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The signaling pathways downstream of the insulin receptor (InsR) are some of

the most evolutionarily conserved pathways that regulate organism longevity

and metabolism. InsR signaling is well characterized in metabolic tissues, such as

liver, muscle, and fat, actively orchestrating cellular processes, including growth,

survival, and nutrient metabolism. However, cells of the immune system also

express the InsR and downstream signaling machinery, and there is increasing

appreciation for the involvement of InsR signaling in shaping the immune

response. Here, we summarize current understanding of InsR signaling

pathways in different immune cell subsets and their impact on cellular

metabolism, differentiation, and effector versus regulatory function. We also

discuss mechanistic links between altered InsR signaling and immune

dysfunction in various disease settings and conditions, with a focus on age

related conditions, such as type 2 diabetes, cancer and infection vulnerability.

KEYWORDS

insulin resistance, immunometabolism, obesity, cancer, infection, inflammation, aging,
pre-eclampsia
1 The insulin receptor in the immune system

Insulin is a vital hormone that controls the availability of glucose, required for nearly all

cell processes (1). The cellular response to insulin has been heavily studied in liver, skeletal

muscle, and fat cells due to their role in governing systemic nutrient availability. However,

immune cells also rely on insulin for their metabolic needs and function, with activated and
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effector immune phenotypes exhibiting increased energetic demands

(2). Insulin binding receptors, including the insulin receptor (InsR)

and insulin-like growth factor 1 receptor (IGF1R), are expressed on

cells of bothbranches of the immune system. Innate immune cells (e.g.,

monocytes, macrophages, neutrophils, and dendritic cells), as well as

adaptive immune cells (e.g., T cells and B cells) express InsR/IGF1R at

various stages of activation (3–5). In this review, we will discuss how

InsR signaling modulates downstream immune cell processes

impacting the overall immune response. Because insulin-mediated

effects on immune cells, including insulin resistance, can drive both

pro- and anti-inflammatory effects, we will also discuss proposed

mechanisms behind insulin’s pleiotropic effects and highlight their

implications in disease.
1.1 Overview of the insulin
signaling pathway

Insulin signal transduction pathways downstream of the

phosphorylated InsR/IGF1R have been studied in some immune

cells. Insulin binding to the InsR and to the IGF1R promotes the

uptake of glucose, its storage in the form of glycogen and lipids as

well as its biosynthetic use (1). Both receptors dimerize and auto-

phosphorylate at tyrosine residues upon insulin binding with

differential affinities to the insulin ligand. Signal transduction

events downstream of insulin binding have been extensively

summarized previously (6). In brief, InsR/IGF1R signaling begins

with the recruitment of insulin receptor substrates (IRS; IRS-1

through 6), with different isoforms enriched in different cell types.

An IRS scaffold is generated leading to the formation of Src-

homology 2 (SH2) domains capable of activating two branches of

signal transduction: the Phosphatidyl inositol-kinase (PI3K)/

Protein kinase B (PKB), or Akt pathway, and the Mitogen

activated protein kinase (MAPK) pathway. Activation of P13K

leads to phosphorylation of Akt at T308 via phosphoinositide-

dependent protein kinase-1 (PDK1) and at S473 viamammalian (or

mechanistic) target of rapamycin complex 2 (mTORC2). The

complete phosphorylation of Akt drives activation of mTORC1

via the inactivation of Tuberous Sclerosis-1/2 (TSC1/2) (7). The

activated mTORC1, in turn, activates ribosomal protein S6 kinase

(S6K) and eukaryotic translation initiation factor 4E (eif4E) to exert

the multiple cellular effects assigned to the complex.

Importantly, mTORC1 and Akt driven signaling cascades control

downstream pattern-recognition receptor (PRR) expression,

epigenetics, autophagy, and metabolic programs like glycolysis,

pentose phosphate pathway (PPP), oxidative phosphorylation

(OXPHOS), and glutaminolysis, in immune cells (8). Because

mTORC1 and Akt also respond to nutrient availability, growth

factors and stress signals, their potentiation by insulin signaling

serves to couple energetic demands with immune cell function.

The response to insulin can take on distinct forms, for example,

due to the context dependent use of IRS and Akt isoforms in each

immune cell subtype (9, 10). Also, insulin can boost existing immune

responses due to crosstalk with other pathways. For instance, in

addition to mTORC1 mediated metabolic flux, InsR/IGF1R

mediated Akt activation drives phosphorylation with numerous
Frontiers in Endocrinology 02
other target proteins, including inflammatory factors. For example,

Akt activates the nuclear factor kappa B (NF-kB) pathway via

degradation of inhibitor of kB (IkB) (11). In immune cells, NF-kB is

a cardinal factor for activation, controlling maturation, proliferation

andproductionof chemokines andcytokines suchasCCL2andTNFa.
Thesemolecules recruit and activate both innate andadaptive immune

cells, orchestrating local and systemic inflammatory responses.

The second branch of InsR/IGF1R signal transduction triggered at

the receptor/IRS complex is the MAPK-ERK pathway. The SH2

domains at the IRS scaffold also serve as docking sites for Shc

adaptor proteins. Shc proteins activate the Ras-GTPase which then

turns on the MAPK-ERK pathway. Activated ERK1/2 also has been

recognized as a major pathway responsible for important

consequences on immunity driving immune cell proliferation,

metabolic re-programming, differentiation, inflammasome activation

and cytokine production (12–15). Importantly, bothMAPK and PI3K

pathways promote glucose uptake via several glucose transporters

(GLUTs), including GLUT3, affecting overall energy metabolism in

immune cells (16). The cascade of insulin signal transduction via the

PI3K and ERK pathways serves to create points of crosstalk and

regulation of the insulin response. Insulin signaling thus potentiates

other immune activation signals.However, it can also be dampened by

several important negative feedback mechanisms. The activated S6K,

IKKB and JNK proteins can block and degrade IRS-1 through serine

phosphorylation of IRS-1/2 (17), modulating the InsR/IGF1R cascade

at the earliest stage. Many of these proteins are also activated within

inflammatory signaling pathways (e.g. TNFR-JNK) and contribute to

insulin resistance (IR) (6). Together, this network of signaling events

can both activate and attenuate inflammation in a context-

dependent manner.

A third route of InsR signaling is through the recently described

mechanism where InsR translocates into the nucleus and binds to

promoter regions of key genes associated with immune cell

recruitment (18). In this pathway, activated InsR colocalizes with

host cell factor-1 (HCF-1) to mediate direct transcriptional activity

(18). This phenomenon was primarily observed in cultured liver

cells, and it remains to be seen whether a similar mechanism occurs

in immune cells.

Insulin signaling is intricately tied to metabolic responses in

immune cells as alluded to earlier. Thus, we will next discuss in-

depth how insulin action interacts with these nutrient sensing

pathways and metabolic responses to alter inflammatory states in

innate and adaptive immune cells.
2 Insulin action in innate immunity

2.1 Macrophages and monocytes

Macrophages and monocytes are best recognized for their

ability to sense the tissue environment and polarize to orchestrate

an appropriate immune response at the site of infection or damage.

Protein expression of both InsR and IGF1R has been reported on

monocytes and macrophages (19, 20). In vitro, insulin treatment of

mouse macrophages potentiated the LPS-mediated production of

pro-inflammatory cytokines, IL-6 and TNFa, in a PI3K dependent
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manner (21), with a similar response in human monocytes (22).

Several studies using myeloid lineage knockouts support that

insulin signals are required for pro-inflammatory polarization.

