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Age-related cerebrovascular pathologies, ranging from cerebromicrovascular

functional and structural alterations to large vessel atherosclerosis, promote the

genesis of vascular cognitive impairment and dementia (VCID) and exacerbate

Alzheimer’s disease. Recent advances in geroscience, including results from

studies on heterochronic parabiosis models, reinforce the hypothesis that cell

non-autonomous mechanisms play a key role in regulating cerebrovascular aging

processes. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert

multifaceted vasoprotective effects and production of both hormones is

significantly reduced in aging. This brief overview focuses on the role of age-

related GH/IGF-1 deficiency in the development of cerebrovascular pathologies

and VCID. It explores the mechanistic links among alterations in the somatotropic

axis, specific macrovascular and microvascular pathologies (including capillary

rarefaction, microhemorrhages, impaired endothelial regulation of cerebral blood

flow, disruption of the blood brain barrier, decreased neurovascular coupling, and

atherogenesis) and cognitive impairment. Improved understanding of cell non-

autonomous mechanisms of vascular aging is crucial to identify targets for

intervention to promote cerebrovascular and brain health in older adults.
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1 Introduction

Age-related cognitive impairment and dementia are major public health challenges in the

rapidly aging societies of the developed world. In older adults, cognitive impairment of vascular

etiology [vascular cognitive impairment and dementia or VCID (1)] is the second most common

cause of clinically diagnosed dementia after Alzheimer’s disease (AD) (2–4). VCID is also one of
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the most frequent causes of loss of independence and increased

morbidity in older adults (1). Vascular pathologies are also a critical

component of AD, and vascular dysfunction is one of the earliest

pathologies to appear in patients with mild cognitive impairment,

many of whom go on to develop dementia (5–8).

In addition to large vessel disease, age-related VCID is associated

with a wide variety of microvascular pathologies (9–17). Microvascular

contributions to cognitive decline and dementia include microvascular

rarefaction (18–21), impaired endothelial regulation of cerebral blood

flow (5, 22–30), disruption of the blood brain barrier (BBB) (19, 31–36),

decreased neurovascular coupling (NVC) (37–41), cerebral

microhemorrhages (CMH) (42–44), lacunar infarcts (45–49), increased

pulsatility (50–53) and small vessel disease-related white matter damage

(54–57), and amyloid pathologies (58–62). Critically, the severity of age-

related increases in microvascular pathological alterations predict

cognitive decline in aging (44, 63, 64), leading to great interest in

understanding the associated cellular and molecular mechanisms.

Additionally, age-related microvascular pathologies also exacerbate

severity of ischemic brain injury (65–67).

There is growing preclinical evidence that interventions that

promote cerebromicrovascular health and rejuvenation (68–71)

have beneficial effects on cognitive health in aging. Understanding

the mechanisms implicated in age-related impairment of the cerebral

circulation is essential for identification of novel targets for

translationally relevant interventions and development of

innovative therapies to promote healthy cerebrovascular and brain

aging. In this review, the effect of aging on a critical endocrine

pathway, the somatotropic axis, and its role in regulating the

functional and structural integrity of the cerebral circulation is

considered in terms of potential mechanisms involved in age-

related dysregulation of cerebral blood flow and increased

susceptibility to microvascular damage.
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2 Regulation of aging processes by the
GH/IGF-1 axis

The neuroendocrine hypothesis of aging posits that changes in

endocrine output of the hypothalamic-pituitary axis regulate the

process of organismal aging in a cell non-autonomous manner (72).

There is particularly strong evidence that among the related

endocrine factors, the somatotropic axis, including growth hormone

(GH) and insulin-like growth factor-1 (IGF-1), exerts a central role in

regulation of cellular processes involved in aging.

IGF-1 is an evolutionarily highly conserved pleiotropic anabolic

hormone and growth factor (73–84). It exhibits high sequence

similarity to insulin and is a member of a complex intercellular

signaling system. IGF-1 is secreted by the liver as a result of

stimulation by GH and is also produced locally by a number of cell

types where it acts in a paracrine and autocrine manner (including

cardiovascular cells, astrocytes and neurons). The GH/IGF-1 axis also

includes cell-surface receptors (IGF1R and IGF2R) and a family of

high-affinity IGF-binding proteins (IGFBP1 to IGFBP7), as well as

associated IGFBP degrading proteases (see overview in Figure 1). GH

is secreted from the anterior pituitary gland in response to GH

releasing hormone, and acts on the liver and other tissues to

promote the secretion of IGF-1 (86). The GH/IGF-1 axis is

essential for proper growth and development (87–89) and confers

multifacteed pro-survival, anabolic and cellular protective effects.

Levels of GH decrease by ~14%/decade after approximately the

third decade of life (90, 91), and as a result levels of circulating

IGF-1 also significantly decrease with age (92–95).

The role of decreased GH and IGF-1 in aging has been extensively

studied. Age-related GH/IGF-1 deficiency has been causally linked to

the genesis of aging phenotypes in various organ systems, including

the cardiovascular system, musculoskeletal system and the central
FIGURE 1

Overview of GH/IGF-1 signaling axis. Growth hormone is secreted from the anterior pituitary gland. It acts via the GH receptor on target cells via Janus
kinase (JAK)-signal transducer and activator of transcription (STAT) –signaling to promote expression of various genes including IGF-1. Target cells
include hepatocytes (for endocrine/circulating IGF-1) as well as other cells throughout the body that locally secrete IGF-1. Extracellular IGF-1 is bound to
IGF-1 binding proteins (IGFBP) either in a two-part complex or in a three-part complex with the glycoprotein acid labile subunit (ALS). IGF-1 has higher
affinity for IGFBPs than for the IGF-1 receptor, and IGF-1 is released from the IGFBP upon proteolytic cleavage of the IGFBP [for more on the complex
role of IGFBPs, see (85)]. Freed IGF-1 interacts with the IGF-1 receptor where it signals, largely through the PI3K/AKT and the RAS/MAPK cascades to
regulate many pro-survival cellular pathways. Created with BioRender.com.
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nervous system (95–105). Patients with decreased GH/IGF-1 have an

increased risk of VCID and other forms cardiovascular and

cerebrovascular disease (94, 106–108), including gait and cognitive

impairment (109–111), as well as diabetes mellitus (106). Older adults

with low circulating IGF-1 levels have 39% higher risk of

cardiovascular mortality (112). Animal models of circulating IGF-1

deficiency serve as models of accelerated aging (18, 21, 93, 113–120),

mimicking many age-related cerebrovascular pathologies.

Many cytoprotective and anti-aging effects of GH and IGF-1 have

been described, and the protective role of the GH/IGF-1 axis in

regulation of the development of age-related diseases (e.g. via

modulation of metabolism, protein synthesis, glucose metabolism,

cellular proliferation and differentiation) is well-supported by the

literature (10, 93, 97, 98, 102, 103, 105, 115, 116, 119, 121–134).

However, the role of GH/IGF-1 in the regulation of lifespan is

admittedly complex and highly controversial. There is strong

experimental evidence suggesting that disruption of GH/IGF-1

signaling (or of their orthologs in lower organisms) is often

associated with lifespan extension both in invertebrate model

organisms (C. elegans, D. melanogaster) and laboratory rodents

(135, 136), including Ames and Snell dwarf mice (135–141), the

‘little mouse’ (Ghrhrlit/lit), mice null for either GH receptor/binding

protein (GHR/BP-/-) or p66(shc) (p66(shc-/-)), GHRH and GHR

double-knockout mice (142), mice heterozygous for the IGF-I

receptor (Igf1r+/-), and fat-specific insulin receptor knockout mice

(143–152). Interestingly, GH receptor knockout (GHRKO) mice

(153), which also have low IGF-1 levels, hold the Methuselah prize

for the world’s longest-lived laboratory mouse. There have been

several attempts to reconcile these two, apparently contradicting,

aspects of the “GH/IGF-1 paradox of aging” (98, 154). A key

observation is that dwarfism in murine (Ames and Snell dwarf mice

and the ‘little mouse’) and rat [spontaneous dwarf rat (155)] models

caused by early-onset disruption of the GH/IGF-1 axis is associated

with longevity [a notable exception being the Lewis dwarf rat (156)].

Importantly, the remarkable life-span extension of hypopituitary

Ames dwarf mice was shown to depend on low levels of GH in a

relatively short peripubertal time-window (149, 154). These data

raised the possibility that in murine models, GH/IGF-1 regulates

lifespan primarily through developmental programming of aging

(154). Despite the significant progress made in the field of

geroscience in the past two decades, the impact of disruption of the

GH/IGF-1 axis on human lifespan and longevity is vigorously debated

(98, 157–163). Overall, the available epidemiological evidence has

suggested that neither early-life nor late-life disruption of GH/IGF-1

signaling in humans extends lifespan (98). While the literature on the

role of the GH/IGF-1 axis in modulating aging processes, lifespan and

the development of specific age-related diseases is large, here we focus

on links between the GH/IGF-1 axis and manifestations of

cerebrovascular aging.
3 Role of GH/IGF-1 in cerebrovascular
remodeling

Blood vessels undergo constant functional and structural

remodeling to respond to changing tissue demands, metabolic

conditions, and injury repair (164, 165). Structural remodeling
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consists of proangiogenic processes, vascular quiescence, and

vascular regression. Angiogenesis provides increased blood supply

in a long-term manner to tissues with high metabolic demand, for

example exercise-mediated angiogenesis and uterine artery

adaptation during pregnancy. During vascular quiescence, vascular

cells stop proliferating and undergo further maturation,

specialization, and stabilization. During this phase, brain

endothelial cells form tight and adherens junctions, providing a

physical barrier in vessels. Lastly, blood vessels can undergo

vascular regression including vascular involution, in which an

extended vascular network regresses, or vascular pruning in which

single vessels regress. These processes are crucial for fine-tuning the

hierarchical organization of blood vessels, providing highly organized

networks of arteries, capillaries, and veins. The mechanisms and

regulation of the processes involved in vascular remodeling have been

extensively reviewed by Ouarné et al. (164). Dysregulation of vascular

remodeling can lead to and exacerbate several vascular and non-

vascular pathologies. For example, AD is associated with excessive

microvascular pruning, vasoconstriction, and brain hypoperfusion

(164). Aging is also associated with pathological vascular remodeling,

predominantly characterized by changes in wall rigidity, increased

fragility, and vascular rarefaction (72).
3.1 The ECM in IGF-1 mediated
vascular remodeling

The extracellular matrix (ECM) plays a critical role in vascular

remodeling. In addition to providing structural support to tissues, the

ECM is involved in transducing biochemical and biomechanical

signals, modulating adhesion of adjacent cells, and regulating

differentiation, migration, and stability. The ECM constantly

undergoes a qualitative and quantitative remodeling process

mediated by specific enzymes such as matrix metalloproteinases

(MMPs), a disintegrin and metalloproteinases (ADAMs), and

meprins (166), and altered ECM remodeling contributes to

pathologies such as AD and cancers (72, 167). Aging is also

characterized by dysregulation of vascular ECM remodeling (72,

168, 169). With age, ECM biosynthesis decreases, and there are

alterations in cell-matrix attachments, biomechanical signaling, and

balance between proteases and their inhibitors. These age-mediated

changes in the ECM contribute to vascular pathologies such as arterial

stiffening, loss of BBB integrity, vascular fragility, and the

development of CMH (72, 169, 170).

