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Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by

hyperglycemia and insulin resistance. The incidence of T2DM is increasing

globally, and a growing body of evidence suggests that gut microbiota

dysbiosis may contribute to the development of this disease. Gut microbiota-

derived metabolites, including bile acids, lipopolysaccharide, trimethylamine-N-

oxide, tryptophan and indole derivatives, and short-chain fatty acids, have been

shown to be involved in the pathogenesis of T2DM, playing a key role in the host-

microbe crosstalk. This review aims to summarize the molecular links between

gut microbiota-derived metabolites and the pathogenesis of T2DM. Additionally,

we review the potential therapy and treatments for T2DM using probiotics,

prebiotics, fecal microbiota transplantation and other methods to modulate

gut microbiota and its metabolites. Clinical trials investigating the role of gut

microbiota and its metabolites have been critically discussed. This review

highlights that targeting the gut microbiota and its metabolites could be a

potential therapeutic strategy for the prevention and treatment of T2DM.
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Abbreviations: ACA, acetoacetic acids; ATGL, Adipose triglyceride lipase; BA, bile acid; BSEP, bile salts

export pump; CA, cholic acids; CDCA, chenodeoxycholic acids; ChREBP, carbohydrate response element

binding proteins; CR, Calorie restriction; CYP7A1, Cholesterol 7-alpha hydroxylase; CYP8B1, sterol 12a-

hydroxylase; DCA, deoxycholic acid; DIO2, deiodinase type 2; ERK1/2, extracellular regulated protein

kinases; FFAR2, Free Fatty Acid Receptor 2; FFAR3, Free Fatty Acid Receptor 3; FXR, farnesoid X receptor;

GABAs, g-aminobutyric acids; GLP-1, glucagon-like peptide-1; GLUT4, glucose transporter 4; GPR109A, G-

protein-coupled receptor 109A; HFD, high-fat diet; ICPs, immune checkpoints; IFG, impaired fasting

glucose; LCA, lithic bile acid; LPS, lipopolysaccharides; NOD, new-onset diabetes; NTCP, sodium

taurocholate cotransporting polypeptide; OATP, Organic Anion Transporting Polypeptide; PAI, propionic

acid imidazole; PYY, peotide YY; SCFA, short-chain fatty acid; SHP, small heterodimer; TGR5, Takeda G

protein-coupled receptor 5; TLR-4, Toll-like receptor 4; TMA, trimethylamine; TMAO, trimethylamine-N-

oxide; UCP1/2/3, uncoupling protein1/2/3; VLCK, very low-calorie-ketogenic.
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1 Introduction

Diabetes mellitus (DM) is considered one of the most serious

public healthcare challenges in the world, with more than 536.6

million people aged 20-79 years (prevalence estimated at 10.5%)

reported to have diabetes in 2021. This number is projected to rise

to 783.2 million (prevalence estimated at 12.2%) by 2045 (1). Type 2

diabetes mellitus (T2DM), accounting for 90% of cases, is the most

prevalent type and is characterized by hyperglycemia and insulin

resistance (2, 3). The risk factors that contribute to the onset of

T2DM are complex and have not been fully elucidated. Obesity,

sedentary lifestyle, and genetic susceptibility are recognized as

significant risk factors for T2DM progression (4). An increasing

number of studies have shown a clear link between the dysregulated

gut microbiota and the development of T2DM (5, 6).

Understanding these interactions may lead to novel therapeutic

implications for T2DM.

The gut microbiota is a complex and dynamic entity

composed of trillions of microorganisms that live in close

symbiosis with their host, consisting of hundreds of different

species of bacteria, primarily distributed among nine phyla (7–9).

It is dominated by the phylum Firmicutes, Bacteroidetes,

Proteobacteria, Actinobacteria, and Fusobacteria, which account

for 90% of the total human microbiota (10, 11). Gut microbiota is

strongly influenced by geographic location, age, lifestyle, diet, and

even the mode of birth (12–14). Furthermore, variations in gut

microbiota can lead to changes in metabolites, such as bile acids

(BAs), branched-chain amino acids (BCAA), short-chain fatty acids

(SCFAs), lipopolysaccharides (LPS), trimethylamine (TMA), and

propionic acid imidazole (PAI) (15). A study has demonstrated that

an increase in trimethylamine-N-oxide (TMAO), a conversion

product of TMA in the liver, predicts a high mortality risk in

patients with T2DM (16). Although peripheral blood BAs levels do

not predict the transition from impaired fasting glucose (IFG) to

new-onset diabetes (NOD) (17), Tamara et al. reported a non-

absorbable polymeric bile acids chelator (SAR442357) that

ameliorated hyperglycemia in preclinical animal models of

diabetes by reducing intestinal luminal bile acids levels and

delaying the development of DM (18). These clinical reports

suggest that gut microbiota and its metabolites may be

significantly associated with T2DM progression (19, 20).

