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Mitochondrial ORF of the 12S rRNA Type-C (MOTS-c) is a mitochondrial-derived

peptide composed of 16 amino acids encoded by the 12S rRNA region of the

mitochondrial genome. The MOTS-c protein is transferred to the nucleus during

metabolic stress and directs the expression of nuclear genes to promote cell

balance. Different tissues co-expressed the protein with mitochondria, and plasma

also contained the protein, but its level decreased with age. In addition, MOTS-c

has been shown to improve glucose metabolism in skeletal muscle, which

indicates its benefits for diseases such as diabetes, obesity, and aging.

Nevertheless, MOTS-c has been used less frequently in disease treatment, and

no effective method of applying MOTS-c in the clinic has been developed.

Throughout this paper, we discussed the discovery and physiological function of

mitochondrial-derived polypeptide MOTS-c, and the application of MOTS-c in the

treatment of various diseases, such as aging, cardiovascular disease, insulin

resistance, and inflammation. To provide additional ideas for future research and

development, we tapped into the molecular mechanisms and therapeutic

potentials of MOTS-c to improve diseases and combined the technology with

synthetic biology in order to offer a new approach to its development

and application.

KEYWORDS

MOTS-c, mitochondrial-derived peptide, therapeutic exploitation, synthetic
biology, endocrine
Introduction

Mitochondria are organelles produced by archaea that are required for the production of

ATP (1). The organism exhibits semi-autonomous genetic systems, independent genomes,

and unique genetic codes that are similar to those found in bacteria (2). Recently, a short

open reading frame (sORF) encoded in the mitochondrial genome has been discovered (3, 4).

These sORF produce bioactive peptides, collectively known as mitochondrial-derived

peptides (MDP), which have a wide range of physiological functions and can explain how

mitochondria communicate within and between cells in a specific disease environment (5).

Mitochondrial-derived peptides may answer the key biological problems that have plagued
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the field for decades (such as mitochondrial-nuclear communication,

metabolic dysfunction, etc.) (6). Whether in the form of

mitochondrial-derived peptide itself or in terms of sORF,

mitochondrial-derived peptide is suitable for research as a

therapeutic agent (1).

Studies discovered mitochondrial-derived peptide called MOTS-c

has been shown to significantly reduce the level of pro-inflammatory

factors in mice and increase anti-inflammatory factors and insulin-

stimulated glucose treatment rates, as well as glucose homeostasis (7–

9). Furthermore, human studies showed that exercise increased

MOTS-c levels in skeletal muscle and blood circulation, indicating

that MOTS-c is a mitochondrial-derived peptide induced by skeletal

muscle exercise (9, 10). Additionally, more and more studies have

revealed the importance of MOTS-c in regulating obesity and diabetes

(11, 12), longevity (13), and cardiovascular disease (14). Specifically,

this paper discusses the application of mitochondrial-derived

peptides, including MOTS-c, in the treatment of diseases and

anticipates the future development direction of MOTS-c combining

synthetic biology to provide new ideas on how it can be developed

and applied.
Physiological function of MOTS-c

MOTS-c, one of the newly discovered sORF-encoded peptides, is a

16-amino acid polypeptide encoded by the mitochondrial 12S rRNA

gene and localized to mitochondria under resting conditions (Figure 1)

(7). Translation of MOTS-c peptide occurs exclusively in the

cytoplasm, as mitochondrial translation, using the mitochondria-

specific genetic code, results in tandem codons. As a result, the

polyadenylated transcript would be exported from the mitochondria.

The sequence of MOTS-c peptides, especially the first 11 residues, is

highly conserved among 14 species, including humans and mice (7).

MOTS-c, as a mitochondrial coding regulator, has endocrine-like

and nuclear transcriptional regulation on muscle metabolism (10, 15),

insulin sensitivity (16, 17) and body weight (18). Approximately 11.9-

fold increase in endogenous MOTS-c levels have been found in

skeletal muscle following exercise (compared to pre-exercise
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values), and this increase can remain for 4 hours following exercise

(19). In addition, circulating endogenous MOTS-c levels increase 1.6-

fold during exercise, 1.5-fold after exercise, and then return to

baseline levels after 4 hours. These results imply that exercise

stimulates the expression of MOTS-c, which is encoded by

mitochondria, in humans (19). Exercise is accomplished through a

signal network that crosses physiological functions in real time. Those

with limited movement can benefit tremendously from

kinesimatology, which also accelerates metabolism (10). MOTS-c,

as a new type of mitochondrial signal molecule, may stimulate

exercise-mediated physiological responses to increase endurance

(13). Therefore, MOTS-c can be used as a motion simulator to

mediate the function of the motion signal system (20).