IGF-1 deficiency has been shown to lead to defects in vascular

remodeling (Figure 2). One of the most widely-used models to study

IGF-1 deficiency in aging is an adult-onset circulating IGF-1

knockdown model in which liver-specific IGF-1 knockdown is

induced post-development (~3-6 months of age) via injection of

AAV-TBG-Cre. When this model is exposed to hypertension as a

cerebrovascular challenge, IGF-1 deficiency increased MMP

activation and oxidative stress (93), increased vessel rigidity,

promoted medial atrophy, and decreased vessel elasticity (114).

Hypertension is normally associated with protective ECM

remodeling (largely regulated by vascular smooth muscle cells

[VSMCs]), including upregulation of ECM cross-linking genes (e.g.

lox, loxl1, loxl4), elastin and elastin-associated genes (e.g. eln, fbn1),
frontiersin.org
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and some collagens (e.g. Col1a1, Col3a1, Col 8a1). However, this

remodeling response was blunted or abolished in mice with

circulating IGF-1 deficiency (114). Support for a role of IGF-1 in

the maintenance of vascular stability through ECM proteins comes

from the observation that across seven different mouse strains, aortic

collagen levels were positively correlated with serum IGF-1

levels (171).
3.2 Role of GH/IGF-1 in regulation of
cerebral capillary density

Cerebrovascular complexity and high vessel density are essential

for healthy brain function, but decrease with age, manifesting as

microvascular rarefaction in humans and animal models (172–175).

Age-related microvascular rarefaction has been causally linked to

cognitive decline (176–178) and other organ-specific manifestations

of organismal aging (179–182).

A role for circulating/endocrine factors in age-related microvascular

loss is highlighted by recent work showing that exposure to young blood

via heterochronic parabiosis reversed age-related microvascular

rarefaction and hypoperfusion (183–185). Analysis of upstream

transcriptional regulators identified IGF-1 receptor signaling as one of

the candidates responsible for this rejuvenation. IGF-1 is a potent pro-

survival factor in both endothelial cells and VSMCs, and microRNA-

mediated knockdown of IGF-1 receptor in endothelial cells can induce

apoptosis in vitro (186). Consistent with this, decreased cerebrovascular

density is observed in IGF-1 deficient models. Animals with decreased

circulating IGF-1 exhibit hippocampal microvascular rarefaction (21,

178), and circulating IGF-1 has been shown to be essential for exercise

induced increases in cerebral vascular density (Figure 2) (18, 187).

Treatment with IGF-1 has also been shown to promote
Frontiers in Endocrinology 04
cerebrovascular angiogenesis and increase vessel density, for example

in post-stroke models (188, 189) and in the normal adult mouse brain

(187). Increased IGF-1 levels associated with high circulating GH also

result in increased retinal microvascular density (190, 191). The dynamic

balance between the processes of angiogenesis and capillary regression is

essential for maintenance of the optimal network architecture of the

cerebromicrovasculature. Aging is associated with a progressive

deterioration of microvascular homeostasis, at least in part due to age-

related impairment of angiogenic processes (173, 192–196). IGF-1 is

known to confer potent and multifaceted pro-angiogenic effects, whereas

IGF-1 deficiency impairs multiple aspects of angiogenesis (197–201). The

pro-aging effects of endocrine GH/IGF-1 deficiency may be exacerbated

by an age-related decline in other vasculoprotective growth factors,

including pituitary adenylate cyclase-activating polypeptide (PACAP)

(202) and vascular endothelial growth factor (VEGF) (203–205) and

endothelial resistance to the effects of pro-angiogenic stimuli (206).

Because of the tight relationship between GH/IGF-1, some studies

have supplemented animals with GH in order to induce endogenous

production of IGF-1. In aged rats, supplementation with GH not only

increased systemic levels of IGF-1 but also increased the density of

microvessels within the top layer of the cerebral cortex (178).

Combined these data highlight a clear role for IGF-1 deficiency in

microvascular rarefaction in the brain.
3.3 Role of GH/IGF-1 in remodelling of
larger vessels

In addition to microvascular rarefaction, aging is also associated with

defects in remodeling in larger vessels. In parabiosis studies, the

rejuvenating effects of young blood were also observed in

macrovasculature. Aortas from aged mice exposed to young blood
FIGURE 2

Summary figure highlighting the effects of IGF-1 deficiency in the aged brain vasculature. CBF, Cerebral blood flow; ECM, extracellular matrix; BB, blood-
brain barrier; NVC, neurovascular coupling. Created with BioRender.com.
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showed improved functional remodeling manifested as restored

endothelium-mediated vasorelaxation and decreased oxidative stress.

Additionally, upstream regulator analysis (via IPA) of the

transcriptome of rejuvenated aortas suggested that rejuvenation was

associated with activation of the IGF-1 pathway (185). On the other

hand, young aortas exposed to aged blood also showed significant

transcriptomic changes. Gene ontology analysis revealed that exposure

to aged systemic factors upregulated genes associated with pathologic

vascular remodeling. IPA upstream analysis showed that pro-geronic

effects of aged blood might include inhibition of pathways mediated by

IGF-1, serum response factor, and vascular endothelial growth factor

(VEGF-A) (184). Recent human studies support the hypothesis that cell

non-autonomous mechanisms contribute to age-mediated changes in

vascular remodeling. Yu et al. identified a protein signature in the urine of

older individuals that is associated with vascular remodeling (207).

Human studies have also highlighted a role for the somatotropic axis

in ECM regulation in the vasculature. Patients with uncontrolled

acromegaly, a disease caused by hypersecretion of GH (and

characterized by consequent increase in IGF-1 levels), exhibit baseline

increases in vessel wall thickness and increased wall-to-lumen ratio in

retinal arterioles compared to controls (191). This is similar to what has

been observed in the GH overexpressing transgenic mouse, which

exhibits increased medial layer area in the aorta and mesenteric vessels

(208). This GH/IGF-1 mediated increased layer thickness is likely due to

both altered ECM deposition and cell proliferation. Indeed VSMC

proliferation has been reported in the aorta after perfusion with IGF-1

in rat diabetic aortic catheterization model (209). These structural

changes have functional correlates, and it has been shown that

noradrenaline-induced VSMC-mediated aorta contraction is increased

in mice pre-treated with IGF-1 (210).

Combined these findings suggest that IGF-1 deficiency is

associated with microvascular rarefaction and impaired vascular

remodeling in response to stressors such as hypertension. In

contrast, overexpression of IGF-1/GH can lead to excess vascular

wall hypertrophy, highlighting a central role for the somatotropic axis

in the regulation of vascular wall growth. Much of this regulation is

tied to IGF-1 mediated changes in ECM gene expression, in particular

regulation of elastin and elastin-associated genes, which is consistent

with the importance of maintaining appropriate responses to

mechanical stress in the vasculature.
4 Role of GH/IGF-1 in regulation of
cerebrovascular function

4.1 GH/IGF-1 in regulation of cerebral blood
flow and autoregulatory reactivity

The limited energy storage and high metabolic rate of the brain

demands a constant flow of blood to deliver oxygen and nutrients and

remove cellular, metabolic, or toxic by-products. There are several

overlapping mechanisms which regulate cerebral blood flow (CBF) to

maintain the baseline flow as well as mediate activity-dependent

adjustment in flow to increased oxygen and nutrient demand (211).

To help maintain constant intravascular blood pressure in the brain

in the face of systemic changes in blood pressure, cerebral vessels have a

myogenic autoregulatory response system, where the arteries and
Frontiers in Endocrinology 05
arterioles in the pial and parenchymal circulation respond to changes

in intraluminal pressure with changes in vascular tone and diameter

(211). Healthy young animals exhibit structural (increased wall thickness)

and functional (increased myogenic tone) adaptation of the proximal

arterial branches of the cerebrovascular tree in response to permanent

increases in blood pressure, thereby maintaining normal pressure and

blood flow in the thin-walled, injury-prone downstream portion of the

microcirculation (212). There is growing evidence that aging is associated

with functional (myogenic autoregulatory dysfunction) and structural

maladaptation to increased blood pressure in the cerebral circulation

(213, 214), which has been causally linked to the increased susceptibility

to the development of microhemorrhages and BBB disruption. Age-

related arterial stiffening results in an increased pulse pressure which

causes increased pulsatility in CBF in elderly individuals (215). Studies

show that in aged mice, the myogenic response to static increases in

pressure is intact in isolated middle cerebral arteries, but is significantly

impaired in response to increases in pulsatile pressure (213, 214), while

responses in aged parenchymal arterioles were impaired in response to

static pressure (214). Functional maladaptation of aged cerebral arteries

to hypertension is partly due to the dysregulation of the transient receptor

potential canonical channel 6 (TRPC6), which is a non-selective cation

channel from the transient receptor potential (TRP) ion channel

superfamily. In young animals, increased blood pressure activates

TRPC6, which is sensitive to wall stretch (due to increased

intraluminal pressure), thus leading to the depolarization of the VSMC

plasma membrane, opening of voltage-gated Ca2+ channels, increasing

intracellular Ca2+ concentration, and consequent constriction of

VSMCs (216). Impaired autoregulatory protection in the brain of

hypertensive aged mice aggravates cerebromicrovascular injury and

neuroinflammation (217) by allowing high pressure to penetrate the

distal portion of the cerebral microcirculation.

Reductions in circulating IGF-1 may contribute to this age-related

loss of adaptive ability (115). Circulating IGF-1-deficient mice exhibit

significant impairment of cerebrovascular autoregulation compared

to control mice (115) (Figure 2), mimicking the phenotype seen in

aging (217). Autoregulatory impairment was most pronounced in

hypertensive IGF-1 deficient mice, who also failed to exhibit the

protective increase in myogenic tone and protective increases in

TRPC6 channel expression that accompany hypertension in control

mice (115). This functional maladaptation of cerebral arteries to

hypertension in IGF-1 deficient animals correlates with the

structural maladaptations described in section 3, in particular the

significant reduction in hypertension-induced adaptive hypertrophy

and decreased elasticity in the medial layer of vessels in IGF-1

deficient animals (114). Studies on isolated aorta preparations also

suggest that IGF-1 regulates contractile function of vascular smooth

muscle cells (210).

