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Over the past few decades, increasing prevalence of obesity caused an enormous

medical, social, and economic burden. As the sixth most important risk factor

contributing to the overall burden of disease worldwide, obesity not only directly

harms the human body, but also leads to many chronic diseases such as diabetes,

cardiovascular diseases (CVD), nonalcoholic fatty liver disease (NAFLD), andmental

illness. Weight loss is still one of the most effective strategies against obesity and

related disorders. Recently, the link between intestinal microflora and metabolic

health has been constantly established. Butyrate, a four-carbon short-chain fatty

acid, is amajormetabolite of the gutmicrobiota that hasmany beneficial effects on

metabolic health. The anti-obesity activity of butyrate has been demonstrated, but

its mechanisms of action have not been fully described. This review summarizes

current knowledge of butyrate, including its production, absorption, distribution,

metabolism, and the effect and mechanisms involved in weight loss and obesity-

related diseases. The aim was to contribute to and advance our understanding of

butyrate and its role in obesity. Further exploration of butyrate and its pathwaymay

help to identify new anti-obesity.
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1 Introduction

Over the past few decades, obesity and related health problems have increased with the

accessibility to high calorie foods with low nutritional value and changes in lifestyle (1, 2).

In the early 2000s, 1.1 billion adults and 10% of children were classified as overweight or

obese (3). According to the last data from the World Health Organization, the number of

overweight or obese people has risen to more than 1.9 billion adults aged 18 years and older

and over 18% of children (4). Obesity is measured by the body mass index (BMI), which is

body weight/height squared (kg/m2), and people with a BMI ≥30 kg/m2 are classified as

obese (5). Obesity has been officially recognized as a disease since 1985, and ongoing

research has shown that obesity is a serious threat to human health (6). Current evidence

confirms that obesity is associated not only with chronic illnesses such as diabetes,
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atherosclerosis, and cardiovascular disease (CVD) (7–9), but also

with cancer (10) and cognitive impairment (11). Beyond this,

obesity also severely decreases both physical and mental aspects

of the quality of life for people (12, 13). Thus, we need to focus more

on the health risks and therapeutic approaches to obesity.

Abnormal or excess accumulation of fat that leads to obesity

and impairs health (4), results from an energy imbalance, with more

calories consumed than expended (14), and most interventions to

control or treat obesity involve calorie restriction (15). Evidence

provided by an increasing number of confirms that the composition

of the gut microbiota influences the energy metabolism and

metabolic health of the human host (16). Changes in human gut

microbiota have been linked to obesity, and weight loss influences

the composition of the gut microbiota (17). More importantly,

supplementation with Akkermansia muciniphila (a kind of

intestinal microflora) in overweight and obese human volunteers

was able to improve obesity or obesity-related phenotypes (18).

Short-chain fatty acids (SCFAs), which constitute the most

abundant metabolites of microbial fermentation from undigested

dietary carbohydrates, are crucial mediators between microbiota

and host metabolism (19). The most abundant SCFAs in the human

body include acetate (C2), propionate (C3) and butyrate (C4) and

they are also the most abundant anions in the colon (20). Among

SCFAs, acetate shows more obesogenic effect. Research has shown

that chronic increase in acetate would promote chronic

hyperinsulinemia, hyperphagia, and weight gain and the

associated sequelae of obesity by the activation of the

parasympathetic nervous system (21). Acetate also contributes to

the synthesis of cholesterol and the synthesis of lipids in liver (22,

23). Recently, evidence indicate that local acetate inhibits brown fat

function (24). Propionate has been relatively poorly studied in

relation to obesity, although metabolic benefits have also been

reported. In SCFA, butyrate has the most important systemic

effects. There are a large number of reports that butyrate is

inextricably related to obesity and weight loss. Butyrate is known

to have beneficial effects on cellular energy metabolism and

intestinal homeostasis (25), and to mediate regulation of whole-

body energy homeostasis by the gut microbiota (26). Evidence

points to the involvement of decreased butyrate production in

metabolic diseases such as diabetes (27). Studies of microbiota

composition have revealed that diabetic and obese patients have

lower levels of butyrate-producing bacteria, while dietary

supplementation with butyrate ameliorates inflammation, insulin

resistance and weight gain (28, 29). However, the amount of

butyrate in stools has been found to be higher in overweight and

obese volunteers than in lean volunteers (30, 31), which led some

researchers to believe that butyrate may contribute to the

obesogenic phenotype (32). However, fecal concentrations may

not accurately reflect physiological concentrations since <10% of

butyrate production is excreted in feces and mice studies suggested

that the obese microbiota actually has a reduced capacity to produce

butyrate (33). The specific effect of butyrate on obesity remains

unclear. This review aims to contribute to further related research in

the future by summarizing current knowledge about the butyrate,

especially its effects and mechanisms of action in obesity.
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2 In vivo process of butyrate

2.1 Production source of butyrate

Some studies showed that dietary fiber can exert similar effects

with butyrate via enhanced gut butyrate production (34–36). Thus,

an understanding of how butyrate is produced in the gut can help to

better understand its effects. It is well known that butyrate is

produced from carbohydrate polymers via glycolysis by gut

microbiota, such as Eubacterium rectale, Faecalibacterium

prausnitzii (37, 38). The fermentation substrates are dietary fibers

that are transported to the colon after escaping digestion in the

upper gastrointestinal tract (38), and are also commonly known as a

kind of dietary fibers including undigested plant polysaccharides,

resistant starch (RS), and nondigestible oligosaccharides (NDOs)

(39, 40). The undigested plant polysaccharides are usually classified

into two types: water-soluble polysaccharides and water-insoluble

polysaccharides (38). Water-insoluble fibers such as lignin,

cellulose, and some hemicelluloses are resistant to fermentation

(41). Water-insoluble polysaccharides are usually hydrolyzed to

smaller soluble fragments, and are then fermented to produce

butyrate (42). Water-soluble polysaccharides, such as pectin,b-
glucans, FOS, inulin and gums, tend to be more completely

fermented by colonic microflora (41). Most fiber-containing foods

contain about one-third soluble and two-thirds insoluble fiber (43).