Current research generally concludes that gut microbial

metabolites can influence the development of T2DM by

modulating physiological processes such as b-cell dysfunction,

chronic low-grade inflammation, oxidative stress, and

dysmetabolism of lipids and glucose (21). For example, SCFAs

can decrease the expression of pro-inflammatory cytokines by

inhibiting NF-kB activation and IkBa degradation, improving

glucose control, and mitigating the development of T2DM (22–

24). Conversely, elevated TMAO levels impair glucose tolerance by

blocking the hepatic insulin signaling pathway, causing systemic

inflammation in adipose tissue, and accelerating the development of

diabetes. Although these studies indicate that gut microbial

metabolites play a role in the development of T2DM, a systematic

summary of the molecular mechanisms involved is still lacking.

This review aims to summarize the molecular links between
Frontiers in Endocrinology 02
microbiota-derived metabolites and the pathogenesis of T2DM,

and discuss recent clinical trials and treatments for T2DM. A better

understanding of the interactions between gut microbiota and

T2DM could provide insights into T2DM prevention and therapy.
2 Diabetes and gut
microbial metabolites

Gut microbial metabolites are compounds produced by gut

microbiota during the digestion of food. These metabolites,

including SCFAs, tryptophan metabolites, TMAO, LPS and BAs,

have been shown to play a crucial role in the development of T2DM

(25). Most of the metabolites can enter the systemic circulation and

act as signaling molecules via various receptors, which further

regulate multiple metabolic pathways.
2.1 Short-chain fatty acids

SCFAs are major products of the anaerobic fermentation of

resistant starch and fiber by the gut microbiota (Figure 1). Only a

small fraction of SCFAs in the gastrointestinal tract is taken up from

the diet. Butyric, acetic, and propionic acids constitute the most

prevalent SCFAs in the body (26). SCFAs can be originally

produced by thick-walled flora, including Clostridium perfringens

IV and XIV a. These substances then enter the colonic epithelium

via H-dependent or sodium-dependent monocarboxylate transport

proteins to provide energy for their production (27). The remaining

SCFAs that are then released from the intestine into circulation via

the liver and portal system and contribute to the development of

several diseases such as obesity, insulin resistance, T2DM, etc. (28).

As members of the fatty acid family, SCFAs can serve as

substrates for lipid synthesis. It has been shown that SCFAs can

activate AMPK, promote the induction of PGC-1a expression and

activate peroxisome proliferator-activated receptor (PPAR), thereby

regulating the fatty acid oxidation process (29, 30). Additionally,

many studies have also pointed out that important lipid metabolic

signals such as cAMP (31), adipose triglyceride lipase (ATGL, the

main enzyme of lipolysis) (32), and uncoupling protein (UCP) (33)

are also regulated by SCFAs. SCFAs have been found to play a role

in hyperglycemic syndrome through G protein-coupled receptors

(GPRCs) (34). The most crucial SCFAs receptors are the G protein-

coupled receptors free fatty acid receptor 2 (FFAR2), free fatty acid

receptor 2 (FFAR3), and G-protein-coupled receptor 109A

(GPR109A). Extracellular signal-regulated kinase 1 or 2 (ERK1/2),

intracellular calcium activation, cyclic adenosine monophosphate

(cAMP), and G protein (Gq or Gi/o) are downstream signaling

molecules that FFAR influences the absorption of nutrients (35, 36).

FFAR2 (GPR43) is mainly expressed in white adipocytes, islet a and

b cells, intestinal enteroendocrine cells, and immune cells (37, 38).

Butyrate can inhibit histone deacetylase (HDAC) expression by

activating FFAR2, thereby having an inhibitory effect on the

inflammatory response (39). FFAR3 (GPR41) is expressed in

white adipocytes, immune cells, pancreatic islet a and b cells, and

intestinal enteroendocrine cells (40, 41). GPR109A is a G protein-
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coupled receptor for nicotinate and has poor sensitivity for butyrate

(42, 43).