Indeed, myeloid lineage specific genetic ablation of InsR, IGF1R

or IRS leads to the anti-inflammatory (or M2-like) polarization of

macrophages (3, 23, 24), consistent with an overall pro-

inflammatory (or M1-like) biasing by InsR/IGF1R signaling. Key

studies on the direct effect of insulin on innate and adaptive cell

types are summarized in Table 1.

It has been recognized that pro-inflammatory innate immune cells

rely on glycolysis and the PPP to meet biosynthetic demands, while

immature and regulatory immune cells rely more heavily on OXPHOS

and fatty acid oxidation (FAO) for obtaining energy and to inhibit

metabolic drivers of inflammation (36, 37). Consistently, inflammatory

M1-like macrophages show increased glycolysis, PPP, inducible nitric

oxide synthase (iNOS) activity, and fatty acid synthesis, required tomeet

the biosynthetic demands of activation and corresponding with pro-

inflammatory cytokine burst (38). Also, anti-inflammatory M2-like

macrophages show increased glutamine metabolism, associated

OXPHOS, arginase-1 activity, and FAO (39). A major mechanistic

mediator of insulin driven pro-inflammatory responses is the mTOR

complex, which supports glycolytic metabolism (40). Therefore, we

speculate that insulin driven mTORC1 activation provides metabolic

support for M1-like polarization. In myeloid cells, lineage-specific

deletion of Raptor, a specific component of mTORC1, elevated the

M2 macrophage signature, consistent with the effect of TSC1 deletion

(mTOR activating), which results in sustainedmTORC1 activation and

a corresponding decrease in the M2 signature (41). Insulin-mTORC1

axis is also expected to promote pro-inflammatory outcomes via the

inhibition of autophagy. Autophagy contributes to OXPHOS via lipid

catabolism,which is inhibiteduponmTORC1activation (42).Theabove

studies suggest that insulin signaling may have dominant effects on

preferential inflammatory pathways via boosting glycolysis, PPP, and

fatty acid synthesis (Figure 1).
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However, M2-like macrophages also require glycolysis up to a

threshold level to meet energetic demands (43). Therefore, insulin

signaling may also participate in immune tolerance in certain

situations. A new understanding of macrophage polarization states

across both pro-inflammatory and suppressive disease conditions

supports the adaptation of a spectrum polarization model (44),

especially in cases of chronic unresolving inflammation. This model

allows us to better appreciate heterogeneousmacrophage responses to

insulin depending on disease context.
2.2 Neutrophils

Neutrophils perform the important function of trapping and

clearing pathogens as well as damaged tissue by producing reactive

oxygen species (ROS) and releasing neutrophil extracellular traps

(NETs). In vitro priming of neutrophils with insulin prior to

activation with N-formyl oligopeptide leads to increased

formation of ROS suggesting crosstalk with formyl peptide

receptor mediated PI3K signaling (26). Furthermore, PI3K

signaling was required for other neutrophil functions like

cytokine production, chemotaxis, and degranulation (45), which

maybe similarly potentiated by insulin treatment. Additionally,

IGFR1-PI3K signaling was shown to delay apoptosis of the

normally short-lived neutrophils (27). The mTORC1 pathway

also promotes the release of NETs via HIF-1a (46). This suggests

that insulin-mediated mTORC1 activation may also drive NET

formation, influencing the clearance of infection. The context-

dependent activation and metabolic reprogramming of

neutrophils via InsR/IGF1R requires further study, especially

given the key role neutrophils play in wound healing and infection.

A cell type closely related to neutrophils is the myeloid derived

suppressor cell (MDSC). Mainly studied in the context of cancer

and wound healing, MDSCs are similar to alternatively activated
TABLE 1 The acute effects of insulin and IGF1R signaling on immune cells by cell type.

Immune
cell Adjuvant effects of acute InsR/IGF1R signaling References

Macrophages

Insulin drives increased production of inflammatory cytokines (IL-6, TNFa) in the presence
of LPS/TLR activation
InsR required for M1-like polarization

Tessaro et al. (21); Ratter et al. (22)
Mauer et al. (3); Knuever et al. (23); Baumgartl et al.
(24),

Dendritic
cells

Insulin drives increased scavenger receptor expression via ERK signaling with and without
TLR activation Lu et al. (25)

Neutrophils

Insulin drives increased ROS formation via potentiation of the PI3K signal upon priming
with N-formyl oligopeptide
IGF1 delays apoptosis via PI3K signaling

Safronova et al., 2001 (26)
Himpe et al. (27)

Eosinophils
Insulin drives increased peripheral eosinophil levels and mucus production in the lungs of
healthy and diabetic mice upon ovalbumin allergen challenge. Ferriera et al., 2017 (28)

ILCs
IGF1R in ILC3s supports differentiation and function against respiratory pathogens in
neonatal lungs Oherle et al. (29)

T cells

Increased IL-2 responsiveness and chemotaxis, improved glycolytic and mitochondrial
metabolism, increased IFNy production is mediated by InsR
Th17 polarization of CD4 T cells via IGF1R
Insulin drives reduction of IL-10 production by regulatory T regs

DeBenedette and Snow (30); Berman and Center (31);
Fischer et al. (32); Tsai et al., 2018 (5)
DiTorro et al., 2020 (33)
Han et al. (34)

B cells Undetermined –
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neutrophils and function to drive immune tolerance (47). While

MDSCs rely on Akt-mediated STAT3 and HIF-1a signaling to

produce regulatory effectors like ROS, IL-10 and Arg-1 (48, 49),

they also require autophagy for MHC downregulation and rely on

OXPHOS metabolism (50). The impact of insulin on MDSCs

biology is a new consideration, with very little known about the

expression of InsR/IGF1R on MDSCs or the basic in vitro effect

insulin has on this cell type.
2.3 Eosinophils

Eosinophils have been well-recognized for their response to

allergens and helminth infection with accumulating evidence for

their role in tissue regeneration upon injury (51). Activated

eosinophils upregulate IGF1R and therapeutic targeting of IGF1R

can attenuate eosinophil mediated inflammation (52), suggesting a

possible role for insulin/IGF signals in eosinophil function.
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Similarly to other immune cells, glycolysis is increased upon

activation in eosinophils (53). Correspondingly, insulin treatment

leads to increased peripheral eosinophil levels and mucus

production in the lungs of healthy mice upon ovalbumin allergen

challenge (28). Furthermore, eosinophils play a key role in immune

cell crosstalk. For example, activated eosinophils have been shown

to produce IL-4 and IL-13 to sustain the M2-like suppressive

macrophage phenotype (54), thereby promoting wound healing

and fibrosis. More work is needed to understand the impact of

insulin in these processes, such as whether insulin exposed

eosinophils can feedback onto inflammatory macrophages to

regulate tissue homeostasis.
2.4 Dendritic cells

Dendritic cells (DCs) perform the key functions of antigen

capture and presentation to lymphocytes required for adaptive
FIGURE 1

Insulin crosstalk with immune signalling pathways in macrophages. PAMPs/DAMPs trigger surface and endosomal TLRs, signalling largely via MyD88
to NF-kB to drive cytokine production, proliferation, and scavenger receptor expression. InsR/IGF1R signals through MAPK and Akt/mTORC1 to
boost cytokine production and proliferation, supporting the TLR response. These signalling events also drive downstream metabolic programming to
support the redox balance and energetic demands, promoting an inflammatory phenotype. Activation of mTORC1 also blocks autophagy, which
provides substrates for OXPHOS. Various points of crosstalk exist between InsR, PRRs, cytokine receptor, and nutrient sensing responses can also
drive insulin resistance via negative feedback mechanisms (dotted lines), for example in cases of chronic hyperinsulinemia. The degree to which
each intersecting pathway is stimulated likely determines the nature of the pleiotropic phenotypes seen in IR macrophages. PAMPs, Pathogen-
associated molecular patters; DAMPs, Damage-associated molecular patterns; OXPHOS, Oxidative phosphorylation; PRR, pattern recognition
receptor; TLR, Toll-like receptor; MyD88, Myeloid differentiation primary response 88; NF-kB, Nuclear factor kappa B; InsR, Insulin receptor; IGF1R,
Insulin-like growth factor 1 receptor; ERK, extracellular regulated kinase; mTORC1, mammalian target of rapamycin complex 1.
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immunity. In vitro insulin treatment drives maturation and