Resistant starch that was able to resist the digestion in the small

intestine will arrive at the colon where they will be fermented by the

gut microbiota, producing a variety of products including butyrate

(44). RS is usually present in cereal grains, seeds, cooked starch, and

starch-containing foods like potato, barley, wheat and corn (44, 45).

The nondigestible oligosaccharides (NDOs) are typically

saccharides containing between 3 and 10 sugar moieties,

inc luding i somal t -o l igosacchar ides ( IMOs) , ga lac to-

o l igosacchar ides (GOSs) , XOSs , and some pseudo-

oligosaccharides, such as acarbose (38, 46).

Butyrate is also formed as products from peptide and amino

acid fermentation, although amino acid-fermenting bacteria have

been estimated to constitute less than 1% of the large intestinal

microbiota (47). The amino acid which can produce butyrate from

microbial fermentation include glutamate, lysine, histidine,

cysteine, serine and methionine (48). Apart from that, butyrate

also occurs naturally in dairy products, like whole cow’s milk (~0.1

g/100g), butter (~3 g/100 g), cheese (especially goat’s cheese (~1-1.8

g/100 g), parmesan (~1.5 g/100 g) (49), and human breast milk

(uptake of an estimated amount of approximately 30mg/kg in a

breast-fed baby) (50).
2.2 Gut microbiota and pathway of
butyrate production

Previously described butyrate-produced microbiota in the

human gastrointestinal intestinal tract were commonly distributed

in the phylum Firmicutes and the order Clostridiales (38). Most of

these producing bacteria are in four main families: Clostridiaceae,
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Eubacteriaceae, Lachnospiraceae, and Ruminococcaceae (37, 51, 52).

Most butyrate-produced microbiota in the order Clostridiales are

widely distributed in several clusters, including clusters IV, XIVa,

XVI, and I (53). Moreover, other typical butyrogenic species like

Roseburia spp, Anaerostipes spp, Clostridium spp, Ruminococcus spp,

Coprococcus spp and Butyrivibrio spp are widely distributed across

cluster XIVa, and Butyricicoccus pullicaecorum, Subdoligranulum

variabile, Anaerotruncus colihominis , and Papillibacter

cinnamivorans are cluster IV (51, 52, 54).

Butyrate is produced from carbohydrates by glycolysis that

involves the combination of two molecules of acetyl-CoA to form

acetoacetyl-CoA followed by stepwise reduction to butyryl-CoA

(37). In addition to acetyl-CoA, there are three other pathways

known to produce butyrate, glutarate, 4-aminobutyrate, and lysine

and all pathways coalesce at a central energy-generating step where

crotonyl-CoA is transformed into butyryl-CoA, catalyzed by the

electron-transferring flavoprotein butyryl-CoA dehydrogenase (52).

Two different pathways are known for the final step in butyrate

formation from butyryl-CoA, which proceeds either via butyryl-

CoA: acetate CoA-transferase or via phosphotransbutyrylase and

butyrate kinase (51). A screen of 38 butyrate-producing human gut

isolates found that the butyryl-CoA: acetate CoA-transferase route

was far more prevalent in this ecosystem than the butyrate kinase

route (55).
2.3 Factors affecting butyrate production

At first, the solubility of fermentation substrate significantly

affects the fermentation of NDCs (38). Soluble NDCs are generally

more susceptible to fermentation by gut microbiota than insoluble

NDCs (56), and highly fermentable to be rapidly consumed by

microbes (57). In addition to solubility, carbohydrate chain length

also affects butyrate production (38). Generally, NDCs with longer

chains have relatively lower utilization rate and are more resistant to

intestinal fermentation, which results in a more distal type of

metabolism (58). In contrast, NDCs with a shorter chain are

more accessible to the microflora, which produces butyrate more

rapidly (58, 59). Differences in the orientation and the position of

the glycosidic bond and monomeric composition of NDCs may

affect the production of butyrate (38).

The gut environment also impacts butyrate production.

Particularly, the gut pH tremendously affects the concentration of

butyrate because of differing tolerance to low pH of the major

bacterial functional groups that comprise the human colonic

microbiota (60). PH modulates microbial colonization in the

upper gastrointestinal tract (61), and affects the metabolic activity

and composition of microbial community (62). Some studies have

shown that butyrate formation is affected by lowering of the gut pH

(5.5) (60, 63, 64). Butyrate producers are also sensitive to iron

availability, while butyrate production is enhanced at high iron

concentrations (65, 66). Furthermore, the concentration of

intestinal gases, like the oxygen and hydrogen also influences

butyrate formation (67, 68).
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2.4 Butyrate absorption

Butyrate is mainly considered be absorbed via active transport

mediated by monocarboxylate transporters (MCTs) (69). MCT is

coupled to a transmembrane H+-gradient that aids the transport and

absorption of butyrate (70, 71). Specific isoforms of MCTs that are

expressed in the colonic cell membrane that faces the lumen

recognize butyrate as a substrate (72). However, the driving force

for the uphill entry of butyrate from the lumen into colonocytes via

MCTs is very little, because the magnitude of the transmembrane H+

gradient across the colonocyte apical membrane is puny (73). Out of

the four functional MCTs, butyrate is mainly the substrate of

transporters MCT1 (SLC16A1) and MCT4 (SLC16A3) (74). MCT1

is expressed both in the apical membrane and basolateral membrane

of colonic epithelium whereas MCT4 specifically in the basolateral

membrane (75). In terms of structure, human MCT1 consists of 500

amino acids with 12 putative transmembrane domains, with both

amino- and carboxy-termini positioned on the membrane’s

cytoplasmic side (76). MCT1 is highly expressed in Caco-2 cell and

play a major role in the apical uptake of butyrate (77, 78). MCT4

consist of 465 amino acids and 12 transmembrane domains (79).