SCFAs have been extensively studied in the field of metabolic

diseases. In a previous study, it was demonstrated that propionate

upregulated peptide YY (PYY) and glucagon-like peptide-1 (GLP-

1) expression in the colonic tissue, leading to weight loss and

significantly reduced blood glucose levels (44). SCFAs activate

FFAR2 on enteroendocrine L cells, thereby enhancing the release

of GLP-1 and PYY (45). FFAR3 is expressed in vagal sensory

neurons and cross-talks with cholecystokinin (CCK) to alter food

intake (46). By regulating AMPK, GPR109A promotes Nrf2 nuclear

import and induces autophagy, resulting in anti-inflammatory

effect (47). It also regulates lipid metabolism and inhibits lipolysis

in adipose tissue (48). A recent study also shows that SCFAs may

contribute to the development of diabetes through DNA

methylation (49).
2.2 LPS

Lipopolysaccharide (LPS) is an important feature on the cell

wall of gram-negative bacteria and plays an important role in the

pathogenesis of T2DM. LPS exhibits an interactive relationship

with SCFAs (Figure 1) (50, 51). The amount of LPS can be used to

predict the development of many inflammatory diseases
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associated with participation in natural immunity (52). It has

been shown that ecological dysregulation due to high fat intake

also upregulates LPS concentrations, resulting in the release of

TNF, IL-1, and IL-6 and systemic inflammation (53). The

development of endotoxemia will trigger the host’s immune

response, entering a pro-inflammatory state, which may

contribute to metabolic diseases, such as T2DM.

Toll-like receptor 4 (TLR-4) has been identified as an important

receptor of LPS, which belongs to a family of transmembrane

receptors. Upon TLR-4 activation, transcription of inflammatory

cytokines such as TNF-a, IL-1, and IL-6 are enhanced via

NF-kB and MAPK pathways. These inflammatory cytokines are

significantly elevated in patients with T2DM, subsequently resulting

in insulin resistance and pancreatic b-cell dysfunction (54).
2.3 Bile acids

Bile acids (BAs), including chenodeoxycholic acids (CDCA)

and cholic acids (CA), are synthesized in liver from cholesterol (55).

There are two pathways of BAs synthesis: the classical pathway and

the alternative pathway. CDCA is effectively catalyzed by

mitochondrial sterol 27-hydroxylase (CYP27A1) for oxygenation

of the carbon chain of corticosteroids, while the production of CA is

determined by sterol 12-hydroxylase (CYP8B1) (56). The bile salts
FIGURE 1

The main mechanisms of SCFAs regulating metabolism and inflammation in T2DM. SCFAs are produced by the conversion of dietary fiber by gut
microbiota and subsequently enter cells directly or act on transmembrane receptors such as FFAR2, FFAR3 and GPR109A, which are involved in
improving T2DM related pathways, such as fatty acid oxidation, glucose metabolism and inflammation response. Meanwhile, SCFAs can inhibit the
release of inflammatory factors such as TNF-a and IL-1b triggered by LPS through the NK-kB pathway, thus alleviating the inflammatory response.
SCFAs, short-chain fatty acids; FFAR2, Free Fatty Acid Receptor 2; FFAR3, Free Fatty Acid Receptor 3; GPR109A, G-protein-coupled receptor 109A;
TLR4, Toll-like receptor 4; LPS, Lipopolysaccharide; AMPK, Adenosine 5’-monophosphate (AMP)-activated protein kinase; cAMP, Cyclic adenosine
monophosphate; PKA, protein kinase A system; HSL, hormone-sensitive lipase; FFA, free fatty acid; PGC-1a, Peroxisome proliferator-activated
receptor-g coactivator-1a; PPAR, peroxisome proliferator activated receptor; ATGL, Adipose triglyceride lipase; UCP1/2/3, uncoupling protein1/2/3;
ATP, Adenosine triphosphate; IGN, intestinal gluconeogenesis; PYY, peotide YY; GLP-1, glucagon-like peptide-1; GLUT4, glucose transporter 4;
HDACs, Histone Deacetylases; IL-10, Interleukin-10; IL-18, Interleukin-18; NF-kB, nuclear factor kappa-B; MAPK, mitogen-activated protein kinase;
ERK1/2, extracellular regulated protein kinases; TNFa, Tumor necrosis factor a; IL-1b, Interleukin-1b; iNOS, Inducible nitric oxide synthase.
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export pump (BSEP) then secretes bile salts that have been coupled