increased scavenger receptor expression in human monocyte-

derived DCs in an ERK-dependent manner (25). Additionally,

TLR activation in DCs and subsequent Akt-phosphorylation

directly boosts hexokinase 2 (HK2) function, an enzyme which

catalyzes the first step in glucose metabolism, leading to increased

glycolysis and PPP-derived NADPH to fuel lipid synthesis (55).

Consistent with its adjuvant functions in other immune cells,

insulin likely intersects with TLR signaling at boosting

phosphorylated Akt signals upstream of mTORC1, potentially

contributing to overlapping inflammatory mediator induction in

DCs. In plasmacytoid DCs (pDCs), a subset of DCs shown

to be important in anti-viral responses and autoimmune

pathophysiology, type I IFN production upon TLR activation

requires mTOR signaling (56). This interaction suggests that

insulin-mediated mTORC1 activation may also augment IFN-I

production in pDCs, aggravating autoimmunity or boosting anti-

viral responses.

Although the direct role of the InsR-mTOR pathway on DCs

has not been studied, the role of mTORC1 on DC activation and

maturation has been highlighted in various studies (57). The cDC1

subset is described to cross-present antigen to CD8+ T cells, while

cDC2s present antigen to CD4+ T cells. Studies using mice with

conditional knockout of Raptor in the DC lineage showed that

mTORC1 supports glycolysis while impairing CD8+ T cell priming

by cDC1s, with no effects on CD4+ Th2 priming by cDC2s (58).

This effect suggests a likely role for insulin-mediated mTORC1

activation in inflammatory metabolic reprograming in DCs, while

inhibiting autophagy-dependent functions, such as antigen

presentation, in DCs in a subtype-specific manner. Fully

understanding the complex effect of insulin on antigen

presentation in DCs will provide critical insights into their role in

orchestrating immune dysregulation in diseases with disrupted

insulin homeostasis.
2.5 Natural killer (NK) and other Innate-like
lymphoid cells (ILCs)

ILCs are a family of lymphocytes with the capacity to rapidly

release cytokines and perform killing functions in response to injury

or infection but lacking adaptive rearranging antigen receptors like

traditional lymphocytes but with the capacity to rapidly release

cytokines and perform killing functions in response to injury or

infection. Three widely accepted groups of ILCs have been

documented: ILC1, ILC2 and ILC3, which are classified into

further subtypes depending on the tissue (59). Whether and how

ILCs respond to insulin/IGF1 as seen in other innate immune cell

studies with a key role for mTORC1 and PI3K pathways is mostly

unknown. Natural cytotoxicity receptors, found on all ILC subtypes,

signal via the PI3K pathway (60) and could potentially cross-talk

with InsR to aggravate ILC-mediated cytotoxicity and

inflammation. Group 1 ILCs include NK cells and mediate

crosstalk between the tissue and the immune response with the

capacity to produce inflammatory cytokines. In NK cells, mTORC1

driven glycolytic metabolism was shown to be required for
Frontiers in Endocrinology 05
activation, cytotoxicity, and maturation (61). Interestingly,

autophagy was required for catabolic processes and inhibition of

apoptosis in ILC1s upon cell stress (62). Thus, we speculate, that

insulin may boost acute ILC1/NK cell activation through mTORC1,

while insulin-mediated inhibition of autophagy, may be detrimental

for ILC1 survival in the face of stress.

In contrast to ILC1s, ILC2s are producers of type 2 cytokines

like IL-4, IL-13, and IL-5 and can also drive tolerogenic activation of

other immune cells. ILC2s were found to require glycolytic

metabolism for cytokine production mediated by mTORC1 upon

activation (63). Interestingly, the baseline level of OXPHOS

required to the sustain naïve ILC2s, was found to be greater

compared to NK cells (64). Speculating on the pro-inflammatory

role of insulin in other immune cells, we expect differential effects of

insulin on the suppressive ILC2s versus on pro-inflammatory ILC1/

NK cells due to their differential thresholds of OXPHOS at baseline.

ILC3s are a distinct population of ILCs that produce IL-22 and

IL-17 and play a role in mucosal homeostasis and Th17 responses.

In ILC3s, mTORC1 was required for sustained HIF-1a and RORgt
expression and production of cytokines (29). Further, conditional

Igf1r ablation in ILC precursors driven by the RORgt promoter, lead

to aberrant ILC3 differentiation and poor defense against

respiratory pathogens in neonatal lungs, implying crosstalk with

resident IGF1 producing fibroblasts and a role for ILC3s in early-

onset asthma (30). The role for insulin/IGF1 on ILC3s in other

mucosal tissues like the gut remains to be studied considering its

critical role in gut healthy and barrier function in sustaining

metabolic homeostasis.
3 Insulin action as an
anti-inflammatory effector in the
innate immune system

In contrast to the large body of evidence supporting the pro-

inflammatory role of insulin in innate immune cells, some studies

suggest that insulin may also dampen inflammation in certain ways.

For example, the response to insulin in obese subjects or purified

immune cells led to reduced TLR activation and transcription of

TLRs (65, 66). Further, PI3K-Akt also inhibits the transcription

factor, forkhead box O1 (FOXO1), a downstream target of Akt

which is involved in cell proliferation, energy metabolism and

oxidative stress (67). In macrophages, deficiency of FOXO1 has

been shown to promote alternative polarizaion via the inhibition of

glycolysis (68) and downregulation of target gene tlr4 (65). The

reduction in FOXO1 and TLR transcription may serve to dampen

insulin mediated inflammation.

Insulin is also expected to stimulate the anti-inflammatory

factor Nrf2 via the ERK pathway (69). Among many other

functions, Nrf2 blocks production of inflammatory effectors such

as ROS and IL-1b (70), which may support the anti-inflammatory

polarization of macrophages and neutrophils. As alluded to earlier,

insulin-mTORC1 axis also inhibits autophagy required for antigen

presentation by macrophages and DCs and thereby, the activation

of the adaptive immune response (57). Outside of these cell intrinsic
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effects, insulin also drives a systemic reduction in glucose levels.

Low glucose levels result in fewer advanced glycation end products

(AGEs) leading to dampened RAGE-mediated NF-kB activation

and reduced inflammation (71). To better understand the action of

insulin on innate immunity, we will need to delineate the short- and

long-term as well as dose-dependent effects of insulin exposure, as

the immune response to insulin may be subject to negative feedback

mechanisms, which may have evolved to prevent tissue damage and

unresolving inflammation.
4 Insulin action in adaptive immunity

4.1 T cells

The adaptive immune system is highly specialized and

orchestrates tumor surveillance, anti-microbial responses, and

generates immunological memory. Notably, cells of the adaptive

immune system also express the InsR, which rises in expression

upon activation (72–74). This increase in InsR expression likely

reflects the T cells’ increasing energetic and biosynthetic demands.