MCT4 was shown to be a high-affinity butyrate transporter in gut

epithelial cells (80). Beyond that, solute carrier (SLC) family 5

member 8 (SLC5A8), which is a Na+-coupled co-transporter and

also known as sodium-coupled monocarboxylate transporter 1

(SMCT1), facilitates the transport and absorption of butyrate (81,

82). SMCT1 consists of 610 amino acids (83), primarily distributing

in kidney and intestine (84). Butyrate is more readily transported by

SLC5A8,which is relatively a high-affinity transporter with affinities

for the butyrate in the sub-millimolar range (73). Some studies have

also reported simple passive diffusion as a convincing model of

butyrate transport (85).
2.5 Butyrate distribution

Up to 95% of butyrate produced by the gut microbiota is

absorbed and used in colonocytes and only a very small part is

absorbed into the circulation (26) via the hepatic portal vein, which

connects the gastrointestinal tract, spleen and liver (86, 87).

Butyrate concentrations in the portal vein are ~18µmol/l in a

fasting human and 14-64µmol/l in sudden death victims (86, 88),

while the concentrations in peripheral blood are low to ~20% of

portal vein concentrations (89). Some studies have reported that

oral delivery of dietary fiber or butyrate, or colonic infusion of

butyrate was able to increase the butyrate concentration in the

plasma of circulating blood (90–92). A study that followed the

distribution of 11C-labeled butyric acid in baboons found relatively

high accumulation of the label in the spleen, and pancreas (93).

Another study reported distribution of 13C-labeled butyrate in the

intestine, brain, brown adipose tissue (BAT), white adipose tissue

(WAT), and especially the brain (94). Liu et al. found slightly

elevated butyrate levels in the brains of mice supplemented with live

Clostridium butyricum (95).
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2.6 Butyrate metabolism and excretion

Butyrate is predominantly metabolized in the colon as an

energy substrate, with small concentrations utilized by the liver

and kidneys, providing up to 70% of the energy needs of colon cells,

and the amount of butyrate metabolized was followed by the

excretion of CO2 in breath (96, 97). In colon cells, butyrate is

metabolized by mitochondrial b-oxidation to generate NADH, H+

and acetyl-CoA, and in turn can further be used to generate ATP in

the citric acid cycle in the mitochondria (97). Butyrate enters into

the tricarboxylic acid (TCA) cycle as acetyl-CoA and is converted to

citrate, oxaloacetate, triosephosphate, and subsequently in glucose

synthesis (98). In addition to the above, butyrate is metabolized to

produce fatty acids, cholesterol, and ketone bodies (98).

Approximately 10% of butyrate is excreted in the feces (41) and

fecal butyrate levels are increased by a diet high in dietary fiber or

resistance starches (99).
3 Cellular signaling pathways
of butyrate

3.1 G protein-coupled receptors (GPCRs)

Butyrate is the ligand for metabolite-sensing G-protein coupled

receptors (GPCRs), mainly GPR43, GPR41, and GPR109a (100),

which are also known as free fatty acid receptors 2 (FFAR2), free fatty

acid receptors 3 (FFAR3), and Hydroxy-carboxylic acid receptor 2

(HCA2), respectively (101, 102). The expression of GRP41/FFAR3

receptors are mainly observed in peripheral nerves, enteroendocrine

L and K cells, white adipocytes, pancreatic b- cells, thymus cells, and

myeloid dendritic cells, and GRP43/FFAR2 receptors are expressed in

white adipocytes, enteroendocrine L cells, intestinal epithelial cells,

pancreatic b- cells, and several immune system cells (103). In colonic

macrophages and dendritic cells, GPR109A signaling activates the

inflammasome pathway, resulting in the differentiation of regulatory

T cells and IL-10- producing T cells (104). FFAR2 and FFAR3 are

activated by all three major SCFAs (105, 106), while butyrate is the

only SCFA that can bind to HCA2 (104). In knockout GPR41 mice,

the receptor was found to be involved in the release of peptide YY

(PYY), intestinal transit rate, and energy harvesting from food (107).

GPR43 knockout mice display weight gain, increased adiposity, and

reduced systemic insulin sensitivity, while adipose tissue-specific

GPR43 overexpression protects mice against the development of

obesity (108). Butyrate directly regulates GPR41-mediated

sympathetic nervous system activity and thereby controls body

energy expenditure in maintaining metabolic homeostasis (109).

These may be associated with the effect of butyrate on obesity.
3.2 Histone deacetylases (HDACs)

Butyrate is also a histone deacetylase inhibitor (HDACi). Anticancer

activity of butyrate has been found to be mediated by HDAC inhibition,

and includes inhibition of cell proliferation, induction of cell

differentiation, apoptosis, and induction or repression of gene
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expression (110–112). Butyrate also down-regulates proinflammatory

effectors by histone deacetylase inhibition to regulate intestinal

macrophage function (113). A possible mechanism involves butyrate

inhibition of the recruitment of HDACs to the promoter by the

transcription factors specificity protein 1/specificity protein 3 (Sp1/

Sp3), leading to histone hyperacetylation (112). In addition, studies

have shown that, as a histone deacetylase inhibitor, butyrate promoted

pancreatic b-cell differentiation, which was seen as having potential for

the treatment of diabetes (114, 115).
4 Effect of butyrate on obesity

A growing number of studies have reported effects of butyrate

on obesity, involved body weight, fat mass and obesity-related

glucose and lipid metabolism (Table 1).
4.1 Body weight and fat mass

Most studies showed that dietary supplementation of a high-fat

diet (HFD) with 5% (w/w) sodium butyrate significantly reduced

body weight gain in mice compared with that induced by the HFD

alone (34, 116–122), whatever a long-term supplementation for up to

16weeks (116, 120) or a short-term supplementation for down to 4

weeks (117). Although the dosage of addition of sodium butyrate

supplementation varied, it was consistently effective in reducing body

weight (123, 124), whether it was supplied in drinking water or

administered by gavage (125, 126). Most of these studies also reported

that butyrate supplementation can reduce fat mass, suppress adipose

tissue accumulation and hepatic lipid accumulation (34, 116–119,

121–123, 125). Such evidence suggests that butyrate prevents diet-

induced obesity (DIO) (34, 116–126).

Butyrate was also effective for treating diet-induced obesity

(116, 118, 127–136). Studies that pretreated mice or rats with

HFD for some time and then treated them by adding sodium

butyrate dietary supplementation showed significant decreases in

body weight and fat mass (118, 128, 131). In addition to dietary

supplementation, more studies that treated HFD-fed mice or rats

with oral delivery of sodium butyrate via gavage also significantly

reduced body weight and fat mass (116, 127, 129, 130, 132–136).