Collectively, impaired autoregulatory function and impaired

protective vessel remodeling can lead to damaging increases in

pressure in the cerebral microvasculature. High intraluminal

pressure is a key stimulus for increased vascular production of

reactive oxygen species (ROS) (218). Previous studies showed that

in aging, increased oxidative stress led to matrix metalloprotease

(MMP) activation (219) thereby compromising the structural

integrity of the cerebral microvasculature. Similarly, hypertensive

IGF-1‐deficient mice exhibit increased vascular ROS and increased

vascular MMP activity compared to control mice (93).
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IGF-1 may also play a role in regulating baseline CBF. Magnetic

resonance imaging studies have shown that baseline mean blood flow

velocity in the middle cerebral artery is decreased in aged vs. young

cohorts, and that flow is significantly correlated with serum IGF-1 levels

(94). Overall, IGF-1 has a central role in regulation of CBF by

contributing to pressure- and flow-dependent responses of cerebral

arteries, plays a role in structural adaptation to hypertension, and

contributes to adaptive ECM changes and in ECM-related gene

expression. IGF-1 deficiency dysregulates the myogenic response to

high blood pressure, it impairs the hypertension-induced adaptive

media hypertrophy and leads to dysregulation of ECM remodeling

contributing to increased fragility of intracerebral arterioles and

exacerbating cerebromicrovascular injury and neuroinflammation

mimicking the aging phenotype.
4.2 Role of GH/IGF-1 in regulation of
microvascular endothelial function and
neurovascular coupling responses

Neurovascular coupling (NVC) is the ability of the neurovascular

unit (NVU) to increase local blood flow based on neuronal activity/

energy requirements and is critical for maintaining proper brain

function. The NVU is comprised of neurons, glial cells, and the

vascular subunit (brain endothelial cells, pericytes and the

surrounding basement membrane) (220). NVC is the result of a

tightly controlled interaction between activated neurons and

astrocytes which leads to the release of vasodilator metabolites from

the astrocyte end-feet and microvascular endothelial cells. These

metabolites include nitric oxide (NO), potassium, adenosine,

epoxyeicosatrienoic acids and prostaglandins and collectively elicit

vasodilation in arterioles (221, 222).

The cellular mechanisms by which aging impairs neurovascular

coupling responses primarily involve a significant reduction in

endothelial production/release of NO (223–225). Neurovascular

dysfunction compromises adjustment of cerebral blood flow to

meet the needs of active brain regions, impairing energy and

oxygen delivery to the firing neurons and hindering washout of

toxic metabolic by-products (226). Cells of the neurovascular unit

(including neurons, astrocytes, and endothelial cells) abundantly

express the IGF-1 receptor, as IGF-1 signaling can also play a role

in endothelial mediated vasodilation (227, 228). IGF-1 mediated

activation of the phosphatidylinositol-3 kinase (PI3-K) pathway in

endothelial cells can lead to production of NO by nitric oxide

synthase, leading to paracrine signaling on VSMCs, resulting in

VSMC relaxation, and subsequent vessel dilation (229, 230).

Laser doppler flowmetry has been routinely used in preclinical

models to evaluate NVC. CBF is measured in the somatosensory

cortex before and after whisker stimulation, and the increased CBF

following stimulation is reflective of NVC response. Stimulation-induced

increases in CBF were much lower in circulating IGF-1 deficient mice

compared to controls (113, 116). This impairment of NVC in IGF-1

deficiency supports a protective role for IGF-1 in vascular function.

Subsequent mechanistic work demonstrated that both endothelium-

mediated and astrocyte-dependent NVC responses were reduced in

IGF-1-deficient mice, mimicking the aged human condition (231, 232).

To help further elucidate the cellular contributions to IGF-1-mediated
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regulation of NVC, various studies have either over-expressed or knocked

out the IGF-1 receptor in specific cell types. Mice overexpressing human

IGF-1 receptor in the endothelium were shown to exhibit unaltered

vasorelaxation to endothelium-dependent vasodilators (233). However,

disruption of endogenous mouse IGF-1 receptor signaling specifically in

endothelial cells (VE-Cadherin-CreERT2/Igf1rf/f) or astrocytes (GFAP-

CreERT2/Igf1rf/f) significantly impaired NVC responses (10, 234). These

effects in part are mediated by decreased NO bioavailability due to

increased production of ROS, analogous to the effects of circulating IGF-1

deficiency and aging.

IGF-1 also plays a significant role in blood flow changes in

response to other types of stimuli such as physical activity.

Exercise-mediated neuronal activity elicits changes in cerebral blood

flow through both NVC and other regulatory mechanisms. These

changes are part of the anti-aging effects of exercise on

cerebrovascular and neuronal plasticity. However, these positive

effects of exercise were abolished in the circulating IGF-1

knockdown model (235). IGF-1 is also essential for downstream

results of NVC in the brain. For example, NVC is an essential

component of activity-dependent neurogenesis in the hippocampus

(236). However, when IGF-1 signaling in the brain is blocked,

activity-dependent but not baseline neurogenesis is eliminated (236).

These preclinical studies have clinical correlates. NVC decreases in

aging humans, contributing to VCID (94). In addition, recent work in

aged and young study participants show that decreased serum IGF-1

levels are a significant predictor of impaired NVC responses (94).

Combined, these findings highlight an essential role for IGF-1 in NVC

during aging (105).
4.3 GH/IGF-1 in regulation of blood-brain
barrier integrity and the development of
cerebral microhemorrhages

The BBB is a functional part of the NVU and is critical for the

protection of neurons, maintenance of homeostasis, and the integrity of

the brain itself (19, 237, 238). BBB dysfunction is one of the hallmarks of

the aging brain, in both humans and animal models (19, 33, 34, 239–

241). The BBB comprises brain capillary endothelial cells with support

from pericytes embedded in the basement membrane and astrocytes.

Tight junctions between endothelial cells are a main component of this

barrier, leading to the requirement of facilitated transport for nutrient and

waste exchange through the capillary endothelial cells. This highly

regulated process allows the brain to be an immune-privileged organ

giving the BBB an important role as a regulator of neuroinflammation

and lymphocyte migration (237, 242–244). Early evidence to support the

idea of a multicellular barrier came from work showing that cultured

astrocytes induced tighter junctions between endothelial cells (245).

When degradation of the BBB begins (for example in inflammaging),

small molecules such as cytokines can leak into the surrounding brain

tissue leading to subsequent inflammation (19, 243, 244, 246).

GH has a protective role in establishment and maintenance of the

BBB during development and in the neonatal brain, especially in

models of hypoxia-induced injury (247–249). Recombinant human

GH (rhGH) has been shown to have a protective effect in a mouse

model of neonatal hypoxic brain injury. Specifically, while hypoxia

significantly reduced occludin-positive cortical endothelial cells (a
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measure of BBB junctional integrity), their frequency was increased in

the cortex in response to rhGH (248, 249).

IGF-1 also plays an important role in the maintenance of the BBB.

Mice with circulating IGF-1 deficiency have increased BBB permeability

(115). This disruption of the BBB can lead to hemorrhaging,

neuroinflammation, and neuronal loss (250). IGF-1 also has a well-

known protective role in neuroinflammatory processes (251) and has a

protective effect on the BBB in other relevant models such as stroke (252–

254). IGF-1 supplementation induced Akt activation, reduced blood-

brain barrier permeability at 4h poststroke, and suppressed cytokine

expression including TNF-a, IL-6, and IL-10 (252). Based on these data,

cellular components of the blood-brain barrier may serve as targets of

IGF-1 in the aging brain, and IGF-1 supplementation in aged animals

and patients may be a useful post-stroke treatment. Recombinant human

IGF-1 (rhIGF-1) was able to increase the expression of tight junction

proteins (e.g. claudin 5 and occludin) and partially restore BBB integrity

in mice with intracerebral hemorrhages (ICHs) (255). Animals treated

with rhIGF-1 also showed improved performance on cognitive tests and

decreased brain water content compared to ICH mice without rhIGF-1.

In contrast, there is some evidence that a more cautious approach is

needed in the application of IGF-1 in the developing brain. At a low dose,

IGF-1 delivered intraventricularly significantly reduced

lipopolysaccharide (LPS)-induced negative effects such as loss of pre-

oligodendrocytes and myelin and in a model of periventricular

leukomalacia (a form of brain damage in premature infants) without

altering IL-1b expression and microglia/astrocytes activation in the

developing brain (256). On the other hand, this low dose of IGF-1

increased LPS-induced BBB permeability, increased polymorphonuclear

cell recruitment, and caused ICHs. At higher doses, IGF-1 treatment with

LPS highly enhanced mortality of the animals (256).

Penetration of increased pulsatile pressure and pressure surges (e.g.

Valsalva maneuver) into the distal, vulnerable part of the cerebral

microcirculation can result in rupture of small vessels and genesis of

cerebral microhemorrhages (CMHs). CMH are increasingly recognized

in T2* and SWI MRI sequences in the majority of older adults. Both

preclinical and clinical studies show that advanced age significantly

increases the prevalence of CMHs, which contribute to the

development of VCID (42–44, 63, 64, 219, 257, 258). CMHs are

thought to arise due to a combination of age-associated factors that

lead to increased microvascular fragility including: 1) structural defects

such as impaired hypertension-induced adaptive changes in the ECM

and impaired protective hypertrophy in the medial layer, 2) functional

defects such as impaired myogenic autoregulation, and 3) age-related

cellular and molecular changes such as increased oxidative stress and

MMP activation (93, 114, 115). These age-associated factors are

significantly affected by IGF-1 deficiency, and IGF-1 deficiency in

mouse models of accelerated aging significantly exacerbates the

development of CMHs (93, 113).
5 Role of GH/IGF-1 in regulation of
amyloid pathologies

Amyloid pathologies (amyloidoses) are a heterogeneous group of

diseases characterized by the accumulation of plaques and fibrils

made of misfolded proteins. These are formed as a consequence of

excessive protein aggregation and/or impairments in the quality
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control systems responsible for their clearance. Amyloidoses are

classified as either systemic or localized. AD is the most commonly

diagnosed localized amyloidosis of the central nervous system. A

major cause of AD is the aggregation of toxic amyloid-b (Ab) peptides
(259), which are formed when an amyloid precursor protein (APP) is

abnormally cleaved. Under physiological conditions, APP is

sequential ly cleaved by a- and g-secretases, producing

nonamyloidogenic peptides which are essential for neuronal

homeostasis. In pathophysiological conditions associated with AD,

APP is cleaved by b-secretase and subsequently g-secretase,
generating amyloidogenic Ab monomers: Ab1-40 and Ab1-42 (260,

261). Decades of studies in AD provide growing evidence that the

accumulation of b-amyloid aggregates plays a central role in the

pathogenesis of AD, however, mechanisms underlying genesis and

regula t ion of th is molecular ha l lmark of AD remain

incompletely understood.

