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Nicotinamide mononucleotide
attenuates HIF-1a activation and
fibrosis in hypoxic adipose tissue
via NAD+/SIRT1 axis

Keke Wu1†, Biao Li1,2†, Yingxu Ma1, Tao Tu1, Qiuzhen Lin1,
Jiayi Zhu1, Yong Zhou1, Na Liu1* and Qiming Liu1*

1Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha,
Hunan, China, 2Department of Cardiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen,
Guangdong, China
Background: Fibrosis is increasingly considered as a major contributor in adipose

tissue dysfunction. Hypoxic activation of hypoxia-inducible factor 1a (HIF-1a)
induces a profibrotic transcription, leading to adipose fibrosis. Nicotinamide

mononucleotide (NMN), a member of the vitamin B3 family, has been shown to

relieve hepatic and cardiac fibrosis, but its effects on hypoxic adipose fibrosis and

the underlying mechanism remain unclear. We aimed to elucidate the roles of

NMN in regulating HIF-1a and fibrosis in hypoxic adipose tissue.

Methods: Mice were placed in a hypobaric chamber for four weeks to induce

adipose fibrosis. NMN (500 mg/kg, every three days) was administered by

intraperitoneal injection. In vitro, Stromal vascular fractions (SVF) cells were

treated by hypoxia with or without NMN (200mM), sirtinol (25mM, a SIRT1

inhibitor) and CoCl2 (100mM, a HIF1a enhancer). The effects of NMN on hypoxia-

associated adipose fibrosis, inflammation, NAD+/SIRT1 axis alteration, and HIF-1a
activation were evaluated by real-time polymerase chain reaction (PCR), western

blots, immunohistochemistry staining, immunoprecipitation, and assay kits.

Results:Mice placed in a hypoxic chamber for four weeks showed obvious adipose

fibrosis and inflammation, which were attenuated by NMN. NMN also restore the

compromised NAD+/SIRT1 axis and inhibited the activation of HIF-1a induced by

hypoxia. In hypoxia-induced SVFs, the SIRT1 inhibitor sirtinol blocked the anti-

fibrotic and anti-inflammatory effects of NMN, upregulated the HIF-1a and its

acetylation level. The HIF1a stabilizer CoCl2 showed similar effects as sirtinol.

Conclusion: NMN effectively attenuated HIF-1a activation-induced adipose

fibrosis and inflammation by restoring the compromised NAD+/SIRT1 axis.

KEYWORDS

nicotinamide mononucleotide, adipose tissue fibrosis, inflammation, HIF-1a activation,
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Introduction

Obesity is commonly considered as a persistent low-level

inflammatory state closely related to insulin resistance, metabolic

syndromes, and cardiovascular diseases (1, 2). This inflammatory

state is closely related to adipose tissue hypoxia (3). A pivotal step to

becoming obese is the rapid expansion of adipose tissue (AT) (4). The

progression is accompanied by the shortage of oxygen due to the

inability of the vascular system to keep up with the massive

expansion. Hypoxia is therefore emerging as a causative factor for

adipose dysfunction in obesity (4). The hypoxia state in AT induces

the accumulation of hypoxia-inducible factor 1a (HIF-1a), which
regulates many cellular anti-hypoxic responses (5, 6). Evidence from

many laboratories suggests that the oxygen shortage of AT leads to

several pathological processes, such as fibrosis, adipocytokine

dysregulation, and inflammation, which are closely associated with

adipose dysfunction and metabolic disorders (3, 6, 7).

HIF1a is considered as a significant initiating factor in adipocytes

for fibrotic and inflammatory response, directly linked to metabolic

dysfunction in AT under hypoxic conditions (3, 8). Unlike its action

in the tumor, HIF1a cannot promote an adaptive proangiogenic

reaction in AT (8). Instead, HIF1a induces an alternative

transcriptional program, mainly entailing enhanced synthesis of

extracellular matrix (ECM) components (9). The excessive collagen

deposition in AT impairs ECM flexibility and tissue plasticity, thereby

limiting AT’s overexpansion, which triggers adipocyte necrosis (4, 8).