with the amino-acid taurine or glycine into the digestive system,

where they are converted into secondary BAs by gut microbiota. In

the intestine, CA and CDCA can be converted into deoxycholic

acids (DCA) and lithocholic acid (LCA) respectively by the action of

bacterial bile salt hydrolase (BSH) and 7a-dehydroxylase enzyme

(57). Clostridium perfringens is a bacterium that is capable of

synthesizing the 7a-dehydroxylase enzyme (58). BSH is an

enzyme produced by various strains of gut microbiota, including

Staphylococcus, Neococcus, Enterococcus, Bifidobacterium,

Clostridium perfringens, and Parasiticum (59). BAs are signaling

molecules, which regulate insulin sensitivity and inflammation in

T2DM via farnesoid X receptor (FXR) and Takeda G protein-

coupled receptor 5 (TGR5) (Figure 2) (60–62). Meanwhile, BAs are

also the ligands of vitamin D receptor (VDR) (63), progesterone X

receptor (PXR) (64), membrane receptor sphingosine-1 phosphate

receptor 2 (S1PR2) (65, 66) and play significant role in regulating

inflammation and immune functions.

FXR is mainly expressed in the liver and intestine, and CDCA is

the most potentially endogenous agonist of FXR (67). Activation of

intestinal FXR induces the expression and secretion of fibroblast

growth factor (FGF)15/19, which subsequently enters into liver via

enterohepatic circulation (68). Serum FGF15/19 activates hepatic

FGF receptor 4 (FGFR4)/-klotho complex, which in turn inhibits

cholesterol 7-alpha hydroxylase (CYP7A1) transcription and
Frontiers in Endocrinology 04
reduces bile acid synthesis (69, 70). Additionally, it has been

reported that clostridia-rich microbiota can promote BAs

synthesis by suppressing intestinal FGF19 production (71).

Activation of hepatic FXR promotes transcriptional activity of the

small heterodimer (SHP), which in turn represses the expression of

CYP7A1 expression and reduces bile acid synthesis. One of the

downstream targets of FXR is insulin receptor substrate 1 (IRS1)-

AKT-phosphatidylinositol 3 kinase (PI3K) pathway, which plays a

crucial role in insulin signaling. While both intestinal and hepatic

FXR signaling are involved in regulating bile acid homeostasis, they

have distinct functions in lipids synthesis and absorption (72).

Semi-synthetic bile acid, such as obeticholic acid (OCA), has been

shown to be 30 times more effective in activating FXR than CDCA

(73). OCA has been found to inhibit bile acid production, improve

oxidative stress and liver fibrosis, and decrease hepatic cholesterol

and triglyceride content (74, 75). In a study by Sunder et al.

(NCT00501592), patients treated with 25 mg OCA showed that

insulin sensitivity increased by 28.0% from baseline (76). These

studies suggest that OCA may serve as a novel target in alleviating

liver inflammation and insulin resistance.

TGR5 (also known as Gpbar-1) is a G protein-coupled receptor.

TGR5 is widely expressed in various tissues, including the liver,

adipose tissue and intestine, and plays important roles in regulating

energy metabolism. TGR5 activation in enteroendocrine L cells can

increase glucagon-like peptide-1 (GLP-1) secretion, leading to
FIGURE 2

The main mechanisms of BAs regulating glucose homeostasis in T2DM. This figure illustrates the metabolism and transformation of bile acids in the
liver, intestine, pancreas, and brown adipose tissue, and the mechanisms by which they regulate glucose homeostasis through the two major bile
acid receptors, FXR and TGR5.CYP7A1, Cholesterol 7-alpha hydroxylase; CYP8B1, sterol 12a-hydroxylase; CA, cholic acid; CDCA, chenodeoxycholic
acid; T/G, taurine/glycine; BSEP, bile salt export pump; SHP, small heterodimer; JNK/ERK, c-Jun N-terminal kinase/extracellular regulated protein
kinases; FFGR4, FGF receptor 4; FGF19/15, fibroblast growth factor 19/15; ASBT, apical sodium-dependent bile acid transporter; PI3K,
phosphatidylinositol-3-kinases; Akt, protein kinase B; mTOR, mammalian target of rapamycin; Cers,cermides;SREBP1, sterol-regulatory element
binding proteins 1; FXR, farnesoid X receptor; NTCP, sodium taurocholate cotransporting polypeptide; OATP, Organic Anion Transporting
Polypeptide; OSTa/b, organosolute transport proteins a and b; DCA, deoxycholic acid; LCA, lithic bile acids; TGR5, Takeda G protein-coupled
receptor 5; cAMP, Cyclic adenosine monophosphate; DIO2, deiodinase type 2; T4, thyroxine; T3, triiodothyronine; GLP-1, glucagon-like peptide-1.
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improved glucose homeostasis and insulin sensitivity (77). TGR5