While a limited number of studies ascribed an anti-inflammatory

role to insulin (73), emerging data also support an important pro-

inflammatory role of InsR signaling in optimal T cell-mediated

immunity (5, 33, 75). Addition of insulin to cultured T cells in vitro

promoted IL-2 responsiveness (31), and chemotactic activity (32),

which was accompanied by increased nutrient uptake and glycolytic

reprogramming necessary for optimal T effector function (5). Thus,

T cells lacking InsR expression exhibited an impaired glycolytic and

mitochondrial metabolism, and reduced both IFNg production and

antigen-specific expansion upon influenza infection (5, 33).

Consistent with the role of InsR in promoting inflammation and

immunity, InsR signaling has been shown to dampen regulatory T

cell (Treg) function in the setting of obesity and aging (35, 76).

Interestingly, mTORC1 inhibition during the contraction phase

promoted CD8+ T cell memory formation and function (77, 78). A

recent study showed that InsR is dispensable for an effective

memory CD8+ T cell response (79), suggesting that the

immunostimulatory effects of insulin may selectively act during T

cell activation and effector differentiation stages where glycolytic

metabolism is critical, but not during memory differentiation which

i s predominant ly supported by mitochondr ia l f a t ty

acid metabolism.

T cells also express IGF1R, which signals through the Akt-

mTORC1 axis (80) to regulate Th17/Treg differentiation both in

vitro and in vivo (34). In vitro, stimulation with natural ligands of

IGF1R favored the polarization of naïve CD4+ T cells towards Th17

phenotype and away from Foxp3+ Tregs. This change was

accompanied by upregulated HK2 transcripts and glycolytic and

mitochondrial metabolism within in vitro-differentiated Th17 cells.

Furthermore, igfr1 deletion in CD4+ T cells reduced IL-17A-

expressing CD4+ T cell levels, increased central nervous systems-

infiltrating Tregs, and protected against experimental autoimmune

encephalomyelitis (34). Of note, these findings are in contrast to

earlier reports, where IGF-1 was shown to expand Tregs and protect

against autoimmune disease models of T1D and EAE (81). Here,
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Treg-specific genetic deletion of igfr1 led to the loss of IGF-1’s

protective effects. The discrepancies could arise from differences in

the differentiation stage at which IGF-1 signals are perceived,

during the activation and differentiation of naïve T cells (34, 82),

or in pre-activated/differentiated T cell subsets (80, 83). The type

and dosage of IGF-1R ligands, and signaling through IGF1R vs

IGF1R/InsR heterodimers, could also contribute to the

observed inconsistencies.
4.2 B cells

B cells are primary mediators of the adaptive and humoral

immune response, achieving their functions via cytokine

production, antibody secretion, and modulation of other immune

cells (84). The exact role of InsR signaling in B cells has not been

elucidated. However, the InsR has been shown to be expressed on B

cells (74, 85) and is speculated to activate downstream PI3K/Akt

and MAPK pathways much like in other immune cells.

During B cell development, PI3K signaling mediated by IL-7R

and pre-BCR are required for the transition from the pro-B to pre-B

and beyond the pre-B stages (86). In the peripheral B cell subsets,

PI3K and Akt play a significant role in the specification of marginal

zone (MZ) and B-1 cells (87–90). PI3K/Akt signaling is also crucial

to B cell survival, activation, differentiation, and effector functions

(Figure 2) (86, 91, 92). Cumulative PI3K signaling through tonic

BCR signaling and BAFF-R is required for the growth and survival

of peripheral B cells (93–96). Interestingly, the anti-diabetic drug

metformin was found to attenuate BAFF-induced B cell

proliferation and survival by inhibiting the mTORC1-PTEN/Akt-

Erk1/2 signaling pathway (97). In the germinal center (GC) of

peripheral lymphoid organs, PI3K plays a dual role. It is required

for BCL6 expression, the transcription factor regulator of GC

formation and differentiation of B cells into long-lived plasma

cells (98), and maintenance of the GC reaction in B cells (86, 98–

101). In contrast, PI3K also represses B cell identity, favoring

plasma cell fate decision through IRF4 and Blimp-1 expression

(101–104). These features are consistent with PI3K’s role in

maintenance of the GC reaction especially in the light zone (105).

Given this important role for PI3K in orchestrating GC reactions, it

will be interesting to dissect how insulin and its receptor impacts

such reactions in B cells.

Interestingly, PI3K signaling has also been shown to modulate

class switch recombination (CSR), as pharmacological inhibition or

B cell-specific genetic deletion of p110d/a enhanced both IgG1 and

IgE CSR in mice (106–108). Pten deletion, a negative regulator of

PI3K signaling, also demonstrated significant reductions in IgG1

and IgE CSR (106). Together, IgG1 and IgE are mostly involved in

type 2 immune responses, such as in the development of allergic

Th2-mediated airway inflammation (109), and pharmacological

blockade of p110d PI3K has been suggested to be an effective

treatment for allergies and atopic disease (108). More work is

needed to determine if these pathways are similarly impacted by

insulin signaling.

The role of Ras/MAPK signaling in B cells is well documented

(110, 111). Erk signaling is necessary for the tonic BCR signaling
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required for immature B cells to differentiate into transitional and

mature B cells (112). Erk was also shown to play a role in survival

and maintenance of mature, antigen-specific IgG1+ B cells in the

periphery (113). Erk is also necessary for the expression of Blimp-1

in plasma cells (114) and degradation of BCL6 (115).

In B cells, IGF1R expression is high in the pre-pro- and non-B

cell bone marrow cells and decreases during differentiation, whereas

InsR and IRS-2 expression increase during differentiation (74). The

IGF1R was also expressed in the MZ and follicular (FO) splenic B

cell populations. IGF1R deletion in B cells of chimeric mice showed

no significant change in B cell development or peripheral subsets

and did not affect BCR signaling. However, IGF1R deletion

impaired T cell independent- but not T cell dependent-antibody

response. The authors speculated that this effect was due to

impaired IRS-PI3K signaling which regulates T cell independent

responses (74). In patients with Grave’s disease, there was a subset

of B cells with increased IGF1R expression which showed increased

B cell proliferation and IgG production in response to IGF1 and

CpG (TLR9 ligand) treatment (116). IGF1 has also been shown to

increase IgG subtype production in human tonsillar and peripheral

B cells in a CD40-dependent manner (117, 118). Interestingly, IGF2
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was also shown to enhance regulatory B cells (Breg) proliferation

and IL-10 production in response to specific antigen in an

ovalbumin (OVA) allergic intestinal inflammation model (119),

suggesting a role for IGFs in anti-inflammatory functions.

Although the effects of B cell InsR signaling have been less

studied, there is likely significant metabolic overlap. Upon

activation via BCR signaling, B cells rapidly increase glucose and

amino acid uptake and glucose transporter GLUT1 expression in a

PI3K-dependent manner (120–123). It is interesting to note that B

cells rely less on aerobic glycolysis compared to T cells upon

activation (120). Instead, BCR signaling diverts glucose

catabolism away from glycolysis to: 1) the PPP to generate

NADPH, crucial for neutralizing ROS and maintaining cellular

redox status (121), 2) the de novo lipogenesis via ATP-citrate lyase

to supply activated B cells with phospholipids for morphological

changes (123), 3) the TCA cycle for efficient production of ATP

through OXPHOS (120) and 4) the hexosamine pathway to allow

for antibody glycosylation in long-lived plasma cells (124).