Not only that, an early study revealed that butyrate directly

inhibited the proliferation of adipoblasts derived from lean and

obese Zucker and WDF rats, and decreased the lipogenic capacity

(138). Notably, a study showed that butyrate intervention did not

significantly reduce bodyweight in mid-adult mice on HFD but

resulted in a body weight loss in late-adult mice on the HFD (128).

Another study showed that butyrate intervention reduced inguinal

adipocyte size in mid-adult mice but not in late-adult mice (131).

The results suggest that the effect of butyrate on obesity is associated

with age (128, 131). Recently, a randomized clinical trial about

pediatric obesity showed that butyrate decreased the BMI SD scores

of obese children (137).

However, butyrate treatment failed to reduce body weight gain

and fat mass increased in diabetes (139). It also showed that

butyrate did not affect the body weight and fat mass of lean
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TABLE 1 Effect of butyrate on obesity, involved body weight, fat mass and obesity-related glucose and lipid metabolism.

Experimental
models

Experimental design Body weight and fat Obesity-related glucose
and lipid metabolism

Ref.

Male C57BL/6J
mice with HFD

5% (w/w) sodium butyrate supplementation in HFD for 16 weeks.
Pretreated with HFD for 16 weeks, and then administrated
butyrate to obese mice for 5 weeks.

Butyrate prevented against
body weight gain and fat
content.
Treatment with butyrate,
body weight was reduced by
10.2%, and fat content was
reduced by 10%.

Butyrate improved fasting
glucose, insulin levels,
homeostasis model assessment
for insulin resistance (HOMA-
IR) and insulin tolerance.

(116)

C57BL/6N male
mice with HFD

5% (w/w) sodium butyrate supplementation in HFD for 4 weeks Butyrate blocked HFD-
induced weight gain.

Butyrate reduced fasting insulin
levels, and improved oral
glucose tolerance.

(117)

Male C57Bl/6J mice
with HFD

5% (w/w) sodium butyrate supplementation in HFD for 12 weeks.
Pretreated with HFD for 12 weeks, and then supplemented the
HFD with butyrate for 6 weeks

Butyrate reduced in body
weight, white adipose tissue
(WAT) mass and adipose cell
size, and prevented/treated
HFD-induced obesity

Butyrate reduced fasting glucose
and insulin levels, improved
glucose tolerance and insulin
sensitivity.

(118)

male C57BL/6J
mice with HFD

5%(w/w) sodium butyrate supplementation in HFD for 8 weeks. Butyrate attenuated HFD-
induced increases in body fat,
body weight, and adiposity

Butyrate improve glucose
tolerance and insulin sensitivity.

(119)

C57BL/6 J male
mice with HFD

5% (w/w) sodium butyrate supplementation in HFD for 16 weeks. Butyrate significantly
suppressed the HFD-induced
body weight gain.

Butyrate attenuated the increases
in glucose, insulin, triglycerides
and cholesterol promoted by the
HFD

(120)

Male C57BL/6JUnib
mice with HFD

5% (w/w) sodium butyrate supplementation in HFD. Butyrate resulted a significant
decrease in body weight gain
and 27.7% in adipose tissue
accumulation.

Butyrate treatment blocked the
development of insulin
resistance and hyperinsulinemia
states induced by HFD.

(121)

APOE*3-Leiden.
CETP (E3L.CETP)
mice with HFD.

5% (w/w) sodium butyrate supplementation in HFD for 9 weeks. Butyrate decreased body
weight and the weight of the
gonadal (g) white adipose
tissue (WAT) pad by −69%.

Butyrate significantly decreased
plasma TG, fasting glucose,
fasting insulin levels and
homeostatic model assessment
of insulin.

(122)

Female C57BL/6
mice with WSD

5% (w/w) sodium butyrate supplementation in WSD for 12 weeks Butyrate significantly
attenuated body weight gain,
liver weight gain and hepatic
lipid accumulation

Butyrate significantly reduced
plasma triglyceride level

(34)

Male ApoE KO
mice with HFD

1% butyrate (v/w, 10 mL/kg diet, using 10 mL of butyric acid
adjusted with 4 N NaOH to pH 7.2.) supplemented in HFD for 10
weeks.

Butyrate reduces weight gain
and adipocyte expansion in
obese mice

Butyrate improved oral glucose
tolerance, insulin sensitivity and
serum adiponectin levels.

(123)

Male C57BL/6J
mice with HFD

Sodium butyrate (400 mg/kg) supplemented in HFD for 16weeks Butyrate supplementation
alleviated weight gain.

Butyrate significantly improved
HFD-induced glucose tolerance
and insulin sensitivity.

(124)

C57BL/6J male
mice with HFD

0.1 M sodium butyrate in the drinking water for 12 weeks Butyrate significantly lowered
the epididymal subcutaneous
fat weight, body weight gain
and lipid accumulation

(125)

Male C57Bl/6NTac
mice with HFD

2.5 mM Sodium butyrate in 1 mL was orally administrated in
drinking water using mouse catheters for five consecutive days in
a week for the subsequent 6 weeks

Butyrate suppressed the HFD-
induced weight gain.

(126)

Male specific
pathogen-free (SPF)
C57BL/6J mice

Pretreated with HFD for 8 weeks and then HFD-fed mice treated
by gavage with 80mg sodium butyrate in 1 mL deionized water
per mouse every other day for 10 days.

Butyrate treatment reduced
the body weight, the
epididymal fat mass and lipid
deposition in the muscle.

Butyrate alleviated glucose
tolerance, and restores plasma
level of glucose and insulin.

(127)

Male LDLr-/-
Leiden mice with
HFD

One group, representing mid-adulthood, received a HFD at three
months of age and received HFD enriched with 5% (w/w) sodium
butyrate at seven months for two months. One group,
representing late adulthood, received a HFD at six months of age

Butyrate in late adult mice on
HFD resulted in a body
weight loss of 23%. Butyrate
intervention restored

Butyrate lowered the plasma
levels of cholesterol, triglycerides
and insulin in both mid- and
late adult mice.