activation in adipose tissue induces the expression of thyroid

hormone deiodinase type 2 (DIO2), which converts inactive

thyroxine (T4) into active thyroid hormone (T3) and enhances

energy expenditure (78, 79).

Bile acid binding resins and bile acid chelator are used to

regulate the BAs pathway (80). Bile acid binding resins work by

binding to bile acids in the intestine, preventing their reabsorption

and promoting their excretion in the feces. This leads to a reduction

in the amount of bile acids in circulation, which in turn stimulates

the liver to synthesize more bile acids from cholesterol. A clinical

study of 40 Japanese patients with T2DM (NCT038934220) found

that colestimide altered bile acid composition and increased the CA

ratio, which enhanced energy metabolism, improved blood glucose

levels, and alleviated diabetes via TGR5-cAMP-Dio2 pathway (81,

82). Berberine ursodeoxycholate (BUDCA) (83) has been shown to

improve glycemic control and lower serum LDL-cholesterol level

(NCT03656744) (84, 85). However, it should be noted that bile acid

chelator may decrease the hydrophobicity of BAs and increase the

risk of gallstone formation (86).
2.4 Tryptophan metabolites

Tryptophan is an essential amino acid and can be transformed

by gut microbiota into molecules, such as indole and its derivatives,

including indole-3- lactate (ILA), indole-3-propionic acid (IPA)

and indole-3-acetaldehyde (IAld) (Figure 3). The tryptophan

metabolites have been implicated in the pathogenesis of T2DM

(87, 88). Indole stimulates GLP-1 secretion from intestinal L cells,

resulting in insulin release and reduced blood glucose levels. IPA

has been shown to have anti-inflammatory and antiseptic properties
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by acting on the aryl hydrocarbon receptor (AhR) (89–91). In vivo,

administration of indole decreased hepatic steatosis and

inflammation in rats fed high fat diet. And indole decreased lipid

accumulation and stimulates inflammatory responses in vitro (92).

Activation of AhR by tryptophan metabolites has been shown to

have a variety of physiological effects, including regulation of

immune responses, inflammation, and cell differentiation (93).
2.5 Trimethylamine N-oxide

Trimethylamine N-Oxide (TMAO) has been implicated in the

pathogenesis of T2DM and related complications (94). Studies have

shown that TMAOmay contribute to the development of T2DM by

promoting insulin resistance, impairing glucose tolerance, and

inducing inflammation (95, 96). High level of TMAO may be

associated with mild cognitive impairment, cardiovascular events

in patients with T2DM (97–99).

TMAO is produced by gut bacteria from dietary nutrients such

as egg and meat products (100). In intestine, gut microbiota

breakdown choline, carnitine, or betaine into trimethylamine

(TMA) and dimethylamine (DMA), which are absorbed into the

bloodstream and transported to the liver (95).. In the liver, TMA

and DMA are oxidized by the enzyme flavin-containing

monooxygenase 3 (FMO3) to produce TMAO (101). Notably, a

diet high in animal-based foods is associated with higher TMAO

levels. The increase in circulating TMAO is thought to be possibly

related to several factors, including: 1) dietary choline or carnitine

content, 2) kidney function, 3) liver function, and 4) gut

microbiota composition.