Results from research groups studying GH/IGF-1 signaling in AD

are inconsistent, making drawing meaningful conclusions difficult

(262). Meta-analysis focused on IGF-1 levels in AD patients revealed

that individuals with dementia or AD had lower levels of circulating

IGF-1 than healthy individuals (263). Lower levels of circulating IGF-

1 were also positively correlated with a faster decline in the Mini

Mental State Examination (MMSE) score in AD patients (110).

Conversely, a study by Johansson et al. found that serum levels of

IGF-1 and IGFBP3 were elevated in AD patients (264). The

explanation for these conflicting findings is not clear, but there are

many potential contributing factors. The bioactivity and

bioavailability of IGF-1 are regulated by IGF-1 binding proteins

(IGFBPs) (265), and the increased IGF-1 levels observed in some

AD patients might be functionally suppressed by correspondingly

elevated IGFBP3 levels. Support for this theory comes from a study

which found a decreased ratio of IGF-1 to IGFBP3 (active/inactive) in

the hippocampus of AD patients (266). Additionally, circulating IGF-

1 levels change throughout the progression of AD. Several studies

have reported that the early phase of AD might be associated with

insulin receptor (IRs)/IGF-1R resistance, manifested as increased

serum IGF-1 levels and reduced expression of IRs, IGF-1Rs, and

their downstream substrates IRS-1 and IRS-2 in the brain, followed by

decreased levels of serum IGF-1 at later stages of this amyloidosis

(267–271).

The role of the GH/IGF-1 axis has been extensively studied in

preclinical models of AD with similarly conflicting results. Many

studies have suggested that IGF-1 exacerbates amyloid pathologies.

Cells expressing the Swedish APP mutation treated with IGF-1 have

been shown to secrete more amyloid-b peptides than untreated cells

(272). In vitro and in vivo experiments demonstrated that inhibition

of the IR/IGF-1 axis by NT219 (a small molecule inhibitor of scaffold

proteins such as IRS1/2 that transduce IGF-1 mediated signaling)

protected both cultured cells and nematodes from prion protein- or

amyloid-beta-induced proteotoxicity through the formation of less

toxic aggregates of higher molecular weight (273, 274). In a transgenic

mouse model of AD (AbPP/PS1), treatment with picropodophyllin, a

selective IGF-1R inhibitor, reduced levels of insoluble Ab1-40 and Ab1-
42 in the temporal cortex but not in the hippocampus (275). The

neuron-specific deletion of IR or IGF-1R in the mouse model of AD

provided a myriad of beneficial effects, manifested by decreased APP

processing, fewer amyloid plaques, less amyloid-b, improved spatial
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memory, and protection from premature death (276–278).

Additionally, in APP/PS1 mice, GH deficiency is associated with

fewer amyloid-beta plaques and lower levels of Ab1-40 and Ab1-42
peptides (279, 280).

However, other studies have suggested that IGF-1 may have

beneficial effects in AD models. In vitro experiments have suggested

that activating the IR/IGF-1R axis could confer protection from

amyloid-b toxicity. In neuronal cultures, IGF-1 treatment decreased

Ab production and protected neurons from Ab25-35- and Ab1-42-
induced toxicity (266, 281–284). Similarly, hippocampal

overexpression of IGF-1 prevented Ab1-42-induced memory loss

(266). Astrocytic IGF-1 receptors prove to be crucial for the uptake

of b-amyloid from neurons and the preservation of cognitive function

(129). In APP/PS1 mice, treatment with IGF-1 restored levels of

ADAM10; the constitutive a-secretase involved in APP processing

and decreased the prevalence of Ab1-40 in the cortex and

hippocampus (285). However, work from other groups has

suggested that enhancing GH/IGF-1 signaling either by

administration of IGF-1 or by the GH secretagogue, CP-424391

failed to alter amyloid-beta clearance (286). Altogether, these

observations highlight the complexity of the GH/IGF-1 axis in AD.

Further studies are needed to develop a better understanding of the

role of these hormones in the genesis and progression of

various amyloidoses.

While development of effective anti-amyloid therapies is ongoing,

physical exercise appears to improve several physiological outcomes

in AD patients, including improved cognitive function, functional

independence, reduced neuroinflammation and oxidative stress, and

decreased cardiovascular risks (287). Evidence also shows that caloric

restriction (CR) may improve cognitive performance as another

beneficial lifestyle intervention (288). In both these interventions,

IGF-1 levels were elevated, suggesting that the beneficial effects seen

in these healthy lifestyle changes might be at least partially mediated

by the GH/IGF-1 axis.
6 Role of GH/IGF-1 in regulation
of atherogenesis

Cerebral atherogenic changes have been associated with VCID

since it was first described (289), and this intracranial atherosclerosis

is associated with lipid dysregulation, accumulation of cholesterol and

related esters, and inflammation. Several clinical studies have found

that decreased peripheral vascular health and atherosclerosis increase

the risk for VCID and cognitive impairment (7, 8, 289–296). The

increased risk is most robust in cases of intracranial atherosclerosis or

carotid artery disease with coronary and aortic atherosclerosis having

weaker or no association with VCID risk (292, 294, 297). Animal

studies also support a link between atherosclerosis and VCID. When

compared with control mice, LDLr-/-:hApoB+/+ mice (a model of

atherosclerosis) exhibited worsened VCID pathologies including

CMH, microvascular rarefaction, BBB leakage, neuroinflammation,

and cognitive impairment (298). Carotid plaque thickness and low

IGF-1 levels are both independent predictors of VCID (299). Studies

using aged rats demonstrated that IGF-1 supplementation reversed

age-related insulin resistance, reduced serum cholesterol and

triglycerides as well as reduced oxidative stress in the cortex and
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hippocampus (300). However, very few studies have specifically

evaluated the role of IGF-1 in atherogenesis in the brain.

In contrast, there is a vast literature evaluating the role of IGF-1

and the broader somatotropic axis in systemic atherogenesis

[reviewed in (231, 301–304)]. The current body of evidence

suggests that IGF-1 is protective in atherosclerosis, due largely to its

role in VSMCs, endothelial cells and macrophages (302, 305, 306).

IGF-1 levels inversely correlate with atherosclerotic burden in a

variety of animal models (307–310), as one example, systemic

infusion of IGF-1 in ApoE null mice on a high-fat diet reduced

vascular inflammation, reduced oxidative stress, and suppressed

plaque progression (307). In part, the beneficial effects of IGF-1 in

atherosclerosis have been attributed to the ability of IGF-1 to stabilize

plaques via VSMC-mediated effects (311–313). In ApoE knockout

models, supplementation of a stable IGF-1 analog stabilized plaque

development by increasing vascular smooth muscle (VSMC) cell

proliferation, suppressing inflammation-induced VSMC apoptosis,

and increasing the cap to core ratio in early atherosclerosis. ECM

regulation plays a key role in these IGF-1 mediated benefits and many

of the relevant ECM proteins overlap with those important to

protective IGF-1-associated cerebrovascular remodeling (discussed

above) such as Col3a1 and elastin (311). Low IGF-1 levels are also

associated with increased inflammation and oxidative stress in

atherosclerosis models while elevated IGF-1 is associated with

improvements in those measures as well as decreased apoptosis,

increased presence of VSMCs, and increased collagen (121, 307,

311, 314, 315). Studies on GH have been a little more

contradictory. Overall GH is also thought to be atheroprotective

based on the observation that GH deficiency is associated with

premature atherosclerosis and increased prevalence of other

cardiovascular risk factors (316–318). However, treatment with GH

reduces only some of these risk factors, and much remains to be

understood (318, 319). In addition, acromegaly patients with chronic

overexpression of GH have been reported to have increased

proinflammatory blood-derived cytokines, endothelial dysfunction,

and increased cardiovascular mortality when compared to patients

who had normal levels of GH/IGF-1 (318, 320, 321).

Recent data suggest that GH/IGF-1 may also play a role in

regulating cellular senescence in the context of atherosclerosis.

Senescent cells accumulate in aging, contributing to cerebrovascular

pathologies and atherosclerosis (322–331). Senescent cells can cause

tissue dysfunction, and IGF-1 has been shown, in vitro, to suppress

the formation of oxidative-stress-induced senescent endothelial cells

(314). Multiple types of senescent cells have deleterious effects

throughout the timeline of atherosclerosis including endothelial

cells, VSMCs, and macrophages/foam cells. These senescent cells

contribute to disease progress and plaque rupture by promoting

degradation of elastic tissue, thinning of the fibrous cap, increased

plaque burden, adoption of a proinflammatory macrophage

phenotype, and suppression of a protective migratory phenotype by

VSMCs (329–331). Consistent with the previously discussed role of

IGF-1 in promoting cap thickening and its importance as a regulator

of elastic ECM components, it is not surprising that impaired IGF-1

signaling in VSMCs is important in the context of senescence-

induced plaque progression. In addition to improving cap

thickness, reducing lesion size, and promoting VSMC migration,

treatment of high fat diet fed Ldlr-/- mice with senolytics depletes
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IGFBP3 in the atherosclerotic lesions (329). IGFBP3 sequesters IGF-1

preventing it from acting on the IGF-1 receptor, suggesting that one

of the beneficial effects of senolytics is to increase the levels of

available IGF-1 in the plaque. The importance of IGF-1 in plaques

was highlighted by subsequent experiments showing that

supplementation with an IGF-1 variant with reduced IGFBP3

binding or treatment with IGFBP3 neutralizing antibodies

promoted adoption of the migratory VSMC phenotype which is

thought to play a protective role in cap maintenance and repair

(329). Treatment with GH, and the subsequent increases in IGF-1

have also been shown to decrease the number of senescent endothelial

progenitor cells, a key part of the vascular repair process in

atherosclerosis (332).
7 Sex-based differences in the GH/IGF-
1 axis in the aging cerebrovasculature

Sexual dimorphism and sex-based differences in phenotypes

associated with the GH/IGF-1 signaling axis are complex (333,

334). There is evidence for complicated interactions between the

somatotropic and gonadotropic axes during development and during

pubertal growth (334, 335). In the context of aging, studies in Ames

dwarf mice (336) showed that both females and males had increased

longevity compared to controls. GH receptor knockout mice also

exhibited increased longevity in both females and males, although

there was variation across genetic backgrounds (337). In contrast,

increased longevity in Igf1r+/- mice was seen only in females (143,

338). The mechanisms underlying these sex differences are

not known.