Glycolysis appears to be dispensable for B cell activation and

instead supports activation through redox maintenance through

the PPP pathway, whereas OXPHOS and glutamine metabolism
FIGURE 2

Insulin signaling functions as an adjuvant of B cell responses. Proposed crosstalk between InsR and BCR/CD19 and PRR signaling pathways. In the
presence of antigen-BCR mediated ERK signaling and TLR-ligand mediated IRF and NF-kB signaling, the additive effect of InsR/IGF1 signaling is
expected to drive inflammatory responses. This includes boosting glycolysis and nutrient transport, as well as maturation and antibody production,
cytokine production, antigen presentation and proliferation. BCR, B cell receptor; TLR, Toll-like receptor; InsR, Insulin receptor; IGF1R, Insulin-like
growth factor 1 receptor; mTORC1, mammalian target of rapamycin complex 1; ERK, extracellular regulated kinase; IRF, interferon regulatory factor;
NF-kB, Nuclear factor kappa B.
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were shown to be indispensable for B cell growth and differentiation

(125). Future studies using reductionist models will be important to

tease out effects of insulin on B cell metabolism.
5 Insulin action on immunity in
disease and aging

Given the recent advances summarized above, we propose that

insulin plays a critical role in regulating both innate and adaptive

immune cell function through fine tuning intrinsic metabolic

programming. These findings have particularly important

implications in diseases where insulin signaling is dysregulated, as

such alterations could promote or potentiate the immune response. In

the following sections,wediscuss implications of altered InsRsignaling

in immune cells in disease states that are accompanied by

inflammatory changes and how they contribute to shaping disease

outcomes. Of note, while we focus on only a few conditions, it is

plausible that any condition involving an immune response, including

autoimmunity, would have relevant insulin-immune interactions.
5.1 Insulin on immune cells in obesity-
related insulin resistance

A major driver of obesity-related IR is the establishment of low-

grade chronic inflammation in metabolic tissues, including liver,

muscle, and adipose tissue, especially visceral adipose tissue (VAT)

(126). Within these tissues, immune cells such as macrophages and

lymphocytes accumulate and produce pro-inflammatory cytokines,

which in turn leads to IR and hyperinsulinemia. The role for

hyperinsulinemia as a driving factor in this process is poorly

understood, though previous work has implicated insulin as a global

driver of VAT inflammation (127). Reduction of circulating insulin

levels by approximately 50% in obese mice, using a diazoxide or

streptozotocin (STZ) b-cell ablation regimen, led to a decrease in

VAT macrophage expansion and a reduction in expression of pro-

inflammatory cytokines/chemokines, such as CCL2, TNFa, IL-6, or
IL-1b in VAT (127). Diet-induced obesity leads to accumulation of

resident ILC1s by IL-12 production within the VAT which in turn

drove pro-inflammatory polarization of macrophages via IFNg
production (128). However, eosinophils, which produce type 2

cytokines and promote M2-like states in macrophages, have been

shown to have protective effects in obesity (54). Myeloid lineage-

specific knockout of InsR protected against IR and associated VAT

inflammation (3). In such studies with high-fat diet (HFD) fed mice,

effects of reducingpro-inflammatoryparameters in fat are seen inmice

asearly as4weeksofHFD.Thus it is likely that insulin is a critical driver

of VAT inflammation early in disease (3, 24), potentially before

marked changes in glucose levels occur.

5.1.1 Insulin resistance in the immune system -
an emerging paradigm?

Immune-mediated inflammation plays an important role in

driving obesity-related IR (3, 21–24). We and others have shown
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that obesity is associated with increased infiltration of

proinflammatory macrophages and adaptive immune cells in the

liver, the intestines, and in the expanding VAT (84, 129–133), as

well as a reduction in Tregs (35). On the other hand, this meta-

inflammatory state is associated with an inability of the immune

system to respond appropriately to certain foreign or tumor

antigenic cues. In the context of anti-microbial immunity,

functional defects in both humoral and cellular arms of the

immune response have been observed across multiple species and

disease models (134–137), although mechanistic insights are limited

and inconclusive.

One possible mechanism that could explain these hallmark

complications of diabetes might be that the cells of the immune

system are also becoming insulin resistant themselves, leading to

weakened overall effector function (138). This notion would raise

the question of whether such cell-intrinsic IR underlies the observed

immune impairments. Indeed, some work points to insulin being a

new type of “metabolic adjuvant” to acutely boost immune cell

action (5). For instance, mice in which the InsR is ablated

specifically in T cells, a model of near complete immune cell IR,

are vulnerable to viral infections such as H1N1 influenza due to

poor T cell responses (5). Consistently, as we will discuss below,

viral infections induce pro-inflammatory cytokine signaling which

acutely reduces systemic insulin sensitivity in order to boost

available insulin to immune cells for optimal anti-viral immunity

(75). However, prolonged exposure to hyperinsulinemia would

likely break this system if immune cells themselves became

resistant to the action of insulin. This concept may have been

especially relevant during the recent COVID-19 pandemic since

obesity was a risk factor for poor outcome (139), as it was associated

with weaker adaptive responses to clear the virus (140). While poor

glycemic control associated with obesity also likely contributes to a

dysfunctional immune response (141), studies from autopsied

patients dying of severe COVID-19 show that insulin signaling

pathways are amongst the most downregulated in tissue/immune

cell infiltrated lung samples, linking local tissue insulin resistance to

poor outcome (142, 143).

Some of the mechanisms of intrinsic immune system insulin

resistance at the InsR are likely related to negative feedback

mechanisms induced by hyperinsulinemia. Mechanistically, the

accumulation of S6K and IKK, part of the mTORC1 and NF-kB

pathways respectively, can degrade IRS-1 (11, 17). Because the IRS

complex is required for early events in the insulin signaling

pathway, negative feedback mechanisms targeting IRS may

completely reduce the insulin response with overstimulation. In

addition to built-in negative feedback mechanisms, disease-

associated aberrant inflammatory and metabolic signaling can

also promote the serine phosphorylation of IRS and dampen

insulin sensitivity. For instance, inflammatory cytokines such as

TNFa directly signal to impair insulin sensitivity (reviewed in 144).

Elevated free fatty acids can also impair insulin-stimulated PI3K

activation (145). These additional mediators of intrinsic immune

cell insulin resistance may occur during both obesity and infection.

Another possible mechanistic consequence of intrinsic immune

cell IR is differential use of Akt isoforms. Akt has three leading

isoforms, of which Akt2 is the major isoform mediating insulin
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signals involved in glucose homeostasis (146). Greater levels of

mTORC1 activity and lower Akt2 activation levels were observed in

IR macrophages correlating with increased glycolysis (138).

Accordingly, Akt2 deficiency increased M2-like signature, while

Akt1 deficiency led to increased M1-like inflammatory signatures,

supporting that Akt2 silencing can phenocopy insulin resistant

macrophages in macrophages (138, 147). Differential effects of Akt1

and Akt2 have also been described in neutrophils and adaptive

immune cells (148, 149).

Nonetheless, whether immune cells become insulin resistant

with longstanding exposure to hyperinsulinemia and inflammatory

stimuli is only beginning to be addressed. Exposure to insulin at

supraphysiological levels and/or extended duration can lead to IR

and altered immune cell function in culture studies. Culture with

high levels of insulin inhibited Treg-derived IL-10, and impaired the

ability of Tregs to exert cytokine mediated immune suppression,

potentially explaining reduced Treg function in obesity (35).