Many studies are focusing on regulating the TMA lytic enzymes

to reduce TMAO levels. For example, 3,3-dimethyl-1-butanol
FIGURE 3

Role and mechanism of tryptophan metabolic pathway associated with T2DM. This figure depicts the conversion of tryptophan through the action
of the gut microbiota, the products of which are involved in T2DM. ILA, indole-3-lactate; IPA, Indole 3-propionic acid;ILDH, indole-3-lactate
dehydrogenase;ArAT Aromatic amino acid aminotransferase, IAld, indole-3-acetaldehyde; AhR, aryl hydrocarbon receptor; GLP-1, glucagon-like
peptide-1.
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(DMB), which is a structural analog of choline, can inhibit

microbial TMA formation. It has been shown that DMB

significantly reduces TMAO levels in mice fed a high choline or

carnitine diet, thereby inhibiting diet-enhanced atherosclerosis

(102). Metformin has also been found to decrease TMAO

concentration in db/db mice (103). In addition, it has been

demonstrated that berberine reduces TMAO levels by regulating

TMA lytic enzymes via remodeling gut microbiota (104).

Antagonist against TMAO, another metabolite of the gut

microbiota, has also been shown to improve glucose homeostasis

and metabolism disorders (105). Taurisolo, a novel grape pomace

polyphenolic extract, significantly decreased serum TMAO levels in

healthy subjects (106). It implies that polyphenols can lower TMAO

levels, thereby alleviating impaired glucose tolerance and improving

adipose tissue inflammation in patients with T2DM (107).

TMAO has been implicated as a novel risk factor for

cardiovascular events related to obesity and T2DM. Targeting gut

microbiota and TMAO production may serve as potential

therapeutic approaches for the treatment of T2DM.
3 Regulation of gut microbiota and its
metabolites for T2DM therapy

As we gain a deeper understanding of the relationship between

gut microbiota and T2DM, more and more therapies are emerging

that aim to regulate the gut microbiota and its metabolites

(Supplementary Table 1). Recent approach to regulate gut

microbiota for T2DM therapy focuses on probiotics, prebiotics,

synbiotics, fecal microbial transplantation, diet intervention,

bacteriophages, microbiota-targeted drugs and postbiotics (Figure 4).
Frontiers in Endocrinology 06
3.1 Probiotics, prebiotics, synbiotics

T2DM has been linked to dysbiosis of gut microbiota (108).

Probiotics such as Bifidobacterium, Lactobacillus, prebiotics such as

oligofructose and inulin, as well as synbiotics (a combination of the

two) all play a significant role in the development of T2DM.

Probiotics are live microorganisms that provide beneficial

effects to the host when adequately administered. Probiotics have

been shown to improve glucose metabolism and insulin sensitivity

in patients with T2DM. A combination of Bifidobacterium lactis

LMG P-28149 and Lactobacillus rhamnosus LMG S-28148 increased

PPARg expression and enhanced insulin sensitivity in high-fat diet

(HFD) induced obese mice (109). It has been shown that

Bifidobacterium longum and Lactobacillus upregulated GLP-1 and

IL-10 expression in patients with obesity or T2DM, and suppressed

lipid accumulation in adipocytes (3, 110). In addition, Lactobacillus

fermentum MCC2760 increased the expression of glucose

transporter 4 (GLUT4), GLP-1 and ZO-1, improving glucose

tolerance in HFD mice (111).

Inulin is a type of prebiotic fiber that cannot be digested by the

human body. It has been demonstrated that inulin is fermented by

microbiota to produce SCFAs in the colon (112, 113). In a clinical trial

(NCT02009670), consumption of inulin promotes SCFAs production

and improves lipid oxidation, resulting in a significant improvement in

glycemic control (114). Another study (NCT00750438) shows that

inulin-propionate ester supplementation significantly increases colonic

propionate levels, and prevents weight gain by promoting GLP-1

secretion (115).

Synbiotics, which combine probiotics and prebiotics, have the

potential to provide more significant benefits than when used

separately. For instance, when Lactobacillus paracasei N1115 was
FIGURE 4

Potential therapy and treatments for T2DM by regulating gut microbiota and its metabolites. Recent approaches to regulate gut microbiota for
T2DM therapy focuses on probiotics, prebiotics, synbiotics, fecal microbial transplantation, diet intervention, bacteriophages, microbiota-targeted
drugs and postbiotics. SCFAs, short-chain fatty acids; FMT, Fecal Microbiota Transplantation; BAs,bile acids; LPS, Lipopolysaccharide; IL-10,
Interleukin-10; GLP-1, glucagon-like peptide-1; ZO-1, zonula occludens-1.
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combined with oligofructose, it was observed to down-regulate the

expression of TLR4 and NF-kB, while up-regulating the p38 MAPK

pathway (116). It is important to note that synbiotics currently lack

FDA statements, and further clinical validation is required to determine

the optimal ratio of probiotics and their safety and efficacy.
3.2 Fecal microbiota transplantation

Despite probiotics have been shown to have a potential role for

T2DM, fecal microbiota transplantation (FMT) has advantage of

entire gut microbiota transplantation. FMT has been recommended

for the prevention of chronic Clostridium difficile infections since

2013, and it has also shown beneficial effects in ulcerative colitis and

even metabolic diseases such as T2DM (117).

