compared to other OADs. In view of the importance of hyperglucagonemia in the pathogenesis of T2DM, the results of this study highlight the additional benefits of glucagon suppression by DPP4 inhibitors compared to other commonly used OADs. Interestingly, accumulating evidence from clinical studies has suggested that similar to DPP-4 inhibitors, GLP-1RAs substantially lower glucagon concentrations in both the fasting state and after a meal, thus reducing the hyperglucagonemia in patients with T2DM (68, 69). However, nearly all cardiovascular outcomes trials conducted with DPP4 inhibitors in T2DM patients so far have demonstrated a neutral effect on major adverse cardiovascular events (70, 71).

This meta-analysis has several strengths, including a rigorous literature review, strict inclusion and exclusion criteria, and robust results, comprehensive full-text review to include available related RCTs, and performance of multiple sensitivity analyses to confirm the stability and robustness of the findings. However, this study also has limitations. First, the optimal assessment method for circulating glucagon remains to be developed (72). Therefore, differences in the measurement methods for glucagon among the included studies may have contributed to the clinical heterogeneity of the meta-analysis, such as the different durations for MTT/ OGTT and assays for plasma glucagon. In addition, the data used for this meta-analysis were study-level rather than individual patient-level. Subgroup analyses, therefore, should be interpreted cautiously. Large-scale RCTs or meta-analyses based on individual patient data may be considered to validate whether patient characteristics or concurrent medications

may influence the potential glucagon-suppressing effect of DPP4 inhibitors. Besides, although hyperglucagonemia has been known to be involved in the pathogenesis and progression of T2DM, studies evaluating the significance of hyperglucagonemia in determination of glycemic control and prognosis in patients with T2DM are rare, at least partly because of the lack of standard methods for glucagon measuring in clinical practice. Future studies are also needed in this regard.

Overall, the results of this meta-analysis showed that DPP4 inhibitors are effective at reducing circulating postprandial glucagon levels in T2DM patients. In view of the importance of hyperglucagonemia in the pathogenesis of T2DM, these results highlight the additional effect of DPP4 inhibitors in patients with T2DM.

# Conclusions

In conclusion, this meta-analysis revealed the effectiveness of DPP4 inhibitors for reducing circulating postprandial glucagon levels in T2DM patients in comparison with placebo or other OADs. The results confirmed that DPP4 inhibitors improve glycemic control, in part, by affecting glucagon levels.

# Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

# Author contributions

SC, YZ, and RC conceived, designed, or planned the study; SC collected data and conducted research; RZ and LJ performed or supervised analyses; RZ, SR and YMZ interpreted the results; SC wrote the initial paper; All authors provided substantive suggestions for revision or critically reviewed subsequent iterations of the manuscript, reviewed and approved final version of the paper, and for all aspects of the work in ensuring that questions related to the accuracy.

# Funding

This study received funding from MSD China. The funder had the following involvement in the study: study design, data collection and analysis, and preparation of the manuscript.

# Acknowledgments

Jingya Chen of MSD China Holding Co., Ltd., Shanghai, China, assisted literature research of the manuscript. Administrative assistance was provided by Li Qi of MSD China Holding Co., Ltd., Shanghai, China. Medical writing and editorial assistance were provided by Medjaden, Inc. This assistance was funded by MSD China.

# Conflict of interest

SC, RZ, YZ and YMZ are employees of MSD China. SR is an employee of Merck Sharp & Dohme LLC., a subsidiary of Merck & Co., Inc., Rahway, NJ, US.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

# Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

# Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fendo. 2022.994944/full#supplementary-material

# References

1. Jia W, Weng J, Zhu D, Ji L, Lu J, Zhou Z, et al. Standards of medical care for type 2 diabetes in China 2019. *Diabetes Metab Res Rev* (2019) 35:e3158. doi: 10.1002/dmrr.3158

2. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. *Physiol Rev* (2018) 98:2133-223. doi: 10.1152/physrev.00063.2017

3. Taylor R, Al-Mrabeh A, Sattar N. Understanding the mechanisms of reversal of type 2 diabetes. *Lancet Diabetes Endocrinol* (2019) 7:726–36. doi: 10.1016/S2213-8587(19)30076-2