There has been some work evaluating sex-differences associated

with the GH/IGF-1 axis in the cardiovascular system and brain.

Several sex-specific differences in cardiac function are eliminated in

liver specific IGF-1 knockouts. This has been attributed to the fact

that female C57BL/6 mice have higher circulating levels of IGF-1 than

male mice but the liver-specific knockout reduces IGF-1 to low levels

that are similar in both males and females (339). Estrogen and IGF-1

can both exert neuroprotective effects, and there have been reports

suggesting that the two pathways can act cooperatively in the context

of ischemic stroke (252, 253, 335, 340). In addition, activation of

estrogen (E2) receptors has been shown to increase IGF-1 uptake into

brain endothelial cells, resulting in some sex-specific differences in

IGF-1 bioavailability (341).

More recent work has demonstrated that post-developmental

neuronal over-expression of IGF-1 rescued age-related defects in

neuromuscular function in males but not females (105). Chronic

overexpression of IGF-1 did not ameliorate age-related losses in

cognitive function, although short-term delivery (4-weeks

intranasal) of IGF-1 in aged male mice did lead to minor

improvements in cognitive function (female mice were not

evaluated) (105). However in most studies evaluating the effects of

IGF-1 deficiency on the vasculature, including those studying

neurovascular coupling, blood-brain-barrier permeability,

development of CMH, vascular structure and function, progression

of atherosclerosis, etc. sex-specific effects were either not evaluated or

not reported, making this an area ripe for further exploration.
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8 Conclusion and perspectives

There is a strong body of evidence highlighting the vasoprotective

effects of IGF-1, particularly in the cerebral vasculature. IGF-1 is

essential for brain vascular health, and IGF-1 deficiency in aging

contributes to the development of VCID and cognitive impairment. It

can be difficult to separate out the effects of GH from those of IGF-1,

since one of the primary functions of GH is to induce secretion of

IGF-1. However, there are also direct effects of GH in some systems

which may be tied to effects of GH signaling on NO production (342).

While much is known about GH/IGF-1 axis in aging and

cardiovascular disease, much remains to be explored. In particular,

the cellular contributions to various pathologies remain incompletely

understood. It can also be hard to dissect out what the contributions

of GH/IGF-1 signaling on individual cell types in complicated

multicellular pathologies such as atherogenesis and cerebrovascular

dysfunction. Part of the challenge lies in the fact that so many of the

cells involved (endothelial cells, astrocytes, neurons, VSMCs,

macrophages) can all respond to IGF-1 and contribute to disease

development. In addition, while GH and IGF-1 are most often

thought of as circulating systemic factors that act in a cell non-

autonomous way, there is locally produced IGF-1 in many tissues,

including the brain and atherosclerotic plaque. Dissecting the

contributions of these different IGF-1 pools can be time-consuming

and challenging with current animal models. Much remains to be

explored regarding the downstream molecular mediators of GH/IGF-

1 vasoprotective effects. Canonical signaling through GH/IGF-1 has

been well-established for decades but it remains unclear whether there

are tissue specific downstream mediators that might make good

therapeutic targets without the broader effects of delivering

hormones with as many pleiotropic effects as GH/IGF-1.
Author contributions

All authors listed have made a substantial, direct, and intellectual

contribution to the work and approved it for publication.
Funding

This work was supported by grants from the National Institute on

Aging (R01-AG070915), the NIA-supported Geroscience Training

Program in Oklahoma (T32AG052363), the Cellular and Molecular

GeroScience CoBRE (1P20GM125528), and the American Heart

Association (AHA834339-ANT). The funding sources had no role

in the study design; in the collection, analysis and interpretation of

data; in the writing of the report; and in the decision to submit the

article for publication.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1087053
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Bickel et al. 10.3389/fendo.2023.1087053
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated
Frontiers in Endocrinology 10
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Zlokovic BV, Gottesman RF, Bernstein KE, Seshadri S, Mckee A, Snyder H, et al.
Vascular contributions to cognitive impairment and dementia (Vcid): A report from the
2018 national heart, lung, and blood institute and national institute of neurological
disorders and stroke workshop. Alzheimers Dement (2020) 16(12):1714–33. doi: 10.1002/
Alz.12157

2. Gorelick PB, Bowler JV. Advances in vascular cognitive impairment. Stroke (2010)
41(2):E93–8. doi: 10.1161/Strokeaha.109.569921

3. Iadecola C, Duering M, Hachinski V, Joutel A, Pendlebury ST, Schneider JA, et al.
Vascular cognitive impairment and dementia: Jacc scientific expert panel. J Am Coll
Cardiol (2019) 73(25):3326–44. doi: 10.1016/J.Jacc.2019.04.034

4. Dichgans M, Leys D. Vascular cognitive impairment. Circ Res (2017) 120(3):573–91.
doi: 10.1161/Circresaha.116.308426

5. Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Perez JM, Evans AC.
Alzheimer’s disease neuroimaging i. early role of vascular dysregulation on late-onset
alzheimer’s disease based on multifactorial data-driven analysis. Nat Commun (2016)
7:11934. doi: 10.1038/Ncomms11934

6. Levit A, Hachinski V, Whitehead SN. Neurovascular unit dysregulation, white
matter disease, and executive dysfunction: The shared triad of vascular cognitive
impairment and Alzheimer disease. Geroscience (2020) 42(2):445–65. doi: 10.1007/
S11357-020-00164-6

7. Tarantini S, Fulop GA, Kiss T, Farkas E, Zolei-Szenasi D, Galvan V, et al.
Demonstration of impaired neurovascular coupling responses in Tg2576 mouse model
of alzheimer’s disease using functional laser speckle contrast imaging. Geroscience (2017)
39(4):465–73. doi: 10.1007/S11357-017-9980-Z

8. Csiszar A, Tarantini S, Fulop GA, Kiss T, Valcarcel-Ares MN, Galvan V, et al.
Hypertension impairs neurovascular coupling and promotes microvascular injury: Role in
exacerbation of alzheimer’s disease. Geroscience (2017) 39(4):359–72. doi: 10.1007/
S11357-017-9991-9

9. Lamar M, Leurgans S, Kapasi A, Barnes LL, Boyle PA, Bennett DA, et al. Complex
profiles of cerebrovascular disease pathologies in the aging brain and their relationship
with cognitive decline. Stroke (2022) 53(1):218–27. doi: 10.1161/Strokeaha.121.034814

10. Tarantini S, Nyul-Toth A, Yabluchanskiy A, Csipo T, Mukli P, Balasubramanian P,
et al. Endothelial deficiency of insulin-like growth factor-1 receptor (Igf1r) impairs
neurovascular coupling responses in mice, mimicking aspects of the brain aging
phenotype. Geroscience (2021) 43:2387–94. doi: 10.1007/S11357-021-00405-2

11. Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: Key
pathophysiological modulators promote neurodegeneration, cognitive impairment, and
alzheimer’s disease. J Neurosci Res (2016) 4:943–72. doi: 10.1002/Jnr.23777

12. Ighodaro ET, Abner EL, Fardo DW, Lin AL, Katsumata Y, Schmitt FA, et al. Risk
factors and global cognitive status related to brain arteriolosclerosis in elderly individuals.
J Cereb Blood Flow Metab (2016) 37:201–16. doi: 10.1177/0271678x15621574

13. Cooper LL, Woodard T, Sigurdsson S, Van Buchem MA, Torjesen AA, Inker LA,
et al. Cerebrovascular damage mediates relations between aortic stiffness and memory.
Hypertension (2016) 67(1):176–82. doi: 10.1161/Hypertensionaha.115.06398

14. Jessen SB, Mathiesen C, Lind BL, Lauritzen M. Interneuron deficit associates
attenuated network synchronization to mismatch of energy supply and demand in aging
mouse brains. Cereb Cortex (2015) 27:646–59. doi: 10.1093/Cercor/Bhv261

15. Zlokovic BV. Neurovascular pathways to neurodegeneration in alzheimer’s disease
and other disorders. Nat Rev Neurosci (2011) 12(12):723–38. doi: 10.1038/Nrn3114

16. Hajdu MA, Heistad DD, Siems JE, Baumbach GL. Effects of aging on mechanics and
composition of cerebral arterioles in rats.Circ Res (1990) 66(6):1747–54. doi: 10.1161/01.RES.66.6.1747

17. MayhanWG, Faraci FM, Baumbach GL, Heistad DD. Effects of aging on responses
of cerebral arterioles. Am J Physiol (1990) 258(4 Pt 2):H1138–43. doi: 10.1152/
ajpheart.1990.258.4.H1138

18. Norling AM, Gerstenecker AT, Buford TW, Khan B, Oparil S, Lazar RM. The role
of exercise in the reversal of igf-1 deficiencies in microvascular rarefaction and
hypertension. Geroscience (2020) 42(1):141–58. doi: 10.1007/S11357-019-00139-2

19. Nyul-Toth A, Tarantini S, Delfavero J, Yan F, Balasubramanian P, Yabluchanskiy
A, et al. Demonstration of age-related blood-brain barrier disruption and
cerebromicrovascular rarefaction in mice by longitudinal intravital two-photon
microscopy and optical coherence tomography. Am J Physiol Heart Circ Physiol (2021)
320(4):H1370–H92. doi: 10.1152/ajpheart.00709.2020

20. Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions to cognitive
impairment and dementia: Mechanisms and consequences of cerebral autoregulatory
dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol
Heart Circ Physiol (2017) 312(1):H1–H20. doi: 10.1152/Ajpheart.00581.2016
21. Tarantini S, Tucsek Z, Valcarcel-Ares MN, Toth P, Gautam T, Giles CB, et al.
Circulating igf-1 deficiency exacerbates hypertension-induced microvascular rarefaction
in the mouse hippocampus and retrosplenial cortex : Implicat ions for
cerebromicrovascular and brain aging. Age (Dordr) (2016) 38(4):273–89. doi: 10.1007/
S11357-016-9931-0

22. Thomas KR, Osuna JR, Weigand AJ, Edmonds EC, Clark AL, Holmqvist S, et al.
Regional hyperperfusion in older adults with objectively-defined subtle cognitive decline. J
Cereb Blood Flow Metab (2021) 41(5):1001–12. doi: 10.1177/0271678x20935171

23. Tomoto T, Riley J, Turner M, Zhang R, Tarumi T. Cerebral vasomotor reactivity
during hypo- and hypercapnia across the adult lifespan. J Cereb Blood Flow Metab (2020)
40(3):600–10. doi: 10.1177/0271678x19828327