Originally, MOTS-c was identified in the process of genetic and

pharmacological screening of metabolic regulation in human cells (21).

In fact, its metabolic effects under various pathophysiological

conditions have been confirmed by several studies. It has been

reported that MOTS-c can promote the entry of glucose into cells

through 5’-monophosphate-activated protein kinase (AMPK) pathway

to participate in glycolysis (22). Moreover, MOTS-c can improve

insulin sensitivity of skeletal muscle and inhibit weight gain and

insulin resistance caused by high-fat diet (6). However, human

experiments confirmed that only obese Chinese male children/

adolescents (5-14 years old) had significantly lower (20.3%) intra-

cycle MOTS-C levels (22). In a cohort study, plasma MOTS-c levels in

men were negatively correlated with fasting insulin levels, glycosylated

hemoglobin and body mass index (23). However, another cohort study

of 31- to 38-year-old adults found no correlation between body mass

index and plasma MOTS-c levels (10). This contradiction may be

related to the individual differences of the subjects.

MOTS-c has also been found to be involved in the regulation of

nuclear gene expression by binding to transcription factors (5, 19, 24).

Under resting conditions, MOTS-c is mainly distributed in the

mitochondria outside the nucleus (5, 7, 19). When metabolic stress

occurs, MOTS-c in cells can be transferred to the nucleus in an

AMPK-dependent manner and bind to transcription factors regulated

by ARE, thus improving the stress resistance of cells (16, 24). In

addition, the entry of MOTS-c into the nucleus requires hydrophobic
FIGURE 1

Effects of MOTS-c against diseases.
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groups, which means that MOTS-c may need the help of other

proteins that need further verification (5, 25). Furthermore, MOTS-

c plays the role of endocrine-like factors by regulating nuclear

transcription to restore homeostasis. The function may have

important implications for age-related diseases in response to

metabolic stress by promoting intracellular homeostasis, and

MOTS-c gene polymorphisms have been found to be associated

with human lifespan (18, 20). Moreover, MOTS-c may improve

diabetes by inhibiting insulin resistance and diet-induced obesity

(26). And MOTS-c can promote glucose utilization, inhibit oxidative

stress, activate NF-kB to inhibit inflammation, and effectively protect

coronary artery endothelial cell dysfunction (9).
Effects of MOTS-c against diseases

MOTS-c and aging

Gradually disordered metabolic level is one of the signs of aging,

which inhibit the normal physiological function of the body and even

lose the ability to take care of themselves (27). The reality is that aging

is a key risk factor for chronic diseases (28). Adaptation of cellular

responses to changing internal and external environments is

necessary for the health of an organism. Besides generating large

amounts of cellular energy, mitochondria are closely related to aging,

but the mechanism behind this phenomenon is unclear.

Studies have shown that the interaction of MOTS-c/NRF2 can

improve the expression of mitochondrial protective genes (5, 28, 29).

The aging process could lead to a decrease in MOTS-c levels (28, 29).

In fact, MOTS-c levels in skeletal muscle and blood circulation in

both humans and mice decrease with age. Studies have shown that

blood MOTS-c levels in young people are 11% and 21% higher than

those in middle- and old-aged people, respectively (30). In addition,

different from animal experiments, the levels of MOTS-c in skeletal

muscle of the elderly were the highest, indicating that the level of

MOTS-c in plasma and muscle decreased gradually with age (30).

This phenomenon may be attributed to the differential regulation of

tissue specificity. Furthermore, the strong correlation between

pathological results of different ages and the level of MOTS-c

suggests that higher MOTS-c is beneficial to delaying aging.
MOTS-c and cardiovascular disease

Obesity is the main culprit of cardiovascular problems (31).

Clinical evidence showed that nearly 1/3 of severely obese people

suffered from heart failure. And with the extension of the duration,

the prevalence rate will gradually increase, and the prevalence rate will

exceed 90% after 30 years (16, 32). Furthermore, obesity would lead to

ventricular remodeling and dysfunction, which destroy the structure

and physiological function of the heart, and eventually lead to heart

failure (32). A growing body of research has shown a close

relationship between MDP and the above factors, and MDP

improved the pathological response of cardiovascular disease

(CVD) through a variety of mechanisms (18, 24).