4. Moon JS, Won KC. Pancreatic alpha-cell dysfunction in type 2 diabetes: Old kids on the block. *Diabetes Metab J* (2015) 39:1–9. doi: 10.4093/dmj.2015.39.1.1

5. Gilon P. The role of alpha-cells in islet function and glucose homeostasis in health and type 2 diabetes. *J Mol Biol* (2020) 432:1367–94. doi: 10.1016/j.jmb.2020.01.004

6. Wewer Albrechtsen NJ, Kuhre RE, Pedersen J, Knop FK, Holst JJ. The biology of glucagon and the consequences of hyperglucagonemia. *biomark Med* (2016) 10:1141–51. doi: 10.2217/bmm-2016-0090

7. Haedersdal S, Lund A, Knop FK, Vilsboll T. The role of glucagon in the pathophysiology and treatment of type 2 diabetes. *Mayo Clin Proc* (2018) 93:217–39. doi: 10.1016/j.mayocp.2017.12.003

8. Gosmain Y, Masson MH, Philippe J. Glucagon: the renewal of an old hormone in the pathophysiology of diabetes. J Diabetes (2013) 5:102–9. doi: 10.1111/1753-0407.12022

9. Grondahl MF, Keating DJ, Vilsboll T, Knop FK. Current therapies that modify glucagon secretion: What is the therapeutic effect of such modifications? *Curr Diabetes Rep* (2017) 17:128. doi: 10.1007/s11892-017-0967-z

10. Lund A, Vilsboll T, Bagger JI, Holst JJ, Knop FK. The separate and combined impact of the intestinal hormones, GIP, GLP-1, and GLP-2, on glucagon secretion in type 2 diabetes. *Am J Physiol Endocrinol Metab* (2011) 300:E1038-46. doi: 10.1152/ajpendo.00665.2010

11. Unger RH, Aguilar-Parada E, Muller WA, Eisentraut AM. Studies of pancreatic alpha cell function in normal and diabetic subjects. J Clin Invest (1970) 49:837–48. doi: 10.1172/JCI106297

12. Muller WA, Faloona GR, Aguilar-Parada E, Unger RH. Abnormal alpha-cell function in diabetes. *Response Carbohydr Protein Ingestion N Engl J Med* (1970) 283:109–15. doi: 10.1056/NEJM197007162830301

13. Menge BA, Gruber L, Jorgensen SM, Deacon CF, Schmidt WE, Veldhuis JD, et al. Loss of inverse relationship between pulsatile insulin and glucagon secretion in patients with type 2 diabetes. *Diabetes* (2011) 60:2160–8. doi: 10.2337/db11-0251

14. Deacon CF. Dipeptidyl peptidase 4 inhibitors in the treatment of type 2 diabetes mellitus. *Nat Rev Endocrinol* (2020) 16:642–53. doi: 10.1038/s41574-020-0399-8

15. Chen K, Kang D, Yu M, Zhang R, Zhang Y, Chen G, et al. Direct head-tohead comparison of glycaemic durability of dipeptidyl peptidase-4 inhibitors and sulphonylureas in patients with type 2 diabetes mellitus: A meta-analysis of longterm randomized controlled trials. *Diabetes Obes Metab* (2018) 20:1029–33. doi: 10.1111/dom.13147

16. Ahren B, Foley JE. Improved glucose regulation in type 2 diabetic patients with DPP-4 inhibitors: focus on alpha and beta cell function and lipid metabolism. *Diabetologia* (2016) 59:907–17. doi: 10.1007/s00125-016-3899-2

17. Miyachi A, Kobayashi M, Mieno E, Goto M, Furusawa K, Inagaki T, et al. Accurate analytical method for human plasma glucagon levels using liquid chromatography-high resolution mass spectrometry: comparison with commercially available immunoassays. *Anal Bioanal Chem* (2017) 409:5911–8. doi: 10.1007/s00216-017-0534-0

18. Rodriguez-Diaz R, Tamayo A, Hara M, Caicedo A. The local paracrine actions of the pancreatic alpha-cell. *Diabetes* (2020) 69:550–8. doi: 10.2337/dbi19-0002