24. Trigiani LJ, Bourourou M, Lacalle-Aurioles M, Lecrux C, Hynes A, Spring S, et al.
A functional cerebral endothelium is necessary to protect against cognitive decline. J
Cereb Blood Flow Metab (2022) 42(1):74–89. doi: 10.1177/0271678x211045438

25. Vestergaard MB, Jensen ML, Arngrim N, Lindberg U, Larsson HB. Higher
physiological vulnerability to hypoxic exposure with advancing age in the human
brain. J Cereb Blood Flow Metab (2020) 40(2):341–53. doi: 10.1177/0271678x18818291

26. Liu D, Ahmet I, Griess B, Tweedie D, Greig NH, Mattson MP. Age-related
impairment of cerebral blood flow response to katp channel opener in alzheimer’s
disease mice with presenilin-1 mutation. J Cereb Blood Flow Metab (2021) 41(7):1579–
91. doi: 10.1177/0271678x20964233

27. Liu W, Chen Z, Ortega D, Liu X, Huang X, Wang L, et al. Arterial elasticity,
endothelial function and intracranial vascular health: A multimodal mri study. J Cereb
Blood Flow Metab (2021) 41(6):1390–7. doi: 10.1177/0271678x20956950

28. Maasakkers CM, Thijssen DH, Knight SP, Newman L, O’connor JD, Scarlett S,
et al. Hemodynamic and structural brain measures in high and low sedentary older adults.
J Cereb Blood Flow Metab (2021) 41(10):2607–16. doi: 10.1177/0271678x211009382

29. Milej D, He L, Abdalmalak A, Baker WB, Anazodo UC, Diop M, et al.
Quantification of cerebral blood flow in adults by contrast-enhanced near-infrared
spectroscopy: Validation against mri. J Cereb Blood Flow Metab (2020) 40(8):1672–84.
doi: 10.1177/0271678x19872564

30. Pradillo JM, Hernandez-Jimenez M, Fernandez-Valle ME, Medina V, Ortuno JE,
Allan SM, et al. Influence of metabolic syndrome on post-stroke outcome, angiogenesis
and vascular function in old rats determined by dynamic contrast enhanced mri. J Cereb
Blood Flow Metab (2021) 41(7):1692–706. doi: 10.1177/0271678x20976412

31. Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in
Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol (2018) 14
(3):133–50. doi: 10.1038/Nrneurol.2017.188

32. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-brain barrier:
From physiology to disease and back. Physiol Rev (2019) 99(1):21–78. doi: 10.1152/
Physrev.00050.2017

33. Verheggen ICM, De Jong JJA, Van Boxtel MPJ, Gronenschild E, Palm WM,
Postma AA, et al. Increase in blood-brain barrier leakage in healthy, older adults.
Geroscience (2020) 42(4):1183–93. doi: 10.1007/S11357-020-00211-2

34. Montagne A, Barnes SR, Nation DA, Kisler K, Toga AW, Zlokovic BV. Imaging
subtle leaks in the blood-brain barrier in the aging human brain: Potential pitfalls,
challenges, and possible solutions. Geroscience (2022) 44(3):1339–51. doi: 10.1007/
S11357-022-00571-X

35. Li W, Lo EH. Leaky memories: Impact of Apoe4 on blood-brain barrier and
dementia. J Cereb Blood Flow Metab (2020) 40(9):1912–4. doi: 10.1177/
0271678x20938146

36. MoonWJ, Lim C, Ha IH, Kim Y, Moon Y, Kim HJ, et al. Hippocampal blood-brain
barrier permeability is related to the Apoe4 mutation status of elderly individuals without
dementia. J Cereb Blood Flow Metab (2021) 41(6):1351–61. doi: 10.1177/
0271678x20952012

37. Cortes-Canteli M, Iadecola C. Alzheimer’s disease and vascular aging: Jacc focus
seminar. J Am Coll Cardiol (2020) 75(8):942–51. doi: 10.1016/J.Jacc.2019.10.062

38. Iadecola C, Park L, Capone C. Threats to the mind: Aging, amyloid, and
hypertension. Stroke (2009) 40(3 Suppl):S40–4. doi: 10.1161/Strokeaha.108.533638

39. Park L, Anrather J, Girouard H, Zhou P, Iadecola C. Nox2-derived reactive oxygen
species mediate neurovascular dysregulation in the aging mouse brain. J Cereb Blood Flow
Metab (2007) 27(12):1908–18. doi: 10.1038/Sj.Jcbfm.9600491

40. Lipecz A, Csipo T, Tarantini S, Ra H, B-Tn N, Conley S, et al. Age-related
impairment of neurovascular coupling responses: A dynamic vessel analysis (Dva)-based
approach to measure decreased flicker light stimulus-induced retinal arteriolar dilation in
healthy older adults. Geroscience (2019) 41(3):341–9. doi: 10.1007/S11357-019-00078-Y
frontiersin.org

https://doi.org/10.1002/Alz.12157
https://doi.org/10.1002/Alz.12157
https://doi.org/10.1161/Strokeaha.109.569921
https://doi.org/10.1016/J.Jacc.2019.04.034
https://doi.org/10.1161/Circresaha.116.308426
https://doi.org/10.1038/Ncomms11934
https://doi.org/10.1007/S11357-020-00164-6
https://doi.org/10.1007/S11357-020-00164-6
https://doi.org/10.1007/S11357-017-9980-Z
https://doi.org/10.1007/S11357-017-9991-9
https://doi.org/10.1007/S11357-017-9991-9
https://doi.org/10.1161/Strokeaha.121.034814
https://doi.org/10.1007/S11357-021-00405-2
https://doi.org/10.1002/Jnr.23777
https://doi.org/10.1177/0271678x15621574
https://doi.org/10.1161/Hypertensionaha.115.06398
https://doi.org/10.1093/Cercor/Bhv261
https://doi.org/10.1038/Nrn3114
https://doi.org/10.1161/01.RES.66.6.1747
https://doi.org/10.1152/ajpheart.1990.258.4.H1138
https://doi.org/10.1152/ajpheart.1990.258.4.H1138
https://doi.org/10.1007/S11357-019-00139-2
https://doi.org/10.1152/ajpheart.00709.2020
https://doi.org/10.1152/Ajpheart.00581.2016
https://doi.org/10.1007/S11357-016-9931-0
https://doi.org/10.1007/S11357-016-9931-0
https://doi.org/10.1177/0271678x20935171
https://doi.org/10.1177/0271678x19828327
https://doi.org/10.1177/0271678x211045438
https://doi.org/10.1177/0271678x18818291
https://doi.org/10.1177/0271678x20964233
https://doi.org/10.1177/0271678x20956950
https://doi.org/10.1177/0271678x211009382
https://doi.org/10.1177/0271678x19872564
https://doi.org/10.1177/0271678x20976412
https://doi.org/10.1038/Nrneurol.2017.188
https://doi.org/10.1152/Physrev.00050.2017
https://doi.org/10.1152/Physrev.00050.2017
https://doi.org/10.1007/S11357-020-00211-2
https://doi.org/10.1007/S11357-022-00571-X
https://doi.org/10.1007/S11357-022-00571-X
https://doi.org/10.1177/0271678x20938146
https://doi.org/10.1177/0271678x20938146
https://doi.org/10.1177/0271678x20952012
https://doi.org/10.1177/0271678x20952012
https://doi.org/10.1016/J.Jacc.2019.10.062
https://doi.org/10.1161/Strokeaha.108.533638
https://doi.org/10.1038/Sj.Jcbfm.9600491
https://doi.org/10.1007/S11357-019-00078-Y
https://doi.org/10.3389/fendo.2023.1087053
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Bickel et al. 10.3389/fendo.2023.1087053
41. Zhang Y, Du W, Yin Y, Li H, Liu Z, Yang Y, et al. Impaired cerebral vascular and
metabolic responses to parametric n-back tasks in subjective cognitive decline. J Cereb
Blood Flow Metab (2021) 41(10):2743–55. doi: 10.1177/0271678x211012153

42. Poels MM, Ikram MA, van der Lugt A, Hofman A, Krestin GP, Breteler MM, et al.
Incidence of cerebral microbleeds in the general population: The Rotterdam scan study.
Stroke (2011) 42(3):656–61. doi: 10.1161/Strokeaha.110.607184

43. Poels MM, Ikram MA, van der Lugt A, Hofman A, Niessen WJ, Krestin GP, et al.
Cerebral microbleeds are associated with worse cognitive function: The Rotterdam scan
study. Neurology (2012) 78(5):326–33. doi: 10.1212/Wnl.0b013e3182452928

44. Ungvari Z, Tarantini S, Kirkpatrick AC, Csiszar A, Prodan CI. Cerebral
microhemorrhages: Mechanisms, consequences, and prevention. Am J Physiol Heart
Circ Physiol (2017) 312(6):H1128–H43. doi: 10.1152/Ajpheart.00780.2016

45. Wiegertjes K, Chan KS, Telgte AT, Gesierich B, Norris DG, Klijn CJ, et al.
Assessing cortical cerebral microinfarcts on iron-sensitive mri in cerebral small vessel
disease. J Cereb Blood Flow Metab (2021) 41(12):3391–9. doi: 10.1177/
0271678x211039609

46. Ling Y, Chabriat H. Incident cerebral lacunes: A review. J Cereb Blood Flow Metab
(2020) 40(5):909–21. doi: 10.1177/0271678x20908361

47. Zhang L, Biessels GJ, Hilal S, Chong JSX, Liu S, Shim HY, et al. Cerebral
microinfarcts affect brain structural network topology in cognitively impaired patients.
J Cereb Blood Flow Metab (2021) 41(1):105–15. doi: 10.1177/0271678x20902187

48. Zwartbol MH, Rissanen I, Ghaznawi R, De Bresser J, Kuijf HJ, Blom K, et al.
Cortical cerebral microinfarcts on 7t mri: Risk factors, neuroimaging correlates and
cognitive functioning - the medea-7t study. J Cereb Blood Flow Metab (2021) 41
(11):3127–38. doi: 10.1177/0271678x211025447

49. Zwartbol MH, van der Kolk AG, Kuijf HJ, Witkamp TD, Ghaznawi R, Hendrikse J,
et al. Intracranial vessel wall lesions on 7t mri and mri features of cerebral small vessel
disease: The smart-Mr study. J Cereb Blood Flow Metab (2021) 41(6):1219–28.
doi: 10.1177/0271678x20958517

50. Shi Y, Thrippleton MJ, Blair GW, Dickie DA, Marshall I, Hamilton I, et al. Small
vessel disease is associated with altered cerebrovascular pulsatility but not resting cerebral
blood flow. J Cereb Blood Flow Metab (2020) 40(1):85–99. doi: 10.1177/
0271678x18803956