(128)

(Continued)
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individuals fed a standard diet (121, 123). But in contrast, a study

showed that dietary butyrate reduced body weight under standard

diet conditions (35). Interestingly, some studies reported that

maternal butyrate supplementation increased offspring body

weight (140, 141). And the body weight of piglets which were

orally gavaged with butyrate from day 4 after birth increased

significantly compared with saline-treated control pigs (142).

These results suggest that the effect of butyrate on individuals

without diet-induced obesity is complex and uncertain.
Frontiers in Endocrinology 06
4.2 Obesity-related glucose and
lipid metabolism

Butyrate supplementation in HFD can prevent HFD-induced

elevation of fasting glucose and insulin levels, and improve

hyperglycemia and hyperinsulinism (116–118, 120–122). Butyrate

supplementation can also improve glucose tolerance and insulin

sensitivity (116–119, 121–124). Moreover, butyrate supplementation

can reduce the serum triglycerides (TG) and cholesterol levels
TABLE 1 Continued

Experimental
models

Experimental design Body weight and fat Obesity-related glucose
and lipid metabolism

Ref.

and received HFD enriched with 5% (w/w) sodium butyrate at ten
months for two months.

epididymal, inguinal and
omental fat.

Specific pathogen-
free (SPF) C57BL/6J
mice with HFD

Pretreated with HFD for 8 weeks and then HFD-fed mice treated
by gavage with 80mg sodium butyrate in 1 mL deionized water
per mouse every other day for 10 days.

Butyrate treatment
significantly reduced body
weight and epididymal fat
mass, decreased the size of the
fat deposits and adipose cells.

(129)

Male C57Bl/6 mice
with HFD

Pretreated with HFD for 12 weeks and then HFD-fed mice treated
by gavage with sodium butyrate (100 mg/kg/die, water as vehicle)

Butyrate treatment
significantly reduced body
weight and lipid
accumulation.

Butyrate significantly reduced
serum triglycerides, cholesterol,
ALT and Lps, and improved
glucose tolerance and insulin
sensitivity.

(130)

Male LDLr-/-
.Leiden mice with
HFD

One group, representing mid-adulthood, received a HFD at three
months of age and received HFD enriched with 5% (w/w) sodium
butyrate at seven months for two months. One group,
representing late adulthood, received a HFD at six months of age
and received HFD enriched with 5% (w/w) sodium butyrate at ten
months for two months.

Butyrate significantly reduced
epididymal adipocyte size in
both age cohorts. Butyrate
intervention reduced inguinal
adipocyte size in mid-adult
mice but not in late-adult
mice,

Epididymal and inguinal
adipocyte size were positively
associated with body weight, and
cholesterol, triglyceride. Only in
late adulthood, epididymal
adipocyte size correlated
positively with plasma insulin
levels.

(131)

Male specific-
pathogen-free
Sprague Dawley rats
with HFD

Pretreated with HFD for 9 weeks and then HFD-fed mice treated
by gavage with sodium butyrate (300 mg/kg body weight) every
other day for 7 weeks.

Butyrate treatment reduced
the body weight, liver weight,
and epididymal fat weight.

(132)

Male C57BL/6J
mice with HFD

Pretreated with HFD for 8 weeks and then HFD-fed mice treated
by gavage with sodium butyrate (200 mg/kg body weight) for 8
weeks.

Butyrate significantly reduced
the body weight, hepatic
steatosis and lipid
accumulation.

Butyrate significantly reduced
fasting serum levels of glucose,
ALT and AST.

(133)

Male Specific-
pathogen-free
Sprague-Dawley
rats with HFD

Pretreated with HFD for 9 weeks and then HFD-fed mice treated
by gavage with sodium butyrate (300 mg/kg body weight) every
other day for 7 weeks.

Butyrate treatment
significantly reduced the body
weight.

Butyrate treatment improved
serum glucose level and glucose
tolerance.

(134)

Male C57Bl/6J mice
with HFD

Pretreated with HFD for 2 weeks, and then administered sodium
butyrate(1000 mg/kg body weight) by daily oral gavage for 2
weeks

Butyrate reduced HFD-
induced body weight gain and
fat mass as well as scWAT
and BAT weight.

Butyrate reduced serum fasting
glucose and TG levels.

(135)

Specified pathogen-
free (SPF) male
C57BL/6 mice with
HFD

Pretreated with HFD for 8 weeks and then HFD-fed mice treated
by gavage with sodium butyrate(200 mg/kg body weight)for 8
weeks.

Butyrate attenuated HFD-
induced weight gain

Butyrate improved fasting blood
glucose, insulin sensitivity, and
HOMA-IR.

(136)

Children with
obesity who age 5
to 17 years and
body mass index
(BMI) greater than
the 95th percentile
for sex and age

The butyrate group received standard care for pediatric obesity
plus sodium butyrate capsules, 20 mg/kg body weight per day, up
to a maximum of 800 mg/d for 6 months.

children treated with butyrate
had a higher rate of BMI
decrease greater than or equal
to 0.25 SD scores at 6 months
(96% vs 56%, absolute benefit
increase, 40%; 95% CI, 21% to
61%; P < 0.01).

waist circumference, −5.07 cm
(95% CI, −7.68 to −2.46 cm; P
<.001); insulin level, −5.41 mU/
mL (95% CI, −10.49 to −0.34
mU/mL; P = .03); HOMA-IR,
−1.14 (95% CI, −2.13 to −0.15;P
= .02).