Culture of macrophages with high insulin levels led to

macrophage-intrinsic IR and altered metabolic programming

(150), which could impact functional polarization. In mice, both

short term (7 days) and long term (10 weeks) HFD was sufficient to

turn thioglycolate-elicited peritoneal macrophages (TEPMs) into an

insulin resistant state. As mentioned, in macrophages intrinsic

insulin resistance was linked to an unique state characterized by

defective Akt2, coupled to sustained mTORC1 activation, increased

glycolysis, but with a reduced M1-like cytokine profile and

induction of M2-like regulatory genes (e.g. Arg1, Fizz1, Ym1) (138).

Less is known about whether adaptive immune cells can become

insulin resistant with chronic obesity. As stated earlier, B cells are

potential candidates since they express the InsR to significant

amounts basally and upon stimulation. In contrast, it will be

interesting to examine to what extent T cells, which only

upregulate InsR upon activation, can become insulin resistant,

and the metabolic and immune signals that promote IR in T cells

during infection and obesity. Understanding how insulin signaling

pathways intersect with BCR, TCR, and TLR signaling under

longstanding obesity in terms of effector functioning is an

important avenue of further work, as well as how it relates to

immunological memory, including trained immunity (see below).

Such studies may also give insights on observed complications of

obesity or aging, such as heightened innate immunity to danger,

coupled to reduced adaptive immune function.

On this topic, it has been shown that simply infusing insulin to

better glycemic control may not necessarily benefit all patients with

viral infection. In some cases, insulin infusions during COVID-19

was linked to cytokine storm in obesity (151, 152). This model

would fit an immune cell IR hypothesis if sufficient insulin is

infused to overcome immune cell-intrinsic IR, or if it elicits a

form of trained immunity. If this renewed insulin signal occurs in

innate immune cells, then an ensuing glycolytic burst associated

with cytokine storm and mortality may occur. Interestingly, other

glucose lowering therapies do not show this same effect (152), and

they might potentially work also in part by relieving intrinsic

immune cell IR themselves. These intricacies highlight the

significant, potentially life or death implications, that may be

learned from studying insulin action on the immune system.
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Thus, “immune system IR” is an important, but developing

concept that still needs further study for its validation.
5.2 Cancer

Obesity fuels tumorigenic inflammation and alters cancer cell

metabolism and growth (153). In addition, the growing tumor

microenvironment presents challenges to the resident immune

cells, such as hypoxia, nutrient deprivation, and the emergence of

tumor-associated suppressive mechanisms. These challenges are

further compounded by potential deleterious effects of obesity-

associated hormonal and nutritional changes to dampen anti-

tumor immunity.

In a mouse model of spontaneous pancreatic ductal

adenocarcinoma (PDAC) with HFD-induced hyperinsulinemia,

the reduction of insulin 2 gene expression (through Ins2

heterozygocity) in the Ins1 null background, led to reduced

formation of early pancreatic lesions (154). The authors reported

significant changes in immune cells in hyperinsulinemic PDAC-

bearing mice using single cell sequencing analysis, with the greatest

pathway alterations in B cells. Another reason for this protective

effect, could be driven by insulin’s effect on the neutrophil-like,

intratumoral MDSCs prevalent in early PDAC lesions (155).

MDSCs require Akt-dependent phosphorylation of STAT3 for

their suppressive activation (49), which is augmented by insulin

signaling. In DCs, autophagy is required for antigen presentation

(156). Autophagy inhibited by insulin-mTORC1 may also improve

DC mediated cancer immune surveillance and antigen-specific

responses explaining the protective effects in this model. While

the immune cell intrinsic dysfunction caused by IR prior to PDAC

remains to be fully understood, these studies suggest that insulin-

mTORC1 driven inhibition of autophagy and Akt-STAT3

activation may drive tumor immune suppression via action on

adaptive and innate immune cells.

These observations have important implications in metabolic

syndrome, where loss of insulin receptiveness could differentially

affect the ability of tumor infiltrating immune cell populations to

compete with tumor cells for limiting nutrients and resources

within the tumor microenvironment, leading to impaired anti-

tumor function (157, 158). Additional investigative efforts are

warranted to examine the role of insulin signaling and resistance

in tumor-specific immunity.
5.3 Pre-eclampsia

Pre-eclampsia (PE) presents as high blood pressure and kidney

damage and is correlated with the failure of immune homeostasis

and increased inflammation at the maternal-fetal interface. Because

both obesity and gestational diabetes are a pre-disposition to PE,

researchers have studied the role of hyperglycemia and InsR/mTOR

in the context of PE. Hyperglycemia resulted in the observed

increase in AGEs in maternal blood and fetal tissues, which

correlated significantly with an increased TNFa via the RAGE-

NF-kB pathway (159). Moreover, as previously discussed, mTORC1
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can dampen Treg responses which has also been suspected to invert

the Th17/Treg balance in PE elevating responses to fetal antigens

(160, 161).
5.4 Infection

In general, whole body IR increases the risk of infections, and

infections also contribute to IR development and progression (75,

162). While the mechanisms underlying this association have

recently begun to emerge, immunometabolism is particularly

important in this context. Recent evidence suggests that T cells

depend on insulin-induced signaling to respond against H1N1

influenza virus infection in mice by supporting T cell metabolic

reprogramming and consequently, cell proliferation, activation, and

cytokine production (5). Furthermore, since macrophages

chronically exposed to insulin develop intrinsic IR and acquire a

unique potentially anti-inflammatory phenotype coupled to an

increased mTORC1-driven glycolytic profile (138), this

undermines the resolution of infectious processes that requires

pro-inflammatory macrophages. Neutrophils from diabetic rats

also showed diminished phagocytosis and hydrogen peroxide

production, which were recovered after insulin treatment (163).

Although the impact of IR on metabolism in several immune cell

subsets remains elusive, we anticipate that an impaired insulin

sensitivity within immune and other cells alter cell phenotype and

function, creating a favorable environmental condition for

developing and progression of several infectious diseases.

The extent to which infection precedes and contributes to IR

development is less clear. In general, it is plausible to consider that if

the inflammatory status contributes to reduced insulin sensitivity, a

sustained inflammatory response triggered by an infectious agent

can also lead to IR (75, 164). In addition, specific therapies (e.g.,

steroids), hormones (e.g., cortisol), pro-inflammatory cytokines

(e.g., TNFa, IL-1b, IL-6), nutrient status and type of pathogen

may also potentiate or contribute to IR development. It is described

that Staphylococcus aureus produces a protein (eLatS) with high

affinity to insulin and blocks Insulin-InsR interaction, thus leading

to IR (165).

The proposed bidirectional relationship between IR and infection

has recently gained prominence with the severe acute respiratory

syndrome-coronavirus-2 (SARS-CoV-2) (166). Various

observational studies have found association between severe

hyperglycemia and poor prognosis of COVID-19 (167).

Noteworthy, COVID-19 patients without pre-existing metabolic-

related diseases showed dysfunctional lipid and glucose metabolism

and developed IR after discharge (168, 169). Moreover, another study

described that both hyperglycemic and euglycemic patients

hospitalized with COVID-19 showed impaired glucose metabolism

and cytokine profile as well as developed IR at least 2 months after

recovering from the disease (170).Whether reduced beta cell function

as a result of SARS-CoV-2 infection is an additional contributor of

these processes requires further examination (171). Induction of a

transient insulin resistant, hyperinsulinemic state by a viral infection

has been proposed as a physiological response to promote anti-viral
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CD8+ effector T cell activity (75). In the case of obesity, infection-

induced persistent IR ultimately could be a maladaptive response if

immune cells themselves also become IR, where deregulated glucose

metabolism dampens antiviral immunity.