51. Vikner T, Eklund A, Karalija N, Malm J, Riklund K, Lindenberger U, et al. Cerebral
arterial pulsatility is linked to hippocampal microvascular function and episodic memory
in healthy older adults. J Cereb Blood Flow Metab (2021) 41(7):1778–90. doi: 10.1177/
0271678x20980652

52. Vikner T, Nyberg L, Holmgren M, Malm J, Eklund A, Wahlin A. Characterizing
pulsatility in distal cerebral arteries using 4d flowmri. J Cereb Blood Flow Metab (2020) 40
(12):2429–40. doi: 10.1177/0271678x19886667

53. Wartolowska KA, Webb AJ. White matter damage due to pulsatile versus steady
blood pressure differs by vascular territory: A cross-sectional analysis of the uk biobank
cohort study. J Cereb Blood Flow Metab (2022) 42(5):802–10. doi: 10.1177/
0271678x211058803

54. Pahlavian SH, Wang X, Ma S, Zheng H, Casey M, D’orazio LM, et al.
Cerebroarterial pulsatility and resistivity indices are associated with cognitive
impairment and white matter hyperintensity in elderly subjects: A phase-contrast mri
study. J Cereb Blood Flow Metab (2021) 41(3):670–83. doi: 10.1177/0271678x20927101

55. Palhaugen L, Sudre CH, Tecelao S, Nakling A, Almdahl IS, Kalheim LF, et al. Brain
amyloid and vascular risk are related to distinct white matter hyperintensity patterns. J
Cereb Blood Flow Metab (2021) 41(5):1162–74. doi: 10.1177/0271678x20957604

56. Zeng W, Chen Y, Zhu Z, Gao S, Xia J, Chen X, et al. Severity of white matter
hyperintensities: Lesion patterns, cognition, and microstructural changes. J Cereb Blood
Flow Metab (2020) 40(12):2454–63. doi: 10.1177/0271678x19893600

57. Zhang R, Huang P, Jiaerken Y, Wang S, Hong H, Luo X, et al. Venous disruption
affects white matter integrity through increased interstitial fluid in cerebral small vessel
disease. J Cereb Blood Flow Metab (2021) 41(1):157–65. doi: 10.1177/0271678x20904840

58. Parodi-Rullan R, Ghiso J, Cabrera E, Rostagno A, Fossati S. Alzheimer’s amyloid
beta heterogeneous species differentially affect brain endothelial cell viability, blood-brain
barrier integrity, and angiogenesis. Aging Cell (2020) 19(11):E13258. doi: 10.1111/
Acel.13258

59. Castillo-Carranza DL, Nilson AN, Van Skike CE, Jahrling JB, Patel K, Garach P,
et al. Cerebral microvascular accumulation of tau oligomers in alzheimer’s disease and
related tauopathies. Aging Dis (2017) 8(3):257–66. doi: 10.14336/Ad.2017.0112

60. Costanza A, Xekardaki A, Kovari E, Gold G, Bouras C, Giannakopoulos P.
Microvascular burden and Alzheimer-type lesions across the age spectrum. J
Alzheimers Dis (2012) 32(3):643–52. doi: 10.3233/Jad-2012-120835

61. Steinman J, Sun HS, Feng ZP. Microvascular alterations in alzheimer’s disease.
Front Cell Neurosci (2020) 14:618986. doi: 10.3389/Fncel.2020.618986

62. Thal DR, Attems J, Ewers M. Spreading of amyloid, tau, and microvascular
pathology in alzheimer’s disease: Findings from neuropathological and neuroimaging
studies. J Alzheimers Dis (2014) 42 Suppl 4:S421–9. doi: 10.3233/Jad-141461

63. Vernooij MW, van der Lugt A, Ikram MA, Wielopolski PA, Niessen WJ, Hofman
A, et al. Prevalence and risk factors of cerebral microbleeds: The Rotterdam scan study. .
Neurol (2008) 70(14):1208–14. doi: 10.1212/01.Wnl.0000307750.41970.D9

64. Kato H, Izumiyama M, Izumiyama K, Takahashi A, Itoyama Y. Silent cerebral
microbleeds on T2*-weighted mri: Correlation with stroke subtype, stroke recurrence, and
leukoaraiosis. Stroke (2002) 33(6):1536–40. doi: 10.1161/01.STR.0000018012.65108.86
Frontiers in Endocrinology 11
65. Koton S, Schneider ALC, Windham BG, Mosley TH, Gottesman RF, Coresh J.
Microvascular brain disease progression and risk of stroke: The aric study. Stroke (2020)
51(11):3264–70. doi: 10.1161/Strokeaha.120.030063

66. Lin MP, Brott TG, Liebeskind DS, Meschia JF, Sam K, Gottesman RF. Collateral
recruitment is impaired by cerebral small vessel disease. Stroke (2020) 51(5):1404–10.
doi: 10.1161/Strokeaha.119.027661

67. Sagnier S, Catheline G, Dilharreguy B, Linck PA, Coupe P, Munsch F, et al.
Normal-appearing white matter integrity is a predictor of outcome after ischemic stroke.
Stroke (2020) 51(2):449–56. doi: 10.1161/Strokeaha.119.026886

68. Tarantini S, Yabluchanskiy A, Csipo T, Fulop G, Kiss T, Balasubramanian P, et al.
Treatment with the Poly(Adp-ribose) polymerase inhibitor pj-34 improves
cerebromicrovascular endothelial function, neurovascular coupling responses and
cognitive performance in aged mice, supporting the nad+ depletion hypothesis of
neurovascular aging. Geroscience (2019) 41:533–42. doi: 10.1007/S11357-019-00101-2

69. Kiss T, Nyul-Toth A, Balasubramanian P, Tarantini S, Ahire C, Yabluchanskiy A,
et al. Nicotinamide mononucleotide (Nmn) supplementation promotes neurovascular
rejuvenation in aged mice: Transcriptional footprint of Sirt1 activation, mitochondrial
protection, anti-inflammatory, and anti-apoptotic effects. Geroscience (2020) 42(2):527–
46. doi: 10.1007/S11357-020-00165-5

70. Tarantini S, Valcarcel-Ares MN, Toth P, Yabluchanskiy A, Tucsek Z, Kiss T, et al.
Nicotinamide mononucleotide (Nmn) supplementation rescues cerebromicrovascular
endothelial function and neurovascular coupling responses and improves cognitive
function in aged mice. Redox Biol (2019) 24:101192. doi: 10.1016/J.Redox.2019.101192

71. Yabluchanskiy A, Balasubramanian P, Tarantini S. Cerebrovascular rejuvenation:
Novel strategies for prevention of vascular cognitive impairment. Rejuvenation Res (2020)
23(6):451–2. doi: 10.1089/Rej.2020.2402

72. Ungvari Z, Tarantini S, Donato AJ, Galvan V, Csiszar A. Mechanisms of vascular
aging. Circ Res (2018) 123(7):849–67. doi: 10.1161/Circresaha.118.311378

73. Hennebry A, Oldham J, Shavlakadze T, Grounds MD, Sheard P, Fiorotto ML, et al.
Igf1 stimulates greater muscle hypertrophy in the absence of myostatin in Male mice. J
Endocrinol (2017) 234(2):187–200. doi: 10.1530/Joe-17-0032

74. Kaur H, Muhlhausler BS, Roberts CT, Gatford KL. The growth hormone-insulin like
growth factor axis in pregnancy. J Endocrinol (2021) 251:R23–39. doi: 10.1530/Joe-21-0087

75. Roberts RE, Cavalcante-Silva J, Kineman RD, Koh TJ. Liver is a primary source of
insulin-like growth factor-1 in skin wound healing. J Endocrinol (2021) 252(1):59–70.
doi: 10.1530/Joe-21-0298

76. Shuang T, Fu M, Yang G, Huang Y, Qian Z, Wu L, et al. Interaction among
estrogen, igf-1, and H2s on smooth muscle cell proliferation. J Endocrinol (2021) 248
(1):17–30. doi: 10.1530/Joe-20-0190

77. Wood CL, Van ‘THof R, Dillon S, Straub V, Wong SC, Ahmed SF, et al. Combined
growth hormone and insulin-like growth factor-1 rescues growth retardation in
glucocorticoid-treated mdxmice but does not prevent osteopenia. J Endocrinol (2022)
253(2):63–74. doi: 10.1530/Joe-21-0388

78. Yan JJ, Lee YC, Tsou YL, Tseng YC, Hwang PP. Insulin-like growth factor 1
triggers salt secretion machinery in fish under acute salinity stress. J Endocrinol (2020) 246
(3):277–88. doi: 10.1530/Joe-20-0053

79. Eichner M, Wallaschofski H, Schminke U, Volzke H, Dorr M, Felix SB, et al.
Relation of igf-I with subclinical cardiovascular markers including intima-media
thickness, left ventricular mass index and nt-probnp. Eur J Endocrinol (2020) 182
(1):79–90. doi: 10.1530/Eje-19-0470

80. Van Den Beld AW, Carlson OD, Doyle ME, Rizopoulos D, Ferrucci L, van der Lely
AJ, et al. Igfbp-2 and aging: A 20-year longitudinal study on igfbp-2, igf-I, bmi, insulin
sensitivity and mortality in an aging population. Eur J Endocrinol (2019) 180(2):109–16.
doi: 10.1530/Eje-18-0422

81. Van Nieuwpoort IC, Vlot MC, Schaap LA, Lips P, Drent ML. The relationship
between serum igf-1, handgrip strength, physical performance and falls in elderly men
and women. Eur J Endocrinol (2018) 179(2):73–84. doi: 10.1530/Eje-18-0076

82. Ziagaki A, Blaschke D, Haverkamp W, Plockinger U. Long-term growth hormone
(Gh) replacement of adult gh deficiency (Ghd) benefits the heart. Eur J Endocrinol (2019)
181(1):79–91. doi: 10.1530/Eje-19-0132

83. Smith TJ. Insulin-like growth factor pathway and the thyroid. Front Endocrinol
(Lausanne) (2021) 12:653627. doi: 10.3389/Fendo.2021.653627

84. Kraemer WJ, Ratamess NA, Hymer WC, Nindl BC, Fragala MS. Growth Hormone
(S), testosterone, insulin-like growth factors, and cortisol: Roles and integration for
cellular development and growth with exercise. Front Endocrinol (Lausanne) (2020)
11:33. doi: 10.3389/Fendo.2020.00033

85. Allard JB, Duan C. Igf-binding proteins: Why do they exist and why are there so
many? Front Endocrinol (Lausanne) (2018) 9:117. doi: 10.3389/Fendo.2018.00117

86. Reiter EO, Cohen LE, Rogol AD. Editorial: History of growth hormone: Animal to
human. Front Endocrinol (Lausanne) (2021) 12:793272. doi: 10.3389/Fendo.2021.793272

87. BlumWF, Alherbish A, Alsagheir A, El Awwa A, Kaplan W, Koledova E, et al. The
growth hormone-Insulin-Like growth factor-I axis in the diagnosis and treatment of
growth disorders. Endocr Connect (2018) 7(6):R212–R22. doi: 10.1530/Ec-18-0099

88. Murray PG, Clayton PE, Feingold KR, Anawalt B, Boyce A, Chrousos G, et al.
Disorders of growth hormone in childhood. In: Feingold KR, Anawalt B, Boyce A, Chrousos
G, De HerderWW, Dhatariya K, et al Endotext, editors. South Dartmouth MA, USA (2000).