(137)
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promoted by HFD (34, 122, 123). Butyrate treatment also had

therapeutic benefits in disorders of glucose and lipid metabolism in

obese individuals which were induced by HFD pretreatment (118, 127,

130, 131, 133–136). Butyrate improved the glucose homeostasis and

peripheral insulin-resistance induced by diabetes or HFD without

changes in body weight and fat mass (139, 143, 144), which indicates

that there are other mechanisms underlying butyrate regulation on

glucose homeostasis besides variation in body weight and body

composition. It is worth mentioning that butyrate always improves

the dyslipidemia under most conditions (34, 118, 122, 123, 127, 130,

131, 133–135, 139, 143), even in a randomized crossover trial which

treats overweight/obese men with butyrate mixtures (91).
5 Mechanisms of butyrate effect
for obesity

The root cause of obesity is that energy intake exceeds energy

expenditure (14, 145). Accordingly, the central to obesity treatment are

the increase of energy expenditure and the decrease of energy intake

(146, 147). Butyrate plays an important role in both energy expenditure

and energy intake through a variety of mechanisms (Figure 1).
5.1 Thermogenesis of adipose tissue

In some studies, butyrate stimulated thermogenesis of brown

adipose tissue (BAT) via the upregulation of uncoupling protein-1

(UCP1) expression, thus increasing energy expenditure and

improve HFD-induced obesity (116, 122, 135). BAT, whose

brown adipocytes are packed with mitochondria that contain

uncoupling protein-1 (UCP1), is a key site of thermogenesis and
Frontiers in Endocrinology 07
energy expenditure (148). UCP1, a very important regulatory factor

in thermogenesis, which residing in the inner mitochondrial

membrane, uncouples mitochondrial respiration from ATP

synthesis resulting in thermogenesis (148). It is a significant

mechanism for butyrate to promote weight loss by increasing

energy expenditure that BAT dissipate chemical energy in the

form of heat via UCP1 to regulate body temperature and whole

body energy expenditure.

Further studies did find that butyrate can increase the

expression of peroxisome proliferator–activated receptor (PPAR)-

g coactivator-1a(PGC-1a) (116), which is a critical regulator of

mitochondrial function, and stimulates thermogenesis via the

upregulation of UCP1 expression (149). As increased expression

of PGC-1a in BAT was reported in a study of the effects of butyrate

supplementation, and was positively associated with GPR43 (120).

This evidence may suggest that butyrate promote thermogenesis of

BAT in partly through activating GPR43 to upregulate PGC-1a. In
addition, it has also shown that butyrate stimulated PGC-1a activity

by activating AMP-activated protein kinase (AMPK) and inhibiting

histone deacetylases (116).

Another convincing mechanism is that butyrate improves BAT

thermogenic capacity by increasing sympathetic outflow towards

BAT, as butyrate was found to increase the protein expression of

tyrosine hydroxylase (TH) (122), a marker of sympathetic nerve

activity (150). Furthermore, butyrate treatment did not influence

the UCP-1 expression in BAT of vagotomised mice (122), which

indicates that the sympathetic nervous system was necessary for

butyrate-induced BAT activation.

Recent research identified LSD1, which is an important factor in

the regulation of BAT thermogenesis function (151), as a potential

mediator of butyrate-induced thermogenesis in BAT, because it can

be activated by butyrate to increase UCP1 expression (135). In this
FIGURE 1

The butyrate, which is produced from dietary fiber by gut microbiota in the colon, is absorbed into the body and increase energy expenditure of
muscle, liver, white fat and brown fat and decrease energy intake.
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study, we can see that LSD1 knockout blocked the butyrate-induced

increase in thermogenesis and energy expenditure in BAT (135).

The results of experiments with adipocytes also showed that the

effects of butyrate on LSD1 and UCP1 were in an AMPK-

independent manner (135). These results suggest that butyrate,

taken up and metabolized via MCT1 and ACSM3, can directly

activate LSD1 to increase the UCP1 expression to mediate

thermogenesis in BAT.

Butyrate can change the composition of gut microbiota and

improve the disturbed intestinal flora of obese mice (124, 125).

Some researches have shown that microbiota depletion impaired

thermogenesis of BAT and that butyrate supplementation partially

rescued thermogenesis function (94, 135). Microbiota depletion by

different cocktails of antibiotics (ABX) or in germfree (GF) mice

was reported to impaired the thermogenic capacity of BAT by

decreasing the expression of UCP1 (94). It is possibility that

butyrate enhance the function of brown fat by regulating the

intestinal microflora of obese individuals.

Beige adipocytes that appear in WAT are similar to brown

adipocytes in that they release energy as heat and the thermogenesis

is mediated by UCP1 (152). Butyrate supplementation can increase

the expression of UCP-1 to mediate thermogenesis in WAT and

beige adipocyte markers (Tbx1, Tmem26, CD137) (120, 135).

GPR43, GPR41 and LSD1 are needed in WAT for butyrate

regulation on beiging (120, 135).
5.2 Lipogenesis

It is reported that butyrate can reduce the body weight and fat

mass by decreasing lipogenesis in liver and adipose tissue (118,

133). Butyrate supplementation decreased Fatty acid synthase

(FAS) expression to reduce lipid synthesis, especially triglycerides

(118). This may be attributed to the effect of butyrate in activating

AMPK to induce phosphorylation of its downstream target acetyl-

CoA carboxylase (ACC) (118, 133). Further, increase of the AMP-

to-ATP ratios, which is a direct activator of AMPK, may have been

caused by proton leak via UCP2 in butyrate-feed animals, and the

disruption of the activity of PPARg abolished the SCFA-induced

increase of the UCP2-pAMPK-pACC pathway activity (118). These

results suggested that butyrate activated the UCP2-AMPK-ACC

pathway by downregulating the peroxisome proliferator–activated

receptor-g (PPARg), which can reduce the lipogenesis (118). Other

studies suggest that butyrate can inhibit lipid synthesis by inducing

the p-AMPK/p-ACC pathway through upregulation of hepatic

Glucagon-likepeptide-1 receptor(GLP-1R) (133, 153).
5.3 Adipose lipolysis

Adipose tissue, especially the white adipose tissue, is the largest

energy reservoir of body, and has a critical role in the regulation of

energy homeostasis (154). Thus, increasing fat mobilization in

adipose tissue is an effective strategy to control or treat obesity. A

study suggested that butyrate stimulated adipose lipolysis by the

phosphorylation of adipose triglyceride lipase (ATGL) and
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hormone-sensitive lipase (HSL), which are the two major lipases

for fat mobilization from triglyceride stores in adipose tissue, and

then significantly reduced the epididymal fat mass and body weight

(129). Some studies also found that butyrate supplementation

reversed the reduction of adipose HSL and lipoprotein lipase

(LPL) in obese individuals, causing an increase in the fat

hydrolyzed (120). The decrease of lipid content, associated with a

significant up-regulation of HSL and LPL was also found in

muscle (127).