The proinflammatory M1 macrophages are recruited to remove dead

adipocytes, which eventually results in inflammation (10). HIF1a
may also directly upregulate proinflammatory factors, such as IL-6

and MIF. These proinflammatory factors increase the infiltration of

M1 macrophages, which in turn causes adipose fibrosis. These events

raise the possibility that suppression of HIF-1a can prevent fibrotic

and inflammatory changes induced by hypoxia or obesity (11, 12).

Nicotinamide mononucleotide (NMN), a member of the vitamin

B3 family, is a defined biosynthetic precursor of nicotinamide adenine

dinucleotide (NAD+). The effect of NMN on restoring NAD+

homeostasis and activating sirtuins has been extensively

investigated in the past decades (13, 14). Through restoring NAD+

homeostasis, NMN can regulate mitochondrial metabolism and

oxidative signaling pathway, which are closely related to adipose

inflammation and fibrosis. NMN can also activate sirtuins, known to

be the key regulators of aging and longevity, which have been linked

to the regulating of adipose tissue function, including adipogenesis,

WAT inflammation, and adipokine secretion (15–17). For example,

SIRT1, the most well-known and prevalent sirtuin, has been reported

to inhibit adipose inflammation. Genetic Sirt1 deficiency in rodents

leads to elevated inflammation characterized by increased

macrophage infiltration and mRNA expression of inflammatory

cytokines in WAT under the High Fat Diet (HFD) condition (17–

19). Moreover, SIRT1 has been involved in cardiac and renal fibrosis

by regulating the TGF-b/Smads signaling pathway (20, 21). However,

few studies have investigated whether SIRT1 inhibits hypoxia-

induced inflammation and fibrosis by regulating HIF1a signaling

pathway, especially in WAT. On the other hand, NMN has entered

the stage of preclinical research due to its fewer unfavorable side

effects and higher orally bioavailable (22). It has been well-

documented that NMN delayed aging and ameliorated diseases
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caused by NAD+ depletion, such as Alzheimer’s disease, heart

failure, diabetes, and complications associated with obesity (23–25).

A recent study has shown that one adaptive metabolic pathway

mediated by nicotinamide phosphor-ribosyl-transferase (NAMPT,

the rate-limiting enzyme in NAD+ biosynthesis) and SIRT1 is

severely compromised in white adipose tissue (WAT) by HFD, thus

leading to diabetes, whereas NMN ameliorates these changes (26).

Although several preliminary studies have reported the effect of NMN

on diet-and age-induced metabolic dysfunction, little is known about

its role in hypoxia induced adipose fibrosis and inflammation.

In the present study, we aimed to find out: (a) whether NAMPT/

NAD+/SIRT1 axis is compromised by hypoxia, thus leading to adipose

fibrosis and inflammation; (b) whether NMN inhibits hypoxia-related

adipose fibrosis and inflammation with an emphasis on regulating

HIF1a by restoring the compromised NAD+/SIRT1 axis.
Methods

Chemical and reagents

Nicotinamide mononucleotide (B7878) was purchased from

APExBIO Technology (Houston, United States) (98% purity, as

detected by high-performance liquid chromatography analysis).

Sirtinol was obtained from MedchemExpress (Sollentuna, Sweden).

CoCl2 was obtained from Sigma-Aldrich Co (St. Louis, MO, United

States). The reverse-transcription assay kit was obtained from

Thermo Fisher Scientific (USA). Antibodies against the following

proteins were obtained from Abcam: TGF-b1 (ab92486), SIRT1

(ab110304), adiponectin (APN, ab5694), and NAMPT(ab236874).