19. Gromada J, Chabosseau P, Rutter GA. The alpha-cell in diabetes mellitus. Nat Rev Endocrinol (2018) 14:694-704. doi: 10.1038/s41574-018-0097-y

20. He YL, Serra D, Wang Y, Campestrini J, Riviere GJ, Deacon CF, et al. Pharmacokinetics and pharmacodynamics of vildagliptin in patients with type 2 diabetes mellitus. *Clin Pharmacokinet* (2007) 46:577–88. doi: 10.2165/00003088-200746070-00003

21. Rosenstock J, Aguilar-Salinas C, Klein E, Nepal S, List J, Chen R. Effect of saxagliptin monotherapy in treatment-naive patients with type 2 diabetes. *Curr Med Res Opin* (2009) 25:2401–11. doi: 10.1185/03007990903178735

22. Seino Y, Fujita T, Hiroi S, Hirayama M, Kaku K. Alogliptin plus voglibose in Japanese patients with type 2 diabetes: a randomized, double-blind, placebocontrolled trial with an open-label, long-term extension. *Curr Med Res Opin* (2011) 27 Suppl 3:21–9. doi: 10.1185/03007995.2011.614936

23. Seino Y, Fujita T, Hiroi S, Hirayama M, Kaku K. Efficacy and safety of alogliptin in Japanese patients with type 2 diabetes mellitus: a randomized, doubleblind, dose-ranging comparison with placebo, followed by a long-term extension study. *Curr Med Res Opin* (2011) 27:1781–92. doi: 10.1185/03007995.2011.599371

24. Vardarli I, Arndt E, Deacon CF, Holst JJ, Nauck MA. Effects of sitagliptin and metformin treatment on incretin hormone and insulin secretory responses to oral and "isoglycemic" intravenous glucose. *Diabetes* (2014) 63:663–74. doi: 10.2337/db13-0805

25. Vella A, Bock G, Giesler PD, Burton DB, Serra DB, Saylan ML, et al. Effects of dipeptidyl peptidase-4 inhibition on gastrointestinal function, meal appearance, and glucose metabolism in type 2 diabetes. *Diabetes* (2007) 56:1475–80. doi: 10.2337/db07-0136

26. DeFronzo RA, Hissa MN, Garber AJ, Luiz Gross J, Yuyan Duan R, Ravichandran S, et al. The efficacy and safety of saxagliptin when added to

metformin therapy in patients with inadequately controlled type 2 diabetes with metformin alone. *Diabetes Care* (2009) 32:1649–55. doi: 10.2337/dc08-1984

27. Ahn CH, Kim EK, Min SH, Oh TJ, Cho YM. Effects of gemigliptin, a dipeptidyl peptidase-4 inhibitor, on lipid metabolism and endotoxemia after a high-fat meal in patients with type 2 diabetes. *Diabetes Obes Metab* (2017) 19:457–62. doi: 10.1111/dom.12831

28. Alba M, Ahren B, Inzucchi SE, Guan Y, Mallick M, Xu L, et al. Sitagliptin and pioglitazone provide complementary effects on postprandial glucose and pancreatic islet cell function. *Diabetes Obes Metab* (2013) 15:1101-10. doi: 10.1111/dom.12145

29. Dou J, Ma J, Liu J, Wang C, Johnsson E, Yao H, et al. Efficacy and safety of saxagliptin in combination with metformin as initial therapy in Chinese patients with type 2 diabetes: Results from the START study, a multicentre, randomized, double-blind, active-controlled, phase 3 trial. *Diabetes Obes Metab* (2018) 20:590–8. doi: 10.1111/dom.13117

30. Eto T, Inoue S, Kadowaki T. Effects of once-daily teneligliptin on 24-h blood glucose control and safety in Japanese patients with type 2 diabetes mellitus: A 4-week, randomized, double-blind, placebo-controlled trial. *Diabetes Obes Metab* (2012) 14:1040–6. doi: 10.1111/j.1463-1326.2012.01662.x

31. Farngren J, Persson M, Ahren B. Effects on the glucagon response to hypoglycaemia during DPP-4 inhibition in elderly subjects with type 2 diabetes: A randomized, placebo-controlled study. *Diabetes Obes Metab* (2018) 20:1911–20. doi: 10.1111/dom.13316