Studies have demonstrated that FMT treatment in mice reduces

glucose levels, improves insulin sensitivity, and reduces islet cell

apoptosis (117). Transplantation of normal human fecal flora into

diabetic mice was reported to ameliorate glucose disorders by altering

bacterial composition to produce more SCFAs and stimulating GLP-

1 releasing via GPR43 receptor (118, 119). In contrast, mice

transplanted with gut microbiota from patients with T2DM were

found to disrupt blood glucose by regulating BAs metabolism (120).

Study by Anne et al. reported that transplanting gut microbiota from

lean donors to patients with T2DM could improve insulin sensitivity

(121). Similarly, Su et al. showed that the predominant gut microbiota

of T2DM patients shifted from bacteroides to Prevotella after FMT

(122), with a significant increase in beneficial organisms (e.g.,

bifidobacteria) and a significant decrease in harmful organisms

(e.g., Bilobacteria) in a 90-day open-label controlled trial (122).

However, it should be noted that FMT may be ineffective or even

cause side effects due to the complex composition of the gut

microbiota. Elaine et al. reported that FMT had no clinically

significant metabolic effects in a clinical study (NCT02530385)

(123), possibly due to the small sample size of the trial. Adverse

events such as diarrhea, constipation, abdominal pain, and infections

have also been reported with FMT (124, 125).

Although FMT is a promising treatment for T2DM, more

convincing evidence is needed to confirm the source of donors and

frequency of FMT. The adverse effects of dangerous bacteria in the

flora, the resilience of the gut microbiota, and the uncertain clinical

result of microbiota modifications need more investigation (126, 127).
3.3 Diet interventions

A healthy diet helps patients with T2DM improve glycemic

control. Research indicates that a weight loss about 15 kg induced

by calorie restriction (CR) lead to remissions of T2DM in about

80% patients with obesity and T2DM (128, 129).

In the high-fat diet (HFD) group, an increase in LPS and

TMAO and a decrease in SCFAs have been observed, which can

affect the host metabolism and immunity. The significant elevation

of Escherichia coli, Klebsiella, and Shigella in the HFD group and the

decrease of Lactobacillus and Lactobacillus may provide an early

warning for the development of T2DM. However, HFD can lead to
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an increase in the number of b-cells and induce a decrease of islet

infiltration, protecting from the development of diabetes (130). This

phenomenon may be related to impairment of immune checkpoints

(ICPs) and reduced T-cell attack on pancreatic b-cells, which
requires further investigation (131).

Interventions such as calorie restriction (CR), very low-calorie-

ketogenic (VLCK), and fasting-mimicking diets (FMDs) have been

utilized in metabolic diseases such as obesity and T2DM. CR was

found to alter the microbiota and reprogram the metabolism,

resulting in a different serum bile acid profile characterized by

elevated ratio of non-12a-hydroxylated bile acids (132). The

mechanism of CR induced glucose homeostasis may be related to

GLP-1 secretion via TGR5/cAMP signaling pathway (133).

Additionally, CR can reshape the gut microbiota composition and

promote SCFAs production to exert anti-inflammatory effect. VLCK

may induce elevating plasma concentrations of acetoacetic acid

(ACA) and b-hydroxybutyric acid (b-OHB), and activation of

white adipose tissue (WAT) lipolysis (134, 135). Ketogenic diets

also alter the gut microbiota and reduce inflammatory Th17 cells

(136). These studies indicate that more personalized diet

interventions may be utilized for prevention and treatment of T2DM.
3.4 Bacteriophages

Gut microbiota contains not only bacteria but also a large

number of viruses (dominated by bacteriophages) (137).

Bacteriophages specifically infect bacteria in a host-specific

manner and are associated with metabolic diseases. For example,

altered viral taxonomic composition and reduced viral-bacterial

correlation were observed in patients with obesity and T2DM (137,

138). In a previous study, the fecal virome from mice on a low-fat

diet was transplanted into the intestine of mice on a high-fat diet. It

was observed that the obese mice gained weight more slowly, and

their glucose tolerance remained similar to that of mice on a low-fat

diet (139). Bacteriophages therapy have been demonstrated to

improve clinical healing of diabetic wounds and have less severe

impact on the ecosystem than antibiotics (140).