Antibodies against HIF1a (NB100-105) were purchased from Novus

Biologicals. Antibodies against acetyl-lysine (9441S) were purchased

from Cell Signaling Technology. Antibodies against MMP9(27306-1-

AP), TIMP1(16644-1-AP), IL-6 (66146-1-lg), GAPDH, and b-actin
were obtained from the Proteintech Group.
Animal experiments

Male C57/B6 mice (8-10 weeks) weighing 20.2 ± 2g were

purchased from the Institute of Laboratory Animal Science, Hunan

SJA Laboratory Animal Co., Ltd (Changsha, China). All animal

experiments were under the approval of the Animal Care and Use

Committee of Second Xiangya Hospital of Central South University

and were performed in strict accordance with the recommendations

in the Guide for the Care and Use of Laboratory Animals of the

National Institutes of Health. Mice were housed in a specific-

pathogen-free (SPF) environment with a regular 12/12h day/night

cycle, a humidity of 70%, and a temperature of 22°C for seven days

before experiments. Mice were randomly divided into three groups

(n = 8), namely, Control, hypoxia, and hypoxia + NMN. Hypoxia

group mice were placed in a hypoxic chamber (54.02 kPa, 10.8% O2)

for four weeks. The chamber was opened daily for 30 min to clean and

replenish food and water. NMN (500mg/kg, i.p, every three days) was

delivered to mice 5-days before hypoxic treatment and one week after

hypoxic treatment finished (25). The mice in the hypoxia and control

groups were delivered equal volumes of saline. After anesthetic
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induction, the mice are sacrificed by cervical dislocation. Lay the

mouse in a supine position. Secure the upper and lower limbs to the

dissection pan. Remove the skin, locate the testes and use forceps to

lift up the epididymal white adipose tissue (eWAT). Use iris scissors

to carefully excise the WAT from the epididymis. Fix one part of

eWAT in 10% neutral buffered formalin for 24 h prior to histological

processing and store the rest in a -80°C refrigerator.
Histological study

After overnight fixation in 4% paraformaldehyde, the obtained

eWAT was embedded in paraffin and sliced into 5-mm-thick sections.

The change in eWAT structure and adipocyte size was examined by

hematoxylin and eosin (H&E)-stained sections. The extent of

interstitial fibrosis in WAT was evaluated from Masson-stained

sections. It was calculated as the mean ratio of the blue-stained

fibrotic area to the total tissue area. For each section, five optical

fields were analyzed using digital analysis software (Image J) in a

blinded manner.

We performed immunohistochemical staining to assess the level

of SIRT1 expression and macrophage infiltration in the eWAT. After

the sections were blocked using 8% goat serum in phosphate buffer

saline (PBS), they were incubated with primary antibody against

SIRT1 or the macrophage marker F4/80 at four °C overnight. Next,

the sections were incubated with GT VisionTM+Detection System/

Mo&Rb reagent for one hour at room temperature and developed

using a peroxide-based substrate diaminobenzidine (DAB) kit (Gene

Tech, Shanghai, China). Eventually, we dehydrated and cleared these

sections in ethanol and xylene, respectively, and took the fields of view

at the magnification of 200 ×. For each adipose depot, five optical

fields per section were analyzed.
Primary cell culture from the stromal
vascular fraction of adipose tissue

Stromal vascular fraction (SVF) cells in epididymal fat depots from

male C57BL/6 mice were isolated and cultured as described previously

(27, 28). Briefly, fat tissues were minced into one mm3 piece, then

digested by type I collagenase (1 mg/ml) under agitation for 30-40 min

at a 37 °C water bath. SVF cells were separated from the top layer of

mature adipocytes by centrifugation (700 g, 10 min), then suspended

in DMEM/F12 (Gibco) with 10% FBS and 100 U/ml penicillin-

streptomycin and filtered by the cell strainer. Next, we centrifuged

and re-suspended the SVF pellets in fresh media. Two hours after

culturing cells under normal conditions (at 37°C in 95% O2 and 5%

CO2), we washed the cells with PBS twice to remove red blood cells,

immune cells, and other contaminants, and fresh media were added.

All cells between 3-5 passages were used in this experiment. After

serum starvation for 24 h, cells were randomly placed in cell culture

chamber with 1% O2 for 24h to conduct hypoxia. NMN was dissolved

in sterile PBS and diluted to the desired final concentrations (200µM).

NMN was added simultaneously with hypoxia treatment. Sirtinol

(25µM) was used to block SIRT1 expression in SVFs. CoCl2
(100mM) was used to enhance HIF1a expression in SVFs. Sirtinol or

CoCl2 was also added simultaneously with NMN.
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Western blot and real-time quantitative PCR

Immunoblotting analysis and qPCR were performed according to

previous articles (29). In brief, Protein-extracts of snap-frozen eWAT

and whole-cell lysates of SVF were prepared using standard

procedures. Protein concentrations in the supernatants were

measured using Bicinchoninic acid (BCA) assay (ASPEN, USA).