89. Miller BS, Rogol AD, Rosenfeld RG. The history of the insulin-like growth factor
system. Horm Res Paediatr (2022) 95(6):619–30. doi: 10.1159/000527123
frontiersin.org

https://doi.org/10.1177/0271678x211012153
https://doi.org/10.1161/Strokeaha.110.607184
https://doi.org/10.1212/Wnl.0b013e3182452928
https://doi.org/10.1152/Ajpheart.00780.2016
https://doi.org/10.1177/0271678x211039609
https://doi.org/10.1177/0271678x211039609
https://doi.org/10.1177/0271678x20908361
https://doi.org/10.1177/0271678x20902187
https://doi.org/10.1177/0271678x211025447
https://doi.org/10.1177/0271678x20958517
https://doi.org/10.1177/0271678x18803956
https://doi.org/10.1177/0271678x18803956
https://doi.org/10.1177/0271678x20980652
https://doi.org/10.1177/0271678x20980652
https://doi.org/10.1177/0271678x19886667
https://doi.org/10.1177/0271678x211058803
https://doi.org/10.1177/0271678x211058803
https://doi.org/10.1177/0271678x20927101
https://doi.org/10.1177/0271678x20957604
https://doi.org/10.1177/0271678x19893600
https://doi.org/10.1177/0271678x20904840
https://doi.org/10.1111/Acel.13258
https://doi.org/10.1111/Acel.13258
https://doi.org/10.14336/Ad.2017.0112
https://doi.org/10.3233/Jad-2012-120835
https://doi.org/10.3389/Fncel.2020.618986
https://doi.org/10.3233/Jad-141461
https://doi.org/10.1212/01.Wnl.0000307750.41970.D9
https://doi.org/10.1161/01.STR.0000018012.65108.86
https://doi.org/10.1161/Strokeaha.120.030063
https://doi.org/10.1161/Strokeaha.119.027661
https://doi.org/10.1161/Strokeaha.119.026886
https://doi.org/10.1007/S11357-019-00101-2
https://doi.org/10.1007/S11357-020-00165-5
https://doi.org/10.1016/J.Redox.2019.101192
https://doi.org/10.1089/Rej.2020.2402
https://doi.org/10.1161/Circresaha.118.311378
https://doi.org/10.1530/Joe-17-0032
https://doi.org/10.1530/Joe-21-0087
https://doi.org/10.1530/Joe-21-0298
https://doi.org/10.1530/Joe-20-0190
https://doi.org/10.1530/Joe-21-0388
https://doi.org/10.1530/Joe-20-0053
https://doi.org/10.1530/Eje-19-0470
https://doi.org/10.1530/Eje-18-0422
https://doi.org/10.1530/Eje-18-0076
https://doi.org/10.1530/Eje-19-0132
https://doi.org/10.3389/Fendo.2021.653627
https://doi.org/10.3389/Fendo.2020.00033
https://doi.org/10.3389/Fendo.2018.00117
https://doi.org/10.3389/Fendo.2021.793272
https://doi.org/10.1530/Ec-18-0099
https://doi.org/10.1159/000527123
https://doi.org/10.3389/fendo.2023.1087053
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Bickel et al. 10.3389/fendo.2023.1087053
90. Toogood AA, O’neill PA, Shalet SM. Beyond the somatopause: Growth hormone
deficiency in adults over the age of 60 years. J Clin Endocrinol Metab (1996) 81(2):460–5.
doi: 10.1210/Jcem.81.2.8636250

91. Iranmanesh A, Lizarralde G, Veldhuis JD. Age and relative adiposity are specific
negative determinants of the frequency and amplitude of growth hormone (Gh) secretory
bursts and the half-life of endogenous gh in healthy men. J Clin Endocrinol Metab (1991)
73(5):1081–8. doi: 10.1210/Jcem-73-5-1081

92. Sonntag WE, Deak F, Ashpole N, Toth P, Csiszar A, Freeman W, et al. Insulin-like
growth factor-1 in cns and cerebrovascular aging. Front In Aging Neurosci (2013) 5:27.
doi: 10.3389/Fnagi.2013.00027

93. Tarantini S, Valcarcel-Ares NM, Yabluchanskiy A, Springo Z, Fulop GA, Ashpole
N, et al. Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral
microhemorrhages in mice, mimicking the aging phenotype. Aging Cell (2017) 16(3):469–
79. doi: 10.1111/Acel.12583

94. Toth L, Czigler A, Hegedus E, Komaromy H, Amrein K, Czeiter E, et al. Age-
related decline in circulating igf-1 associates with impaired neurovascular coupling
responses in older adults. Geroscience (2022) 44:2771–83. doi: 10.1007/S11357-022-
00623-2

95. Ungvari Z, Csiszar A. The emerging role of igf-1 deficiency in cardiovascular aging:
Recent advances. J Gerontol A Biol Sci Med Sci (2012) 67(6):599–610. doi: 10.1093/
Gerona/Gls072

96. Sonntag WE, Ramsey M, Carter CS. Growth hormone and insulin-like growth
factor-1 (Igf-1) and their influence on cognitive aging. Ageing Res Rev (2005) 4(2):195–
212. doi: 10.1016/J.Arr.2005.02.001

97. Deak F, Sonntag WE. Aging, synaptic dysfunction, and insulin-like growth factor
(Igf)-1. J Gerontol A Biol Sci Med Sci (2012) 67(6):611–25. doi: 10.1093/Gerona/Gls118

98. Sonntag WE, Csiszar A, Decabo R, Ferrucci L, Ungvari Z. Diverse roles of growth
hormone and insulin-like growth factor-1 in mammalian aging: Progress and
controversies. J Gerontol A Biol Sci Med Sci (2012) 67(6):587–98. doi: 10.1093/Gerona/
Gls115

99. Khan AS, Sane DC, Wannenburg T, Sonntag WE. Growth hormone, insulin-like
growth factor-1 and the aging cardiovascular system. Cardiovasc Res (2002) 54(1):25–35.
doi: 10.1016/S0008-6363(01)00533-8

100. Ungvari Z, Tarantini S, Sorond F, Merkely B, Csiszar A. Mechanisms of vascular
aging, a geroscience perspective: Jacc focus seminar. J Am Coll Cardiol (2020) 75(8):931–
41. doi: 10.1016/J.Jacc.2019.11.061

101. Giovannini S, Marzetti E, Borst SE, Leeuwenburgh C. Modulation of Gh/Igf-1
axis: Potential strategies to counteract sarcopenia in older adults.Mech Ageing Dev (2008)
129(10):593–601. doi: 10.1016/J.Mad.2008.08.001

102. Ashpole NM, Herron JC, Estep PN, Logan S, Hodges EL, Yabluchanskiy A, et al.
Differential effects of igf-1 deficiency during the life span on structural and biomechanical
properties in the tibia of aged mice. Age (Dordr) (2016) 38(2):38. doi: 10.1007/S11357-
016-9902-5

103. Ashpole NM, Herron JC, Mitschelen MC, Farley JA, Logan S, Yan H, et al. Igf-1
regulates vertebral bone aging through sex-specific and time-dependent mechanisms. J
Bone Miner Res (2015) 31:443-54. doi: 10.1002/Jbmr.2689

104. Gong Z, Kennedy O, Sun H, Wu Y, Williams GA, Klein L, et al. Reductions in
serum igf-1 during aging impair health span. Aging Cell (2014) 13(3):408–18.
doi: 10.1111/Acel.12188

105. Farias Quipildor GE, Mao K, Hu Z, Novaj A, Cui MH, Gulinello M, et al. Central
igf-1 protects against features of cognitive and sensorimotor decline with aging in Male
mice. Geroscience (2019) 41(2):185–208. doi: 10.1007/S11357-019-00065-3

106. Abs R, Mattsson AF, Thunander M, Verhelst J, Goth MI, Wilton P, et al.
Prevalence of diabetes mellitus in 6050 hypopituitary patients with adult-onset gh
deficiency before gh replacement: A kims analysis. Eur J Endocrinol (2013) 168(3):297–
305. doi: 10.1530/Eje-12-0807

107. Abs R, Feldt-Rasmussen U, Mattsson AF, Monson JP, Bengtsson BA, Goth MI,
et al. Determinants of cardiovascular risk in 2589 hypopituitary gh-deficient adults - a
kims database analysis. Eur J Endocrinol (2006) 155(1):79–90. doi: 10.1530/Eje.1.02179

108. Quinlan P, Horvath A, Nordlund A,Wallin A, Svensson J. Low serum insulin-like
growth factor-I (Igf-I) level is associated with increased risk of vascular dementia.
Psychoneuroendocrinology (2017) 86:169–75. doi: 10.1016/J.Psyneuen.2017.09.018

109. Doi T, Shimada H, Makizako H, Tsutsumimoto K, Hotta R, Nakakubo S, et al.
Association of insulin-like growth factor-1 with mild cognitive impairment and slow gait
speed. Neurobiol Aging (2015) 36(2):942–7. doi: 10.1016/J.Neurobiolaging.2014.10.035

110. Vidal JS, Hanon O, Funalot B, Brunel N, Viollet C, Rigaud AS, et al. Low serum
insulin-like growth factor-I predicts cognitive decline in alzheimer’s disease. J Alzheimers
Dis (2016) 52(2):641–9. doi: 10.3233/Jad-151162

111. Watanabe T, Yamamoto H, Idei T, Iguchi T, Katagiri T. Influence of insulin-like
growth factor-1 and hepatocyte growth factor on carotid atherosclerosis and cognitive function
in the elderly. Dement Geriatr Cognit Disord (2004) 18(1):67–74. doi: 10.1159/000077812

112. Xie Y, Huang C, Zhu X, Wang J, Fan X, Fu Z, et al. Association between
circulating insulin-like growth factor 1 and risk of all-cause and cause-specific mortality.
Eur J Endocrinol (2021) 185(5):681–9. doi: 10.1530/Eje-21-0573
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