Butyrate modified histone acetylation on the promoter of beta3-

adrenergic receptors (ARb3) gene, and increased the activation of

its downstream signaling molecule cAMP-dependent protein kinase

(protein kinase A, PKA) (129). Activating ARb3, which also belongs
to the family of G protein-coupled receptors and is widely expressed

in adipose tissues to play important roles in lipolysis (155),

stimulates lipolysis by activating phosphorylation of HSL and

ATGL (156, 157). HSL and ATGL phosphorylation depend on

PKA activation (158, 159). The results suggest that butyrate

stimulates adipose lipolysis through histone hyperacetylation-

associated AR3b activation in WAT. In muscle, reduced muscle

lipid content and up-regulation of Hsl and Lpl mRNA expression

are due to butyrate which up-regulates the expression of

adiponectin receptors as an HDAC inhibitor (127).
5.4 Fatty acid oxidation

Increasing fatty acid oxidation (FAO) is able to reduce fat

accumulation and improves obesity (160). The increase in energy

expenditure increases FAO because lipids and fatty acid are the

main energy substrates for cellular energy expenditure. Some

studies showed that butyrate treatment reduced the Respiratory

exchange ratio(RER), suggesting an increase in FAO in response to

butyrate (116, 118, 135). FAO is associated with expression of

carnitine palmitoyltransferase-1 (CPT-1), which includes three

isoforms: CPT-1A(liver), CPT-1B (muscle and heart), and CPT-

1C (brain) (160, 161). The increases of CPT-1 induced by butyrate

are found in muscle, liver and adipose tissue (116, 118, 120, 135).

Butyrate treatment significantly reduced muscle content of TG and

total cholesterol compared with mice fed a HFD (127). In addition

to CPT-1, butyrate also increased the expression of COX-1

(cytochrome c oxidase), UCP2 and UCP3, which can facilitate

FAO in skeleta l muscle (162) . Butyrate induced the

transformation of skeletal muscle fiber from the glycolytic muscle

fiber type to the oxidative type (116), which is rich in mitochondria,

red in color, and active in fat oxidation for ATP biosynthesis (163).

The increase of FAO induced by butyrate in skeletal muscle may

ascribe to the increased expression of PGC-1a (116). Activation of

AMPK and inhibition of HDAC may contribute to the PGC-1a
regulation (116). As a HDAC inhibitor, butyrate can activate

AMPK by enhancing the expression of adiponectin receptors

(adipoR1/2) (127). The increase of the FAO induced by butyrate

in BAT may attribute to the energy demands of thermogenesis

(135). Butyrate can reduce HFD-induced body weight gain and fat

mass by enhancing energy expenditure through increased lipid

oxidation in WAT (118, 120). The effect in WAT is due to
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activation of the UCP2-AMPK-ACC pathway by butyrate depends

on PPARg (118). Butyrate has also been shown to increase lipid

oxidation by directly activating the AMPK/ACC pathway to reduce

fat mass (130).
5.5 Mitochondrial function

A study showed that butyrate reduced lipid accumulation by

regulating liver mitochondrial function, reducing liver

mitochondrial energy efficiency, and improving the capability of

mitochondria to utilize fat as metabolic fuel (130). Butyrate can

stimulate mitochondrial oxidative phosphorylation in WAT

through histone hyperacetylation-associated ARB3 activation

(129). Short-term oral administration of butyrate can alleviate

diet-induced obesity in mice by stimulating mitochondrial

function in skeletal muscle (127). Butyrate has also been reported

to increase the number of mitochondria in skeletal muscle (116).
5.6 Appetite and intake

Studies have shown that butyrate suppressed food intake, which

contributed to reduce body weight and fat mass (117, 122). Butyrate

administration via intragastric gavage but not intravenous injection

significantly reduced acute food intake within 1 hour after refeeding

and cumulative food intake over 24 hours (122). Others found that

butyrate did not influence fat absorption by the gastrointestinal

tract (116). But some studies showed that butyrate did not reduce

the food intake (116, 118), and butyrate has unpleasant taste. This is

still a controversial issue that butyrate can increase satiety and

decrease appetite.

The appetite is mainly affected by the neural circuits and gut

hormones (164, 165). A study showed that butyrate reduced the activity

of orexigenic neuropeptide Y (NPY) neuron in the hypothalamus and

neuron activity within the nucleus tractus solitarius (NTS) and dorsal

vagal complex (DVC) in the brainstem (122). Not only that, butyrate-

induced satiety and decreasing food intake was completely abolished by

subdiaphragmatic vagotomy, which indicated that the gut-brain neural

circuit is necessary for butyrate-induced satiety (122). Butyrate can also

significantly increase the levels of gut hormones in the colon and

plasma such as GLP-1 and PPY, which can reduce the appetite and

food intake (91, 117). Evidence indicated that the effect of butyrate in

inhibiting weight gain and food intake in Ffar3 knockouts was to the

same extent as in wild-typemice, but stimulation of PYY and GLP-1 by

butyrate was blunted in the absence of FFAR3 (117). The peptide

hormone leptin can also regulate food intake and body mass (166).

Butyrate can increase the leptin production in DIOmice (117, 123, 127,

130, 131).
6 Obesity-induced complication

Obesity or overweight is an important determinant of a range of

health problems and increases the risk of many related diseases

including type 2 diabetes mellitus (T2DM), CVD, nonalcoholic
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fatty liver disease (NAFLD), impaired cognition, and others (7,

167–169). Butyrate has a role in control of obesity-induced

complications not only by its effect on weight loss but also

because of many other mechanisms of action.
6.1 Type 2 diabetes mellitus

The epidemic of diabetes mellitus, which is the ninth major cause

of death, poses a major global health threat and about 1 in 10 adults

worldwide now has type 2 diabetes mellitus (170). Obesity is one of

the strongest risk factors and predisposition for type 2 diabetes (169,

171). Gut microbiota play a key role in obesity and diabetes (172). As

a main metabolic product of intestinal microbiota, butyrate can

improve HFD-induced glucose homeostasis and insulin resistance,

which are directly associated with development of diabetes mellitus

(116–118, 121, 124, 127, 130). Butyrate activated the hormone

signaling such as protein kinase B (PKB/Akt), and increase the

expression of glucose transporter (Glut4) (116, 123, 124, 130).