32. Forst T, Falk A, Andersen G, Fischer A, Weber MM, Voswinkel S, et al. Effects on alpha- and beta-cell function of sequentially adding empagliflozin and linagliptin to therapy in people with type 2 diabetes previously receiving metformin: An exploratory mechanistic study. *Diabetes Obes Metab* (2017) 19:489–95. doi: 10.1111/dom.12838

33. Henry RR, Smith SR, Schwartz SL, Mudaliar SR, Deacon CF, Holst JJ, et al. Effects of saxagliptin on beta-cell stimulation and insulin secretion in patients with type 2 diabetes. *Diabetes Obes Metab* (2011) 13:850–8. doi: 10.1111/j.1463-1326.2011.01417.x

34. Jadzinsky M, Pfutzner A, Paz-Pacheco E, Xu Z, Allen E, Chen R. Saxagliptin given in combination with metformin as initial therapy improves glycaemic control in patients with type 2 diabetes compared with either monotherapy: A randomized controlled trial. *Diabetes Obes Metab* (2009) 11:611–22. doi: 10.1111/j.1463-1326.2009.01056.x

35. Kadowaki T, Kondo K. Efficacy, safety and dose-response relationship of teneligliptin, a dipeptidyl peptidase-4 inhibitor, in Japanese patients with type 2 diabetes mellitus. *Diabetes Obes Metab* (2013) 15:810–8. doi: 10.1111/dom.12092

36. Kadowaki T, Kondo K. Efficacy and safety of teneligliptin added to glimepiride in Japanese patients with type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled study with an open-label, long-term extension. *Diabetes Obes Metab* (2014) 16:418–25. doi: 10.1111/dom.12235

37. Tremblay AJ, Lamarche B, Deacon CF, Weisnagel SJ, Couture P. Effect of sitagliptin therapy on postprandial lipoprotein levels in patients with type 2 diabetes. *Diabetes Obes Metab* (2011) 13:366–73. doi: 10.1111/j.1463-1326.2011.01362.x

38. Kikuchi M, Abe N, Kato M, Terao S, Mimori N, Tachibana H. Vildagliptin dose-dependently improves glycemic control in Japanese patients with type 2 diabetes mellitus. *Diabetes Res Clin Pract* (2009) 83:233–40. doi: 10.1016/j.diabres.2008.10.006

39. Sjostrand M, Iqbal N, Lu J, Hirshberg B. Saxagliptin improves glycemic control by modulating postprandial glucagon and c-peptide levels in Chinese patients with type 2 diabetes. *Diabetes Res Clin Pract* (2014) 105:185–91. doi: 10.1016/j.diabres.2014.05.006

40. Rauch T, Graefe-Mody U, Deacon CF, Ring A, Holst JJ, Woerle HJ, et al. Linagliptin increases incretin levels, lowers glucagon, and improves glycemic control in type 2 diabetes mellitus. *Diabetes Ther* (2012) 3:10. doi: 10.1007/s13300-012-0010-y

41. Iwamoto Y, Taniguchi T, Nonaka K, Okamoto T, Okuyama K, Arjona Ferreira JC, et al. Dose-ranging efficacy of sitagliptin, a dipeptidyl peptidase-4 inhibitor, in Japanese patients with type 2 diabetes mellitus. *Endocr J* (2010) 57:383–94. doi: 10.1507/endocrj.k09e-272

42. Nishimura A, Usui S, Kumashiro N, Uchino H, Yamato A, Yasuda D, et al. Efficacy and safety of repaglinide added to sitagliptin in Japanese patients with type 2 diabetes: A randomized 24-week open-label clinical trial. *Endocr J* (2016) 63:1087–98. doi: 10.1507/endocrj.EJ16-0291

43. Hansen I, Iqbal N, Ekholm E, Cook W, Hirshberg B. Postprandial dynamics of plasma glucose, insulin, and glucagon in patients with type 2 diabetes treated with saxagliptin plus dapagliflozin add-on to metformin therapy. *Endocr Pract* (2014) 20:1187–97. doi: 10.4158/EP14489.OR