Proteins were separated on SDS-polyacrylamide gels and

transferred to PVDF membranes . After blocking with

QuickBlock™ Western (P0252, Beyotime Biotechnology, China),

the membranes were incubated with the primary antibodies

overnight at 4°C, washed in PBST three times, and incubated with

a secondary goat anti-rabbit polyclonal antibody (SA00001-2,

Proteintech Group) at room temperature for 1h. Finally, the signals

were tested by WesternBright™ Sirius ECL kit (K-12043-D20,

Advansta, USA). Protein expression levels were normalized to

b-actin.
Total mRNAwas extracted from eWAT or SVF cells with GeneJET

RNA Purification Kit (K0731, Thermo Fisher Scientific, USA). Reverse

transcribed into cDNA using RevertAid First strand cDNA Synthesis

kit (K1622, Thermo Fisher Scientific, USA). The StepOne Real-Time

PCR (Life tech, Alameda, CA) was used for real-time qPCR analysis.

The primers used are described in Table S1. b-actin was used as an

internal control. The relative expression quantity 2-DDCt value was

calculated to compare the differences among groups.
Immunoprecipitation

For immunoprecipitation experiments, total homogenates from

adipose tissue and cultured cells were treated with RIPA lysis buffer

(P0013B, Beyotime Biotechnology, China), vortexed for the 30s, and

centrifuged for 15 min at 12000 r/min. The tissue or cell extracts was

subjected to immunoprecipitation with HIF1a primary antibody at 4°

C overnight. The antibody-bound proteins were precipitated with 20

mL protein A/G PLUS-Agarose (Santa Cruz Biotechnology, sc-2003)

and rotated for 1 h, then incubated overnight at 4°C. The beads were

then gently centrifuged at 1000 r/min for 5 minutes at 4°C. After four

RIPA buffer washes, the immunoprecipitates were diluted with 40 mL
of 1 × SDS loading buffer (CW0027, Cowin Biotech, China) and

boiled at 100°C for 2-3 min to separate complexes from the protein A/

G PLUS-Agarose. The samples were then subjected to SDS-PAGE and

transferred to polyvinylidene difluoride (PVDF) membranes (Bio-

Rad, USA). After blocking with QuickBlock™ Western (P0252,

Beyotime Biotechnology, China), the membranes were incubated

with an anti-acetylated-lysine antibody (Cell Signaling Technology,

#9441) overnight at 4°C, washed in PBST three times, and incubated

with a secondary goat anti-rabbit polyclonal antibody (SA00001-2,

Proteintech Group) at room temperature for 1h. Finally, the signals

were tested by WesternBright™ Sirius ECL kit (K-12043-D20,

Advansta, USA).
NAD+ measurements

In order to measure the NAD+, EnzyChrom NAD+/NADH Assay

Kit (ECND100, Bioassay Systems, Hayward, California) was used
frontiersin.org
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according to the manufacturer’s instructions. In brief, mice eWAT

weighing 20 mg for each sample or cells pelleted about 105 for each

sample were taken and homogenized in 100 mL NAD+ or NADH

extraction buffer, respectively. Extracts were heated for 5 min at 60°C,

and 20 mL of assay buffer was added into extracts, followed by 100 mL
of the opposite extraction buffer (to neutralize the extracts). Mixtures

were vortexed and centrifuged at 12,000 g for 5 min. Supernatants (40

mL) were then mixed with a working reagent (80 mL) in each well. The

optical density of supernatants at 565nm were measured at 0 and

15min intervals using a 96-well plate reader spectrophotometer.

NAD+/NADH concentration and their ratio were calculated using

the manufacturers’ equation.
Statistical analysis

Statistical analyses were performed using GraphPad Prism

version 7.0 software (San Diego, CA, USA). All values are expressed

as mean ± standard deviation of the mean (SD). If the data fit normal

distribution by taking Kolmogorov-Smirnov tests, the statistical

comparisons between two groups were performed using Student’s

t-test, and comparisons among multiple groups were performed using

one-way ANOVA followed by Tukey’s post hoc test. P < 0.05 was

considered statistically significant.