Evidence showed that butyrate can reduce HFD-induced

pancreatic beta cell dysfunctions (121, 143), which has the

beneficial effect on glucose homeostasis and suppresses the

development of diabetes (173). Butyrate can improve pancreatic b
cell development, proliferation, and function via the inhibition of

HDACs (174, 175), protect pancreatic Beta cells from Cytokine-

Induced Dysfunction (176), increase the pancreatic Beta cells

viability and prevent pancreatic Beta cell-death during exposure

to streptozotocin (177). Increased oxidative stress is one of the

important factors which can lead insulin resistance and contribute

to the development of T2DM (178). A study showed that butyrate

stimulated transcription of downstream antioxidant enzymes via

the activation of nuclear factor E2-related factor 2, thus

contributing to the amelioration of HFD-induced oxidative stress

and insulin resistance (134). Butyrate directly induced intestinal

gluconeogenesis via upregulating key enzymes G6PC and PCK1

with a cAMP-dependent mechanism, which can activate

hypothalamic nuclei to decrease liver glucose production and

regulate insulin sensitivity and glucose homeostasis (35).
6.2 Nonalcoholic fatty liver disease

Over the past four decades, non-alcoholic fatty liver disease has

become the most common chronic liver disorder, which has a global

prevalence of 25% and is a leading cause of cirrhosis and

hepatocellular carcinoma (179). Obesity is closely associated with

the rising prevalence and severity of NAFLD (180). Some studies

showed that butyrate improved the accumulation of fat in the liver,

hepatic steatosis and inflammation, the liver index and serum levels

of alanine transaminase (ALT) and aspartate transaminase (AST)

induced by diet-induced obesity (34, 118, 121, 125, 132, 133, 144).

Several findings suggested that butyrate alleviates HFD-induced

NAFLD by improving mitochondrial function and stimulating fatty

acid b oxidation in the liver (118, 132, 181). Moreover, butyrate can

inhibit the NF-kB signaling and NLRP3 inflammasome activation

by up-regulating hepatic expression of peroxisome proliferator-
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activated receptor a (PPARa), which contribute to the alleviation of

HFD-induced, NAFLD-associated hepatic inflammation (132, 144).

Butyrate can protect against high-fat diet-induced oxidative stress

in rat liver by promoting expression of nuclear factor E2-related

factor 2 (134). Butyrate can decrease the lipopolysaccharide (LPS)

and its receptor Toll-like receptor 4 (TLR4) in the liver by repairing

HFD-induced damage to the intestinal mucosa and strengthened

intestinal tight junctions, which is beneficial for the treatment of

NAFLD (34, 136). Evidence showed that improved HFD-induced

non-alcoholic steatohepatitis resulted from up-regulation of hepatic

GLP-1R expression (133). Meanwhile, a recent study reported that

butyrate protected mice against diet-induced NASH and liver

fibrosis development by direct inhibition of collagen synthesis in

hepatic stellate cells involving suppression of specific non-canonical

TGF-b signaling pathways Rho-like GTPases and PI3K/AKT, and

other important pro-fibrotic regulators (29). Butyrate also

ameliorated NAFLD by upregulating miR-150 to suppress C-X-C

Motif Chemokine Receptor 4 expression (182).
6.3 Neuropsychiatric dysfunction

Obesity is associated with an increased risk of neuropsychiatric

disorders, including mood disorders, schizophrenia, major

neurocognitive disorder or cognitive impairment, and

neurodegenerative diseases (NDDs) (183–185). Evidence showed

that Butyrate intervention restored HFD-induced spatial memory

impairment, brain function, and neuroinflammation within the

thalamus, cortex and hippocampus (128). Butyrate can also

reverse HFD-induced social deficits and anxiety-like behaviors by

regulating microglial homeostasis and reducing dendritic spine

density in the bilateral medial prefrontal cortex (mPFC) (186).

Analysis of the gut microbiome suggests that these beneficial effects

may correlate with gut microbiota composition (128, 186). Butyrate

can protect against NDDs by suppressing neurotoxicity and cell

death. A study showed that butyrate attenuated the expression of P-

53 and the neuroinflammation in the brains of HFD-fed mice (126).

Butyrate also upregulated PPARg/CREB, BDNF, and modulated the

Nrf-2/HO-1 pathway in HFD mice brains, which play important

roles in neuroprotective effect (126).
7 Conclusion and prospect

There is a lot of evidence supporting that butyrate, as a key

mediator of microbiota in host metabolic control, has beneficial

effects on obesity, especially weight loss. However, the role of

butyrate is still controversial and not clear. First, as we mentioned

earlier, the amount of butyrate in stools has been found to be higher in

overweight and obese volunteers than in lean volunteers. These

contradictory results led some researchers to believe that butyrate

may contribute to the obesogenic phenotype. Besides, the range of

action of butyrate is a controversial. Because there were many

contradictory results about the effect of butyrate on weight loss in

diabetic and non-obese individuals. Last but not least, the exact

mechanisms of butyrate regulation need to be found out. For
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example, some studies reported that butyrate didn’t affect food

intake, but some reported butyrate reduced appetite. Thus, we’ve

done a lot of work on existing mechanisms of butyrate. These issues

require largely meticulous and comprehensive studies to fully

understand the role of butyrate in host metabolic health. More

human clinical studies are needed to prove the effectiveness and

specific effect of butyrate on obesity, and more diversified

experimental models are needed to determine the effective conditions

of butyrate in obesity. Finally, we need more persuasive experimental

designs and studies to figure out the exact mechanism by which

butyrate acts. Besides, the side effects of butyrate, like nausea and its

unpleasant smell, also needed to be considered. It’s important to

discover and try to remove the side effect of butyrate. To provide

better strategies for obesity, further research based on published studies

is needed in the future. However, experimental designs in rodent

models may not be transferrable to human situations. The limited

available human data are derived from studies with a relatively small

sample size and short intervention period and didn’t show encouraging

results. Therefore, it is needed to consider whether further research is

worthwhile. We just hope that our work can contribute to related

research and help someone who are interested in this field.
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