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Autophagy and its therapeutic
potential in diabetic nephropathy

Yu-Peng Han, Li-Juan Liu, Jia-Lin Yan, Meng-Yuan Chen,
Xiang-Fei Meng, Xin-Ru Zhou* and Ling-Bo Qian*

School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
Diabetic nephropathy (DN), the leading cause of end-stage renal disease, is the

most significant microvascular complication of diabetes and poses a severe

public health concern due to a lack of effective clinical treatments. Autophagy is

a lysosomal process that degrades damaged proteins and organelles to preserve

cellular homeostasis. Emerging studies have shown that disorder in autophagy

results in the accumulation of damaged proteins and organelles in diabetic renal

cells and promotes the development of DN. Autophagy is regulated by nutrient-

sensing pathways including AMPK, mTOR, and Sirt1, and several intracellular

stress signaling pathways such as oxidative stress and endoplasmic reticulum

stress. An abnormal nutritional status and excess cellular stresses caused by

diabetes-related metabolic disorders disturb the autophagic flux, leading to

cellular dysfunction and DN. Here, we summarized the role of autophagy in

DN focusing on signaling pathways to modulate autophagy and therapeutic

interferences of autophagy in DN.
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1 Introduction

Diabetic nephropathy (DN), a major cause contributing to end-stage renal disease

(ESRD), is one of the microvascular complications of diabetes and is commonly rendered

by persistent hyperglycemia and the subsequent chronic inflammatory response (1, 2).

Almost 35%-40% of diabetic patients finally lead to DN (3), which poses a huge number of

diabetic death and a serious threat to the quality of life in diabetes (4). International

Diabetes Federation (IDF) Diabetes Atlas (the 10th edition) showed that the number of

adult diabetes worldwide will increase from 537 million in 2021 to 643 million by 2030 and

over 6.7 million diabetes aged 20-79 years died from diabetes-related diseases in 2021

(http://diabetesatlas.org/atlas/tenth-edition/). Long-term diabetes can damage many

organs to cause disabling and life-threatening complications including cardiovascular

diseases, neuropathy, and nephropathy. DN, with clinical manifestations including

progressive proteinuria as well as decreased glomerular filtration rate (3), and

pathological features such as glomerular hypertrophy, glomerular basement membrane

(GBM) thickening, mesangial proliferation, and podocyte loss (5), is one of the early

complications in diabetes. Though keeping blood pressure, blood glucose, and the renin-
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angiotensin system (RAS) under control is a primary therapy to

relieve proteinuria in diabetes, treatment-resistant proteinuria and

ESRD have not been fully avoided (6). Exploring the underlying

mechanism of DN and finding novel targets to effectively prevent

DN have become urgent for improving the quality of life in diabetes.

The pathogenesis of DN is multifactorial (4), including

oxidative stress, inflammatory cascade reaction, and other

disorders of metabolic pathways under persistent hyperglycemia

(7). Growing evidence reveals that along with diabetes, the

accumulation of damaged organelles and proteins owing to

impaired autophagy has been reported to disrupt cellular

homeostasis and result in the development of DN (3, 7–10).

Autophagy normally is activated to degrade impaired organelles

or misfolded proteins as a recycling response to nutrition

deprivation or starvation (10). The metabolic disorder manifested

as persistent high blood glucose and lipids causes a state of

overnutrition and suppresses autophagy in diabetic renal cells

(11–13), while promoting autophagy lessens renal injury in

diabetes (14, 15). All these clues suggest that activating autophagy

may be a novel therapeutic target to prevent DN and shed light on

treating DN based on the balance of autophagy.

Although the relationship between autophagy and DN has not

been fully clarified, numerous studies have confirmed that the

development of DN is linked to autophagy. Detailed exploration

of autophagy in the pathogenesis of DN can provide new ideas for

preventing DN. Thus, this review aims to understand the cellular

and molecular bases of autophagy, the role of autophagy in the

development of DN, and therapeutic strategies targeting autophagy

for the prevention of DN by summarizing current evidence.
2 Profile of autophagy in DN

Autophagy is a highly conserved cellular mechanism by which

cytoplasmic constituents including proteins and organelles are

transported to lysosomes for degradation and preserving cellular

homeostasis (9, 16). Basal cellular autophagy is necessary for

keeping physiological functions, whereas autophagy in response

to stress serves as an adaptive reaction to ensure cell survival (16).