Results

NMN inhibits the aberrant deposition of
ECM in the eWAT of hypoxia-induced mice

Adipose tissue structure remodeling is closely related to fibrosis. To

learn whether NMN inhibits hypoxia induced adipose tissue structure

change, we detected the adipocytes morphology and fibrotic area of the

eWAT by HE Staining and Masson staining respectively (Figures 1A,

B). Collagen fibers from the hypoxia-induced eWAT were increased

and mainly distributed around adipocytes compared with the control

group (7.556 ± 0.703 vs. 1.445 ± 0.1626, P<0.05). In contrast, the

observed abnormal collagen deposition was reduced in NMN-treated

eWAT (2.421 ± 0.1732 vs. 7.556 ± 0.703, P<0.05) (Figures 1B, C). Next,

we measured the mRNA levels of collagen type I (Col1a1), type III

(Col3a1), as well as matrix metalloproteinase 2 (MMP-2), MMP-9,

tissue inhibitors of MMPs (TIMP-1), lysyl oxidase (LOX), and

fibronectin (FN) by real-time quantitative PCR. As shown in

Figure 1D, the above fibrotic genes were significantly upregulated in

hypoxia-induced eWAT, whereas NMN reversed these changes.

Moreover, the reduction of MMP9 and TIMP-1 protein expression

levels due to NMN administration was further confirmed by Western

blot (Figures 1E, F).
Effect of NMN on dysregulated adipokines
secretion and macrophage infiltration in the
eWAT of hypoxia-induced mice

WAT is an active endocrine organ that produces many

adipokines related to adipose dysfunction, especially the

inflammatory and fibrotic factors. Therefore, we detected the
Frontiers in Endocrinology 04
protein level of APN, IL-6, and TGF-b in the eWAT of each group

by Western blot. Hypoxia significantly increased pro-inflammatory

and profibrotic factors levels, including IL-6 and TGF-band decreased
protective adipokine level, such as APN, whereas NMN attenuated

these changes. (Figures 2A, B). The mRNA levels of the adipokines,

including Leptin, Ang, Resistin, IL-6, and TGF-b, were significantly

higher in the hypoxia group while APN expression was decreased

(Figure 2C); NMN reversed these changes of the above adipokines.

We next examined the expression of macrophage marker F4/80

by immunohistochemistry (IHC) and qPCR. NMN significantly

reduced the amounts of macrophages in the eWAT (Figures 2D, E).

To further assess the effect of NMN on macrophage polarization in

the eWAT, we evaluated the mRNA levels of TNFa and iNOS (M1

phenotype markers) and two other proteins, Arg1 and Ym1 (M2

phenotype markers). Compared with the hypoxia group, mice treated

with NMN had lower levels of TNFa and iNOS but higher Arg1 and

Ym1 levels (Figures 2F, G).
NMN restores NAMPT/NAD+/SIRT1 axis and
inhibits HIF-1a in white adipose tissue of
hypoxia-induced mice

As a biosynthetic precursor of NAD+, NMNwas reported to boost

the NAD+ pool in vivo and regulate its related pathway. Thus, we

evaluated NAMPT/NAD+/SIRT1 axis in the eWAT of three groups.

The protein levels of NAMPT were significantly decreased in the

eWAT of hypoxia-induced mice, and the impairment was restored by

NMN(Figure 3A). NAD+ levels and the NAD+/NADH ratio in eWAT

were reduced by hypoxia treatment but were replenished by NMN

(Figures 3B, C). We next examined the protein expression of SIRT1 in

the hypoxia group by IHC and Western blot (Figures 3D–F). It was

significantly decreased in hypoxia-induced eWAT and was notably

increased by NMN. HIF-1a is a key regulator in hypoxia-induced

eWAT fibrosis. Thus, we examined the effects of NMN on HIF-1a in

the eWAT of three groups (Figures 3D, G) and found it can diminish

HIF-1a expression in hypoxia.
NMN suppresses HIF-1a signaling-
associated upregulation of fibrogenic and
inflammatory genes in a SIRT1-dependent
manner in vitro.