IR patients with uncontrolled blood glucose levels also have a

greater risk of exacerbated COVID-19. Current studies showed that

monocytes increase ROS-mediated HIF-1a stabilization which, in

turn, enhance aerobic glycolysis during SARS-CoV-2 infection

(172). These changes are associated with a glucose-enriched

microenvironment, and they induce viral replication and cytokine

storm, causing T cell dysfunction and lung epithelial cell death. The

cytokine storm is also a hypothesized mechanism associated with

COVID-19-related diabetes, since SARS-CoV-2 activates renin-

angiotensin-aldosterone system (RAAS), which increases the

production of IL-1a, IL-2, IL-6, TNFa, IFNg, and MCP-1 and

leads to pancreatic beta cell and systemic dysfunction (152, 173).

Interestingly, insulin usage in patients in intensive care units is

associated with increased COVID-19 mortality, possibly linked to

increased glycolysis and associated cytokine storm, highlighting the

importance and urgency of understanding pathological insulin

action in the immune system (152). In the setting of chronic

longstanding obesity and hyperglycemia, it is plausible that a high

enough insulin dose could overcome intrinsic immune cell IR to

facilitate increased glycolysis and cytokine storm, though more

studies are needed to assess this possibility.

In general, blood glucose levels are reasonable predictors of

disease severity in COVID-19 (174). Metformin, the most used

antihyperglycemic drug, has also been prescribed as anti-

inflammatory and immunomodulatory drug (175) with promising

benefits to treat COVID-19. In addition to regulating glucose levels

and increasing insulin sensitivity, metformin, as an activator of

AMP-activated protein kinase (AMPK) and an endosomal pH

modulator, could ameliorate disease through reducing the

infectivity and survival of SARS-CoV-2 (176). Metformin also

inhibits mitochondrial complex I and, consequently, oxidative

stress and pro-inflammatory cytokine production, thereby

promoting endothelial protection (173, 177). It will be interesting

to determine if restoring insulin sensitivity inside IR immune cells

during obesity is another mechanism of action by which metformin

can boost immune cell clearance of SARS-CoV-2. Indeed, several

studies have shown positive outcomes in metformin-receiving

COVID-19 patients (178–180). However, the use of metformin

must be avoided in patients with congestive heart failure and kidney

diseases due to alterations in levels of other metabolic by products

(181, 182).

More recently, the increased GP73 levels, a glucogenic

hormone, were also correlated to SARS-CoV-2 infection in a

mouse model, enhancing both glucogenesis and fasting blood

glucose levels. The inhibition of GP73 was enough to restore the

glucose levels, serving as another potential target to treat or avoid

the progression to IR in COVID-19 (183). Overall, there is a

bidirectional causal association between IR and infection.

However, the mechanisms describing how infection leads to IR

development, including the role of immune system metabolism in

this context, still requires further investigation.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1128622
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Makhijani et al. 10.3389/fendo.2023.1128622
5.5 Insulin signaling and trained immunity

Emerging evidence suggests that the interplay between insulin

and other pro-inflammatory signaling pathways contributes to

trained immunity (reviewed in 184). Trained immunity is

observed in innate immune cells, as a parallel to adaptive cell

memory, and is defined as the long-term reprogramming by

primary inflammatory insults that leads to an altered response to

secondary challenges (185, 186). Innate cells are thought to achieve

trained immunity via two interconnecting mechanisms: 1) biasing

of metabolic circuits and 2) epigenetic memory established during

primary exposure (185). Inflammatory stimuli like infections and

vaccinations drive trained immunity via PRR driven activation of

Akt-mTORC1 and NF-kB (185). The pro-inflammatory metabolic

profiles these pathways drive remain active after the primary

stimuli, despite complete resolution of inflammation, to drive

more rapid pro-inflammatory responses to secondary stimuli

(187). As previously detailed, InsR/IGF1R signaling also

synergizes with Akt-mTORC1 and TLR-NF-kB activation. By

boosting glycolytic cell metabolism and inflammatory cytokine

production, insulin signaling also partakes in trained immunity.

In chronic obesity-associated IR, peripheral macrophages may

take on an insulin resistant M2-like phenotype (138), while some

adipose tissue macrophages, such as recruited types, display

inflammatory M1-like polarization (188). The IR-dependent

aberrant Akt signaling sustains mTORC1 activation resulting in

enhanced glycolysis, which can occur acutely with insulin action or

chronically during an insulin resistant immune state (138). Thus,

both acute hyperinsulinemia driving Akt and mTORC1 activity, as

well as an altered insulin resistant macrophage during chronic

obesity with increased basal glycolysis and mTORC1 activity,

might both facilitate downstream effects known to induce trained

immunity (184). Some of these effects might be on mTOR-HIF-1a
signaling, which alters metabolites to mediate histone modifications

for trained immunity (189, 190), though more work is needed to

dissect out pertinent metabolites in these settings. Further studies to

test this idea are also needed to better delineate effects of insulin

action and resistance in recruited vs resident macrophages, and in

the setting of innate tolerance, which is considered distinct from

trained immunity (186). This direction of work is especially

important to reconcile observed phenotypes in immune function

during chronic obesity, and whether these occur due to intrinsic

immune system IR, such as discussed in the previous section on

Insulin Resistance in the Immune System - an emerging paradigm?

For instance, it may be possible that reduced insulin action cripples

adaptive immunity but potentiates some forms of innate immunity

through trained immunity.

The second key mediator of trained immunity is epigenetic

memory, governing access to inflammatory gene loci. Systemic

hyperglycemia was correlated with epigenetic marks like (e.g.,

H3K9me3 and H3K4me3) resulting in sustained NF-kB

transcriptional activity (191). Elevated oxidized low density

lipoprotein (OxLDL) levels observed in IR also promoted H3K4me3

methylation in monocytes driving NF-kB driven cytokine production

(192). Epigenetic reprogramming at the hematopoietic stem cell level
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also leads to a higher myeloid to lymphoid ratio upon re-activation

(193). These systemic consequences of whole body IR may also

contribute to trained immunity (184).
5.6 Immune cell insulin signaling/
resistance in aging

An emerging hallmark of aging is a state of chronic low-grade

inflammation, which is also a characteristic of obesity. This state is

known as inflammaging, and it is coupled to overall dysfunction,

termed immunosenescence (194). Mechanisms fueling dysfunction

of the aged immune system and onset of immunosenescence are of

broad interest. As well it is of interest to identify biomarkers and

develop therapeutic targets for age-related chronic disease.

Insulin signaling is an evolutionarily conserved axis that

correlates negatively with longevity across several species,

including Caenorhabditis elegans (195), Drosophila melanogaster

(196), Harpegnathos saltator (197) and mice (198, 199). Notably,

aging in mice is associated with a declined capacity for insulin

clearance resulting in hyperinsulinemia (200). In humans, low

plasma insulin levels and high insulin sensitivity have been

attributed to improved survival and are key features observed in

centenarians, suggesting a key role for insulin in regulating human

lifespan (201).