44. Van Raalte DH, van Genugten RE, Eliasson B, Moller-Goede DL, Mari A, Tura A, et al. The effect of alogliptin and pioglitazone combination therapy on various aspects of beta-cell function in patients with recent-onset type 2 diabetes. *Eur J Endocrinol* (2014) 170:565–74. doi: 10.1530/EJE-13-0639

45. Ahren B, Schweizer A, Dejager S, Dunning BE, Nilsson PM, Persson M, et al. Vildagliptin enhances islet responsiveness to both hyper- and hypoglycemia in patients with type 2 diabetes. *J Clin Endocrinol Metab* (2009) 94:1236–43. doi: 10.1210/jc.2008-2152

46. Hollander P, Li J, Allen E, Chen R. Saxagliptin added to a thiazolidinedione improves glycemic control in patients with type 2 diabetes and inadequate control on thiazolidinedione alone. *J Clin Endocrinol Metab* (2009) 94:4810–9. doi: 10.1210/jc.2009-0550

47. Bunck MC, Poelma M, Eekhoff EM, Schweizer A, Heine RJ, Nijpels G, et al. Effects of vildagliptin on postprandial markers of bone resorption and calcium homeostasis in recently diagnosed, well-controlled type 2 diabetes patients. *J Diabetes* (2012) 4:181–5. doi: 10.1111/j.1753-0407.2011.00168.x

48. Ahren B, Foley JE, Ferrannini E, Matthews DR, Zinman B, Dejager S, et al. Changes in prandial glucagon levels after a 2-year treatment with vildagliptin or glimepiride in patients with type 2 diabetes inadequately controlled with metformin monotherapy. *Diabetes Care* (2010) 33:730–2. doi: 10.2337/dc09-1867

49. Forst T, Anastassiadis E, Diessel S, Loffler A, Pfutzner A. Effect of linagliptin compared with glimepiride on postprandial glucose metabolism, islet cell function and vascular function parameters in patients with type 2 diabetes mellitus receiving ongoing metformin treatment. *Diabetes Metab Res Rev* (2014) 30:582–9. doi: 10.1002/dmrr.2525

50. Alsalim W, Persson M, Ahren B. Different glucagon effects during DPP-4 inhibition versus SGLT-2 inhibition in metformin-treated type 2 diabetes patients. *Diabetes Obes Metab* (2018) 20:1652–8. doi: 10.1111/dom.13276

51. Scott R, Morgan J, Zimmer Z, Lam RLH, O'Neill EA, Kaufman KD, et al. A randomized clinical trial of the efficacy and safety of sitagliptin compared with dapagliflozin in patients with type 2 diabetes mellitus and mild renal insufficiency: The CompoSIT-r study. *Diabetes Obes Metab* (2018) 20:2876–84. doi: 10.1111/dom.13473

52. Nakagawa T, Nagai Y, Yamamoto Y, Miyachi A, Hamajima H, Mieno E, et al. Effects of anagliptin on plasma glucagon levels and gastric emptying in patients with type 2 diabetes: An exploratory randomized controlled trial versus metformin. *Diabetes Res Clin Pract* (2019) 158:107892. doi: 10.1016/j.diabres.2019.107892

53. Akiyama Y, Morita-Ohkubo T, Oshitani N, Ohno Y, Aso Y, Inukai T, et al. Decreased glucagon levels and decreased insulin secretion after sitagliptin versus mitiglinide administration with similar glycemic levels following an oral glucose load: a randomized crossover pharmaceutical mechanistic study. *Diabetol Int* (2016) 7:25–33. doi: 10.1007/s13340-015-0207-1

54. Okada K, Yagyu H, Kotani K, Yamazaki H, Ozaki K, Takahashi M, et al. Effects of miglitol versus sitagliptin on postprandial glucose and lipoprotein metabolism in patients with type 2 diabetes mellitus. *Endocr J* (2013) 60:913–22. doi: 10.1507/endocrj.ej13-0019

55. Xiao X, Cui X, Zhang J, Han Z, Xiao Y, Chen N, et al. Effects of sitagliptin as initial therapy in newly diagnosed elderly type 2 diabetics: A randomized controlled study. *Exp Ther Med* (2016) 12:3002–8. doi: 10.3892/etm.2016.3729

56. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ* (2009) 339:: b2535. doi: 10.1136/bmj.b2535

57. Higgins J, Green S. Cochrane handbook for systematic reviews of interventions version 5.1.0. In: *The cochrane collaboration*. London: Wiley Press, (2011). Available at: www.cochranehandbook.org.

58. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med (2002) 21:1539–58. doi: 10.1002/sim.1186

59. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ* (1997) 315:629-34. doi: 10.1136/bmj.315.7109.629

60. Knop FK, Vilsboll T, Madsbad S, Holst JJ, Krarup T. Inappropriate suppression of glucagon during OGTT but not during isoglycaemic i.v. glucose infusion contributes to the reduced incretin effect in type 2 diabetes mellitus. *Diabetologia* (2007) 50:797–805. doi: 10.1007/s00125-006-0566-z

61. Bagger JI, Knop FK, Lund A, Holst JJ, Vilsboll T. Glucagon responses to increasing oral loads of glucose and corresponding isoglycaemic intravenous glucose infusions in patients with type 2 diabetes and healthy individuals. *Diabetologia* (2014) 57:1720–5. doi: 10.1007/s00125-014-3264-2

62. Dunning BE, Foley JE, Ahren B. Alpha cell function in health and disease: influence of glucagon-like peptide-1. *Diabetologia* (2005) 48:1700–13. doi: 10.1007/s00125-005-1878-0

63. Mathiesen DS, Bagger JI, Bergmann NC, Lund A, Christensen MB, Vilsboll T, et al. The effects of dual GLP-1/GIP receptor agonism on glucagon secretion-a review. *Int J Mol Sci* (2019) 20(17):4092. doi: 10.3390/ijms20174092

64. Abbas G, Haq QMI, Hamaed A, Al-Sibani M, Hussain H. Glucagon and glucagon-like peptide-1 receptors: Promising therapeutic targets for an effective management of diabetes mellitus. *Curr Pharm Des* (2020) 26:501–8. doi: 10.2174/1381612826666200131143231

65. Christensen MB, Calanna S, Holst JJ, Vilsboll T, Knop FK. Glucose-dependent insulinotropic polypeptide: blood glucose stabilizing effects in patients with type 2 diabetes. J Clin Endocrinol Metab (2014) 99:E418–26. doi: 10.1210/jc.2013-3644

66. Christensen M, Calanna S, Sparre-Ulrich AH, Kristensen PL, Rosenkilde MM, Faber J, et al. Glucose-dependent insulinotropic polypeptide augments glucagon responses to hypoglycemia in type 1 diabetes. *Diabetes* (2015) 64:72–8. doi: 10.2337/db14-0440

67. Christensen M, Vedtofte L, Holst JJ, Vilsboll T, Knop FK. Glucosedependent insulinotropic polypeptide: A bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans. *Diabetes* (2011) 60:3103– 9. doi: 10.2337/db11-0979

68. Degn KB, Juhl CB, Sturis J, Jakobsen G, Brock B, Chandramouli V, et al. One week's treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and alpha- and beta-cell function and reduces endogenous glucose release in patients with type 2 diabetes. *Diabetes* (2004) 53:1187–94. doi: 10.2337/diabetes.53.5.1187

69. Garber A, Henry R, Ratner R, Garcia-Hernandez PA, Rodriguez-Pattzi H, Olvera-Alvarez I, et al. Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 mono): A randomised, 52-week, phase III, double-blind, parallel-treatment trial. *Lancet* (2009) 373:473–81. doi: 10.1016/S0140-6736 (08)61246-5

70. Rosenstock J, Perkovic V, Johansen OE, Cooper ME, Kahn SE, Marx N, et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: The CARMELINA randomized clinical trial. *JAMA* (2019) 321:69–79. doi: 10.1001/jama. 2018.18269

71. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. *N Engl J Med* (2015) 373:232–42. doi: 10.1056/NEJMoa1501352

72. Holst JJ, Wewer Albrechtsen NJ. Methods and guidelines for measurement of glucagon in plasma. *Int J Mol Sci* (2019) 20(21):5416. doi: 10.3390/ijms20215416