To further assess whether the inhibitory effect of NMN on eWAT

structure remodeling is dependent on SIRT1 and its possible

downstream target-HIF1a, SVF cells isolated from eWATof lean

mice were exposed to hypoxia with or without NMN (200µM),

Sirtinol (a SIRT1 inhibitor, 25µM) and CoCl2 (a HIF1a enhancer,

100mM). The protein levels of NAMPT were significantly decreased in

hypoxia-induced SVF cells, and NMN restored the impairment

independently of Sirtinol or CoCl2 treatment (Figure 4A). NAD+

levels and the NAD+/NADH ratio in SVF cells were reduced by

hypoxia treatment but were replenished by NMN (Figures 4B, C).

SVF cells showed a significantly hypoxia-induced downregulation of

SIRT1 and upregulation of HIF1a and ac-HIF1a (Figures 4D–F).

NMN treatment reversed the above changes. Interestingly, sirtinol
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partially blocked the activation of SIRT1 by NMN, accompanied by

increased HIF1a and ac-HIF1a. CoCl2 also augmented the level of

HIF1a and ac-HIF1a after NMN treatment (Figures 4D, F).

We next examined the expression of fibrogenic and inflammatory

genes associated with HIF1a signaling in SVF cells, including Col1a1,

FN, TGF-b, IL-6, MIF, and TNF-a. The expression of the above genes

was significantly increased in hypoxia-induced SVF cells, and this

effect was reversed by NMN (Figures 5A–F). However, the

suppressive effects of NMN on these genes were partly abolished by

sirtinol (a SIRT1 inhibitor) or CoCl2 (a HIF1a enhancer).
Discussion

Adipose tissue hypoxia and the activation of HIF-1a in obesity

contribute to insulin resistance and type 2 diabetes. The mice raised in
Frontiers in Endocrinology 05
the hypoxia chamber presented similar pathophysiological processes,

such as adipose fibrosis and inflammation, compared with HFD-fed

mice (3, 12, 30). Recently, NAD+ depletion is emerging as a major

contributor to the pathogenesis of metabolic diseases, with the rise of

studies on NAD+ repletion strategies as countermeasure (14). In

obesity, one of the main factors causing NAD+ depletion in AT is that

energy or fat excess, such as HFD-feeding, inhibits NAMPT

expression (26, 31, 32). However, whether hypoxia is involved in

the compromised NAMPT-mediated NAD+ biosynthesis, thus

leading to adipose fibrosis and inflammation is unknown. We

previously demonstrated that NMN attenuates the development of

cardiac fibrosis by inhibiting oxidative stress and the TGF-b/Smad

signaling pathway, but whether NMN plays a role in adipose fibrosis

and its mechanism is dependent on HIF1a are unclear. To fill this

knowledge gap, we explored the effect of NMN on hypoxia-induced

NAD+ metabolism, fibrosis, and inflammation in the eWAT of mice.
D

A

B

E F

C

FIGURE 1

NMN alleviates the abnormal degradation and synthesis of ECM components in the eWAT of hypoxia-induced mice. (A, B) Representative images of
eWAT adipocytes morphology and fibrosis as reflected by the H&E staining and Masson staining (400×magnification, scale bar=50 mm). (C) Statistical
result for the interstitial fibrosis of eWAT (n = 6). (D) The relative mRNA levels of Col1a1, Col3a1, MMP-2, MMP-9, TIMP-1, LOX, and FN normalized to
b-actin in eWAT (n = 3). (E, F) The relative protein levels of MMP9 and TIMP1 normalized to b-actin in eWAT (n = 5). *P < 0.05 versus control group,
#P < 0.05 versus hypoxia group.
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In the present study, hypoxia- induced NAMPT down-regulation,

NAD+ depletion, fibrosis, and inflammation in eWAT, whereas the

NAD+ precursor NMN attenuated the changes, indicating the

involvement of NAD+ depletion in hypoxic insult. NMN attenuated

HIF1a expression, suggesting that NAD+ depletion may contribute to

the HIF-1a accumulation in response to hypoxia. NAD+ depletion

and HIF-1a accumulation are the stress response to AT hypoxic state

in the long term. In this context, the inhibitory role of NMN in NAD+

depletion and hypoxia in AT was an attempt to restore

cellular homeostasis.