Low level chronic activation of the InsR during agingmight explain

inflammatory shifts within the immune system that are observed with

age, including the emergence of pro-inflammatory cell types (202). In

the adaptive immune compartment, InsR engagement can

constitutively inhibit FOXO1, a pro-longevity transcription factor

whose deletion, along with FOXO3, in T cells heightens levels of

pro-inflammatory cytokines, such as IFNg or IL-17 (203). FOXO1 is

also required to suppress a state of activation in CD8+ T cells, thereby

allowing antigen-activated and expanded CD8+ T cells to maintain self-

renewal and preventing their senescence (204–206). In C. elegans,

genetic inhibition of DAF-2 (C. elegans InsR/IGF1R homolog) is

shown to enhance immunocompetence, while DAF-16 (C. elegans

FOXO homolog) is mainly responsible in delaying immune aging in

DAF-2 mutants (195). These observations support the notion that a

dysfunctional InsR/IGF1R pathway during aging might underlie the

impaired immune responses of elderly individuals.

The interplay between aging and tissue infiltrating Tregs has

also gained increasing attention over recent years. During aging,

FoxP3+ Tregs secreting IL-10 are sustained by IL-6, a major

cytokine of age, and accumulate across different tissues in old

mice. This increase in Tregs may occur possibly to compensate

for the low-grade unresolving inflammation associated with aging

(207, 208). Single cell analyses have unveiled that aged Tregs possess

an activated phenotype and display enhanced suppressive abilities

compared to young counterparts, akin to those observed within

tumors of patients with solid cancers (209). Interestingly, inside

VAT, FoxP3+ Tregs accumulation has been shown to be associated

with aging-related insulin resistance (210). Consistently, FoxP3+

Treg-specific InsR knockout mice aged to 52 weeks under normal

chow diet were protected from the metabolic effects of aging.
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Improved metabolism in aged Treg InsR knockout mice were linked

to significantly reduced numbers of both ST2+ and ST2− Tregs in

VAT, but not in brown adipose tissue (76). Interestingly, the VAT

of the aged mutant mice also showed increased expression of

inflammatory genes, such as Ifng, Tnf, Il1b, and Tlr2, implicating

that some pro-inflammatory regulation can be favorable in

restoring insulin sensitivity in age-associated glucose metabolism

(76). Thus, insulin action on resident metabolic tissue immune cells

is likely sufficient to dictate metabolic and tissue inflammatory

outcomes with age.

Multiple drugs with anti-aging properties also link nutrient

sensing to insulin action with potential ramification on immune

function. Rapamycin, an anti-inflammatory drug inhibiting insulin-

mTORC1 axis, has long been considered effective in extending

lifespan (211), boosting immunity in the elderly (212), and delaying

several age-related diseases (213–216). The mechanism of this

immunostimulatory effect of rapamycin are not wel l

characterized, but could be linked to inhibition of mTORC1-

mediated S6 kinase negative feedback on age-associated chronic

insulin signaling (5, 217). Similarly, metformin is another

therapeutic that promotes anti-aging, pro-longevity, and

improved health span outcomes by downregulating InsR-

mTORC1 activity and the overall immunosenescence burden

(218). The idea that rapamycin and metformin might improve

insulin sensitivity within immune cells as one mechanism of

immune rejuvenation remains to be validated.

Another set of anti-aging compounds, senolytic drugs, such as

quercetin, dasatinib (Q+D) and fisetin, have shown protective

effects against aging, and the ability to prevent adverse outcomes

against infectious diseases, such as COVID-19 (219, 220).

Interestingly, quercetin, may also have some capacity to block

aspects of InsR action, though these effects were mostly seen in

vitro, in higher doses. Nonetheless, this mechanism might be

worthwhile to further investigate as an immunoregulatory agent

to regulate nutrient-sensing networks during age-related metabolic

disorders (221). Consistently, insulin infusion has been linked to

cytokine storm, increased glycolysis and unopposed immune cell

activation with COVID-19 (5, 152, 217). Senolytic drugs possess a

“hit-and-run” activity, meaning that they reach maximal efficacy

while minimizing side effects with only intermittent administration

(222). This property might make senolytics a promising therapy

over rapamycin for the aging population, considering that long-

term rapamycin intake potentiates IR by inhibiting mTORC2 (223).
6 Conclusions and perspectives

Recent advances highlight the existence of an endocrine-

immune axis, where insulin plays a critical role in regulating

immune cell function and metabolism. However, much remains

to be learned regarding the molecular basis of this endocrine-

immune interaction. Given that multiple arms of the InsR

signaling pathway converge with those downstream of antigen

and costimulatory receptors, PRRs, cytokines and nutrient

sensing pathways, future efforts are needed to tease apart the

signaling networks insulin uses in specific immune cell types and
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how this is regulated in the face of different stimuli. We propose that

Akt and mTORC1 are central regulatory hubs that integrate insulin

signals with immune receptors and metabolic signals, given their

established role in these pathways, both as a signal transducer/

integrator and an off switch for negative feedback. This notion

would fit with a model where homeostatic levels of insulin signaling

allow for optimal immune responses, while perturbed signaling,

such as during IR states where chronic inflammation and

hyperinsulinemia foster immune cell-intrinsic IR, facilitates

immune dysfunction. In the context of metabolic syndrome,

systemic IR and associated hyperglycemia, dyslipidemia, and

inflammation can act hand in hand with immune cell-intrinsic

IR, coupled to chronic basal activation of danger signals like TLRs,

to further dysregulate immune cell metabolism and functional

outcomes. The net result would yield immune cells with a basal

inflammatory tone, unable to boost its metabolism in the face of

new antigen, which are hallmarks of immune dysfunction in obesity

and aging. Whether aspects of trained immunity or tolerance (e.g.

sustained TLR ligation) also exist during the insulin resistant state

in innate immune cells during chronic obesity is an avenue of

future research.

As outlined in Figure 3, disrupted insulin-mediated metabolic

homeostasis perpetuates a chronic meta-inflammatory loop that

facilitates immune dysfunction. Conditions such as over-nutrition,

aging, and pregnancy, as well as genetic and environmental factors

could predispose individuals to developing IR, a state in which cells

become impaired at perceiving insulin signals. A compensatory rise

in insulin production to offset this impairment then leads to

hyperinsulinemia and beta cell stress followed by functional

decline. IR-associated nutrient imbalance, such as hyperglycemia

and dyslipidemia, especially early in disease, together with potential

intrinsic immune system IR, likely occurring later in disease

progression, could thus drive dysregulation in immune cells with

both pro-inflammatory and suppressive consequences, and

contribute to the pleiotropic mechanisms of pathophysiology.

These metabolic-immune interactions contribute to the

pathogenesis of obesity, cancer, viral infection, pre-eclampsia, and

age-related degeneration.

From a therapy perspective, the declined protective immunity

in obese and/or aged insulin resistant individuals to infections and

cancer raises the important question of whether and how insulin

signaling pathway can be harnessed to rejuvenate the immune

system. Strategies that dampen obesity or age-related

inflammation would exert systemic beneficial, insulin-sensitizing

effects. Insulin sensitizing agents such as AMPK agonists, including

metformin, are potential candidates as they already are commonly

prescribed medications in patients with T2DM, and mediate

improved insulin sensitivity by increasing InsR tyrosine kinase

activity, and increasing the recruitment and activity of the glucose

transporters. In immune cells, this effect is expected to reactivate

cell intrinsic insulin response.

Overall, immune cell insulin receptor signaling could represent

a critical missing link in understanding manifestations and

complications of obesity- and age-associated immune

dysfunction. Considering the recurrent emergence of obesity,

diabetes and aging as leading risk factors for poor clinical
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outcomes, especially in the context of severe respiratory infections,

vaccination, cancer, and many other inflammatory diseases, a better

understanding of the molecular basis of insulin-mediated immune

regulation is imperative and may contribute to the design of new

targeted strategies.
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