Recent studies have shown a protective effect of MOTS-c against

cardiac dysfunction and pathological remodeling (33). Peng Zhong
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reported that MOTS-c prevented the development of heart failure via

the activation of the AMPK pathway (34). Furthermore, Ismail Laher

revealed that both aerobic exercise and MOTS-c can improve heart

structure and function, thereby protecting the health of

cardiovascular (33). Functional enrichment analysis showed that

MOTS-c improved angiogenesis, inflammation and apoptosis in

terms of cell function, suggesting that MOTS-c may have the same

effect as aerobic exercise and improve heart failure in patients with

diabetes through NRG1-ErbB4 pathway (14). This study reveals a

new pathway for MOTS-c to protect against cardiovascular disease. It

has also been observed that the addition of exogenous MOTS-c

increases the level of myocardial MOTS-c, which activates AMPK

(33). In cardiomyocytes, however, the target of MOTS-c is not clearly

known, and more studies are needed to uncover its function.
MOTS-c and insulin-resistance

Insulin resistance can lead to a decrease in the number and the

abnormal morphology of mitochondria in tissue cells, which in turn

hinders the synthesis of ATP (18). MOTS-c is described as a “motion

simulator” that systematically regulates glucose metabolism in the

body and the role of muscle insulin (15).

MOTS-c enhances insulin sensitivity throughout the body

through muscles (24). Previous studies have revealed that MOTS-c

can enhance the insulin sensitivity of skeletal muscle and improve the

utilization of glucose (16, 24). The addition of MOTS-c activated the

Akt pathway in mouse skeletal muscle, which further positively

regulated the expression of MOTS-c. Given that 70% of Mel and

85% of insulin-stimulated glucose disposal enters the skeletal muscle,

the enhancement of insulin sensitivity and glucose balance by MOTS-

c may be mediated in this tissue. In addition, aging leads to increased

insulin resistance, which reduces MOTS-c levels in skeletal muscle

and blood of mice (15). It has been reported that MOTS-c improves

age-related insulin resistance in male mice by increasing glucose

intake in soleus muscles (20). The results showed that the muscles of

old mice were more resistant to insulin than those of young mice.

Interestingly, the insulin sensitivity of old mice was the same as that of

young mice after 7 days of MOTS-c intervention (7). In light of

MOTS-c’s role in increasing insulin sensitivity and glucose balance,

some studies have tested the effects of MOTS-c on inbred CD-1 mice

fed a high-fat diet (HFD). The results showed that MOTS-c treatment

prevented obesity in mice fed a high-fat diet, but did not affect the

weight of mice fed a normal diet (7). In addition, MOTS-c can

improve blood glucose balance and prevent hyperinsulinemia caused

by high-fat diet. A major benefit of MOTS-c is that it affects muscle

tissue directly, making it the most effective treatment for insulin

resistance. A major advantage of MOTS-c is that it can avoid

hepatotoxicity associated with metformin, AICAR, or methotrexate,

which means it is a potential therapeutic target (24).
MOTS-c and inflammation

By analyzing the changes in inflammatory cytokines in mice’s

serum, the analgesic effect of MOTS-c licking time was evaluated, as

well as its anti-inflammatory effects (8). The results demonstrated that
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intraperitoneal injection of MOTS-c could reduce the licking time in

the second phase of the formalin test in a dose-dependent manner.

Compound C, an AMPK antagonist, weakened the analgesic effect of

MOTS-c (9, 35). A significant decrease in pro-inflammatory cytokines

and an increase in anti-inflammatory cytokines was observed with

MOTS-c in mice serum (8). In addition, MOTS-c treatment

significantly increased the phosphorylation level of AMPK a and

inhibited the activation of extracellular signal-regulated kinase (ERK),

c-Jun N-terminal kinase (JNK), P38, and c-Fos expression induced by

formalin (8). These results suggested that the analgesic and anti-

inflammatory effects of MOTS-c were through activation of AMPK

pathway and inhibition of MAP kinase/c-Fos pathway. MOTS-c, as a

small molecular active peptide, has been reported to have potential

applications in aging, insulin resistance, cardiovascular disease, and

inflammation. In the future, the use of synthetic biology technology to

introduce MOTS-c into probiotics to achieve its accurate and

controllable expression is of great significance to human health and

the prevention of various diseases.
Development and application of
MOTS-c

With the rapid development of synthetic biology technology, the

role of genetic engineering bacteria in the treatment of various

diseases has become more and more prominent (36, 37).