The induction of HIF-1a in a hypoxia state fails to activate the

angiogenic program in AT and turns to initiate a profibrotic response

instead, causing fibrosis and inflammation in adipose tissue (4, 8).

Inhibition of HIF -1a is the key point to attenuating adipose fibrosis

and inflammation. In the present study, we found that NMN can

inhibit HIF-1a activation and, as a result, effectively inhibit these

profibrotic gene expressions. Consistent with the above results, the

reduced Masson’s staining further confirmed the anti-fibrotic effects

of NMN. In addition, excessive collagen accumulation in AT is closely

related to inflammation characterized by inflammatory cytokines

dysregulation and macrophage infiltration (7), and HIF-1a can
Frontiers in Endocrinology 06
induce NF-kB-dependent inflammation (7, 33). In the AT of

hypoxia-induced mice, NMN decreased the pro-inflammatory

cytokines (TNF-a, TGF-b, and IL-6) and deleterious adipokines

secretion (Leptin and Resistin) but increased the expression of

adiponectin (APN). APN is a vital adipokine with insulin-

sensitizing and anti-inflammation activities (34–36), but hypoxia

could potentially inhibit APN and subsequently lead to

inflammation and M1 macrophage infiltration in AT (37, 38). The

anti-inflammatory activity of NMN may also be partly attributed to

the regulation of APN. In the adipose tissue of hypoxia mice, NMN

not only reduced the F4/80 (an indicator for the amounts of

macrophage) but also inhibited M1 macrophage polarization,

indicating the effect of NMN on blocking the inflammatory

interplay between macrophages and adipocytes. The above evidence

showed the protective role of NMN aganist adipose fibrosis and

inflammation may be associated with the inhibition of HIF -1a.
NMN has been reported to be a multifunctional compound. In

addition to replenishing NAD+ and inhibiting oxidative stress, it can

activate SIRT1, contributing to its effects on fibrosis and

inflammation (21, 26, 39). In our in vitro study, the anti-fibrotic

and anti-inflammatory effects of NMN on hypoxia-induced SVF were
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FIGURE 2

NMN alleviates dysregulated adipokines secretion and macrophage infiltration in the eWAT of hypoxia induced mice. (A, B) The relative protein levels of APN,
TGFb, and IL-6 normalized to b-actin in eWAT (n = 5). (C) The relative mRNA levels of APN, leptin, ang, resistin, IL-6, and TGF-b normalized to b-actin in
eWAT (n = 6). (D) Representative images of macrophage marker F4/80 in eWAT as reflected by the IHC staining (400 × magnification, scale bar = 50mm).
(E) The relative mRNA levels of F4/80 in eWAT (n = 6). (F, G) The relative mRNA levels of genes encoding TNFa, iNOS, Arg1 and Ym1 in eWAT (n = 6).
*P < 0.05 versus control group, #P < 0.05 versus hypoxia group.
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blocked by Sirtinol (a SIRT1 inhibitor), indicating the involvement of

SIRT1 in NMN treatment. As an energy sensor, SIRT1 regulates

cellular homeostasis, and therefore, we wanted to know whether

NMN inhibited HIF-1a accumulation by activating SIRT1. Gomes

et al. have found that SIRT1 is constantly required to ensure the

efficient degradation of HIF1a under normal oxygen condition (40).

During aging or hypoxia, NAD+ depletion reduces the activity of

SIRT1, leading to the activation of HIF1a (40, 41). Consistently,

whether in vivo or in vitro, our results showed that the hypoxia-

induced HIF1a upregulation was accompanied by reduced NAD+

levels and SIRT1 activity. NMN treatment failed to reverse the above

process with the disturbance of Sirtinol, indicating that NMN reduced

HIF-1a accumulation by promoting proteasomal degradation in a

SIRT1-dependent manner. Although the HIF-1a stabilizer CoCl2
treatment can enhance the HIF1a expression with the existence of