A growing number of studies highlight the possibility that

bacteriophages might modify their host genetics through the

lysogenic pathway, leading to either an increase or decrease of

metabolites levels. For instance, the abundance of Klebsiella phage

(vB KpnP SU552A) was found to be negatively correlated with

tryptophan levels, indicating that targeting the tryptophan

metabolic pathway by phages could regulate indole derivatives

and potentially inhibit AhR to prevent insulin resistance (89–91,

141). However, further research is required to fully understand the

role of bacteriophages in the treatment of T2DM, including larger

clinical studies to confirm their efficacy.
3.5 Microbiota-targeted drugs

Microbiota-targeted drugs are a newly proposed class of drugs

that aim to modulate the metabolites of gut microbiota. However,

direct targeting of metabolites can have a significant effect on
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gastrointestinal function in clinical practice. Therefore, researchers

are investigating how to target specific gut microbiota without

affecting the gastrointestinal function.

Gut microbiota-derived metabolites play a central role in the

host-microbe crosstalk (142, 143). Using a mini-gut model to screen

drugs, THIP hydrochloride, methenamine, and mesna have been

identified as promising new gut microbiota therapeutics (144).

Amuc _1100, a specific outer membrane from Akkermansia

muciniphila, has been shown to improve metabolism, insulin

resistance and dyslipidemia (145, 146). THIP hydrochloride also

has the effect of reducing the inflammatory response by decreasing

the overgrowth of Akkermansia muciniphila, which can cause

damage to the intestinal barrier. Urotropine significantly

enhances the abundance of Veillonellaceae, which converts lactate

into SCFAs (147). In addition, Mesna has been shown to decrease

the number of Verrucomicrobiaceae and Akkermansia muciniphila

while enhancing SCFA synthesis and decreasing endotoxin

production. These changes may contribute to alleviating oxidative

stress levels and chronic inflammation (148–150).
3.6 Postbiotics

Postbiotics are the byproducts of the metabolic processes of

probiotic bacteria, including exopolysaccharides, g-aminobutyric acid

(GABA), and extracellular vesicles (EV) (151). For example,

exopolysaccharide has been found to inhibit adipogenesis and

pancreatic a-amylase by activating the AMPK signaling pathway

(152, 153). It has been reported that GABA improves glucose

intolerance, b-cell mass, and inflammatory response (154–156). EV

from Aeromonas aeruginosa was found to improve intestinal barrier

function and glucose tolerance in HFD-induced T2DM mice (157).

Meanwhile, in this paper, we use a table (Supplementary Table 2) to

summarize in as much detail as possible some information about

completed or ongoing gut microbial metabolites clinical trials to show

the latest progress of current gut microbial metabolites clinical studies.
4 Conclusion

In this review, we discuss the interaction between microbiota-

derived metabolites and gut microbiota and their role in T2DM.

Currently, there is growing interest in targeting the gut microbiota

and its metabolites as a potential therapeutic approach for T2DM.

Many approaches have been explored, including the use of

probiotics, prebiotics, synbiotics, postbiotics, FMT, dietary

interventions, bacteriophages, and microbiota-target drugs.

However, there are still several challenges that need to be

addressed. One of the main challenges is the lack of a

comprehensive understanding of the complex interactions between

the gut microbiota, its metabolites, and the host. The gut microbiota

is highly diverse and dynamic, and its composition can be influenced

by various factors. Another challenge is the safety and efficacy of

targeting the gut microbiota and its metabolites. Although there is

growing evidence suggesting that targeting the gut microbiota and its

metabolites can have beneficial effects on T2DM, there is also the
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potential for unintended consequences. In addition, better methods

are needed to assess the gut microbiota and its metabolites. Current

methods for assessing the gut microbiota and its metabolites, such as

16s rRNA sequencing, metagenomics and chromatography-mass

spectrometry, have limitations in terms of resolution and accuracy.

Finally, more high-quality clinical trials with larger sample size are

needed to verify their safety and efficacy on T2DM. Taken together, a

comprehensive understanding the interaction between microbiota-

derived metabolites and T2DM will shed light into potential targets

for T2DM therapy.
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