Genetically engineered bacteria are bacteria that use DNA

recombination technology to transfer the target gene into bacteria

(such as E. coli) to express and produce the desired protein (38, 39).

Engineered bacteria can achieve targeted gene reprogramming,

selective functional recombination and precise space-time control,

so they are widely used in medical and pharmaceutical industries (40).

Genetically engineered bacteria have been developed as diagnostic

and therapeutic tools for the treatment of many diseases, including
Frontiers in Endocrinology 04
cancer (41), diabetes (38), inflammatory bowel disease (42, 43) and

viral infection (44). Chen Zhiyi of Nanhua University and others

designed a kind of ultrasound-responsive bacteria, which can induce

the expression of foreign gene IFN-g in an ultrasound-controlled way,

and improve the anti-tumor efficacy of the engineering bacteria in

vitro and in vivo (42). AmirZarrinpar of the University of California

genetically engineered natural E. coli isolated from the intestines of

mice to express specific genes and improve diabetes (38). In addition,

the use of bacteria as carriers to deliver drugs to tumors and other

lesions, or to modify bacteria to express or deliver targeted drugs will

greatly improve the therapeutic effect (39, 45, 46). In addition to using

genetically engineered bacteria as drug delivery carriers, extracellular

vesicles (EVs), especially exocrine bodies, originate from cells through

exocytosis and are absorbed by target cells, which can transmit

biological signals or even deliver drugs between local or distant cells

(47). However, accurate, efficient and selective identification,

separation and quantification of exocrine remains a challenge (48).

Compared with exosomes, genetically engineered bacteria have

stronger biological activity, higher effective drug concentration and

more stable drug structure in drug delivery.

MOTS-c, as a small molecular active peptide, has been reported to

have potential applications in aging, insulin resistance, cardiovascular

disease and inflammation (Figure 1). In the future, the use of synthetic

biology technology to introduce MOTS-c into probiotics to achieve its

accurate and controllable expression is of great significance to human

health and the prevention of various diseases (Figure 2). However, the

virulence and uncontrollable immune response of bacteria greatly

limit the clinical trial and application of bacterial therapy. It is an

urgent problem for researchers to improve the safety and therapeutic

effect of bacteria (37). At present, the most commonly used methods

are gene-modified bacteria and surface-modified bacteria, and some

natural bacteria such as Lactobacillus (LAB) and Escherichia coli

Nissle1917 (EcN) had been proved to be safe clinically (49, 50).

Using these bacteria as chassis bacteria will greatly improve the

clinical effectiveness.
FIGURE 2

Development and application of MOTS-c in synthetic biology.
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Conclusion

Recently, the positive effects of MOTS-c, one of the mitochondria-

derived peptides, on various diseases have been gradually discovered

and reported. MOTS-c targets skeletal muscle and can enhance

glucose metabolism. Therefore, MOTS-c plays an important role in

the regulation of cardiovascular, diabetes, exercise and longevity. It is

a new mitochondrial signaling mechanism and plays a role in

regulating intracellular and intercellular metabolism. It has been

reported that MOTS-c is a kind of exercise-induced mitochondrial

coding regulator, and the level of MOTS-c in skeletal muscle and

blood of mice decreases with age. Systemic injection of MOTS-c can

restore the level of MOTS-c in aged mice and successfully reverse age-

related skeletal muscle insulin resistance. At the same time, muscle

cells overexpressing MOTS-c can improve glucose uptake, which is

mainly related to the activation of AMPK pathway. Additionally, as

an endocrine factor, MOTS-c is likely to exert its effects through

cellular entry, which is an ongoing investigation at multiple ends,

including its cellular uptake. Understanding the detailed molecular

details of MOTS-c is an ongoing endeavor. It was reported that after

30 minutes of treatment, MOTS-c can exert its effects by entering the

cells and exerting its effects. There is still a great deal of unclarity as to

how MOTS-c enters cells without being degraded and retains its

biological activity. A future study of the mechanism by which MOTS-

c enters cells will be of great importance in order to determine how it

exerts its clinical therapeutic effect. As a potential target for treatment

development, MOTS-c is expected to be used in the treatment

development of a variety of diseases. Synthetic biology techniques,

such as gene editing and genetic engineering, can greatly improve

biological activity and deliver MOTS-c directly to the acting site, thus

further expanding the therapeutic application of MOTS-c. However,

the subsequent biosafety problem has always been the focus of
Frontiers in Endocrinology 05
attention. How to reduce or eliminate the toxicity of genetically

engineered bacteria to the body is a key scientific problem to be

solved urgently.
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