NMN, it failed to block the activation of SIRT1, further

demonstrating that HIF-1a is the downstream target of SIRT1. In

addition, several studies have shown that SIRT1 inactivated HIF1a by

deacetylating it and consequently inhibited HIF-1 target genes (41,

42). In the present study, Sirtinol attenuated the enhanced effect of

NMN on HIF1a deacetylation, indicating a possible role of SIRT1 in
Frontiers in Endocrinology 07
HIF1a activation. The above evidence is probably why SIRT1 has a

role in the effect of NMN on HIF1a.
In summary, our study showed that NMN inhibited HIF-1a

activation-induced adipose tissue fibrosis and inflammation, while the

underlying mechanism may be associated with the NAD+ repletion

and the regulation of SIRT1 (Figure 6). These results provided further

evidence for the beneficial effects of NMN on regulating adipose

function in hypoxia. The benefit of NAD precursors in mouse model

of metabolic diseases, in particularly NMN and NR, has been

extensively investigated for a long time (23, 26, 39, 43). Currently,

there are several ongoing human clinical trials or recently reported

trials (NCT02191462, NCT02689882, NCT02921659, NCT02303483,

NCT02678611, NCT03151239, UMIN000021309, UMIN000025739,

UMIN000030609). All reported clinical trials of nicotinamide

riboside (NR) or NMN demonstrated that it is safe, well tolerated,

and can significantly increase plasma NAD+ levels in healthy or obese

volunteers (44–48). Besides, a recent study showed that 10 weeks of

NMN administration in doses of 250mg/d improved skeletal muscle

insulin sensitivity and insulin signaling in women with prediabetes

(48). As NAD+ metabolism can be a potential target for

pathophysiological processes, including mitochondrial metabolism,
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FIGURE 3

NMN restores NAMPT/NAD+/SIRT1 axis and inhibited HIF-1a acetylation in eWAT of hypoxia induced mice. (A) The relative protein levels of NAMPT
normalized to b-actin in eWAT (n = 5). (B, C) Statistical results for NAD+/NADH contents and NAD+/NADH ratio in eWAT (n = 6). (D) Representative
images of immunohistochemical staining for the SIRT1 protein in eWAT sections (400× magnification, scale bar=50mm). (E–G) The relative protein levels
of SIRT1 and HIF1a in eWAT (n = 5). *P < 0.05 versus control group, #P < 0.05 versus hypoxia group. NS indicates no significant difference compared
with the matched group.
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FIGURE 4

NMN restores NAMPT/NAD+/SIRT1 axis and inhibited HIF-1a acetylation in SVF cells. (A) The relative protein levels of NAMPT normalized to b-actin in SVF cells
(n = 3). (B, C) Statistical results for NAD+/NADH contents and NAD+/NADH ratio in SVF cells (n = 3). (D–F) The relative protein levels of SIRT1 and HIF1a in SVF
cells (n = 3). *P < 0.05 versus control group, #P < 0.05 versus hypoxia group. NS indicates no significant difference compared with the matched group.
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FIGURE 5

NMN suppresses HIF-1a signalling-associated upregulation of fibrogenic and inflammatory gene in a SIRT1-dependent manner. (A–F) The relative mRNA
levels of Col1a, Fibronectin, IL-6, TGF-b, MIF and TNF-a normalized to b-actin in SVF cells (n = 3). *P < 0.05 versus control group, #P < 0.05 versus
hypoxia group.
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oxidative stress, inflammation, and fibrosis, NMN or NR may become

a therapeutic option. The above evidence increases the possibility of

NAD+ precursors’ clinical application, but its efficacy in patients with

metabolic disorders remains unclear, and more studies are needed.
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FIGURE 6

The proposed mechanisms for the protective role of NMN in hypoxia-induced adipose tissue remodeling. Hypoxia led to compromised NAMPT/NAD+/
SIRT1 axis, which further promoted HIF1a activation. As a result, the fibrotic and inflammatory response are significantly increased, accompanied by
adipocytokine dysregulation, which ultimately lead to adipose tissue remodeling. NMN restored the NAMPT/NAD+/SIRT1 axis and inhibited HIF1a
activation, which further attenuated adipose tissue remodeling.
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