Autophagy is a multistep process that involves the formation of

isolation membrane, extension, formation of autophagosome, and

final fusion with lysosomes to degrade phagocytic materials and is

regulated by multiple protein kinase complexes and autophagy-

related proteins, such as autophagy-related gene 5 (Atg5), Atg7,

Atg12 and so on (8, 17). Among them, activation of the unc-51-like

kinase 1 (ULK1) complex is responsible for the initiation of

autophagy (3, 10). The class III phosphatidylinositol 3-kinase

(PI3K) complex generates phosphatidylinositol 3-phosphate at the

neogenetic autophagosomal membrane to facilitate phagophore

nucleation (18). Two ubiquitin-like coupling systems, Atg5-

Atg12-Atg16L and Atg8/microtubule-associated protein 1A/1B-

light chain 3 (LC3) are involved in autophagosome extension and

autolysosome formation (19). Atg4 cleaves LC3 to form cytosolic

LC3I, which is then ubiquitinated by Atg7 and Atg3 and binds to

phosphatidyl ethanolamine to form autophagosome membrane-

bound LC3II (17). Thus, LC3II is evidenced as a marker for
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autophagosome formation in cells. This conjugated response of

LC3II is positively regulated by Atg5-Atg12-Atg16L. Sequestosome

1, known as p62, interacts with LC3II to confine autophagosomes

and is repeatedly digested by the autophagy-lysosome system.

Significantly, malfunctional autophagy during diabetes causes

intracellular accumulation of p62 leading to further inhibition of

autophagic flux, thus forming a vicious cycle to promote diabetic

complications including diabetic cardiomyopathy, diabetic

peripheral neuropathy and DN (20–22).

Autophagy can be triggered by various intracellular stresses,

such as reactive oxygen species (ROS), endoplasmic reticulum (ER)

stress, and hypoxia (23–25), all of which are involved in the

development of DN. Increasing evidence indicates that the

abnormal alteration of autophagy appears to be directly linked to

the emergence of DN (26, 27). Autophagy is closely associated with

nutrient-sensing signal pathways and stress metabolism and is

essential to maintain homeostasis in the kidney (3). Although the

mechanism of autophagy in DN remains to be elucidated, it has

been known that the impaired autophagy is evidenced by the

increased collection of p62 and the decreased expression of

autophagy-related proteins in diabetic kidney tissues and cells

(28–30). The shortage of autophagy results in the accumulation of

misfolded or aging proteins and dysfunctional organelles to

deteriorate kidney disease in diabetes (19). Activation of

autophagy alleviates kidney lesions in diabetes (31, 32) while

inhibition of autophagy worsens these diabetic injuries (33, 34),

indicating that autophagy might be a promising therapeutic target

for DN.
3 Autophagy in renal cells
during diabetes

Though different types of renal cells are all damaged by the

dysfunctional autophagy in the progression of DN, as shown in

Figure 1, these four resident renal cells including podocytes, renal

tubular epithelial cells (RTECs), glomerular mesangial cells

(GMCs), and glomerular endothelial cells (GEnCs) may be

particularly vulnerable to attack from the disorder of autophagy

and contribute to DN. Thus, we summarized recent findings of

renal cells in diabetic environments to better understand autophagy

in DN (Table 1).
3.1 Podocytes

Podocytes, highly differentiated epithelial cells with a limited

capacity for proliferation, tightly attach to the GBM (62) and work

as an important part of the glomerular filtration barrier (GFB) (63,

64). The damage and apoptosis of podocytes can destroy the

integrity of the GFB (31), leading to proteinuria, renal lesions,

and finally DN (7, 8, 65).

A high level of autophagy in podocytes is necessary to keep the

physiological function (8, 39), which is regulated by the adenosine

5’-monophosphate-activated protein kinase (AMPK) pathway
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FIGURE 1

The diagram of resident cells in the glomerulus and proximal tubule. There are four kinds of major resident cells in the glomerulus, glomerular
endothelial cells (GEnCs), podocytes, glomerular mesangial cells (GMCs), and parietal epithelial cells. Tubular epithelial cells form the extension of
Bowman’s capsule, that is, the renal tubule. Podocytes with their interdigitating foot processes are arranged on the lateral side of the glomerular
basement membrane (GBM). GMCs located between glomerular capillary loops, adjacent to endothelial cells or basement membranes are irregularly
shaped. GEnCs are flat cells attached to the GBM. GEnCs and podocytes form the glomerular filtration barrier.
TABLE 1 Autophagy in four types of renal cells during diabetes.

Cell types Major findings

Podocytes

• Silence of miR-150-5p attenuates DN by targeting Sirt1/p53/AMPK-dependent autophagy (12) and suppression of miR-383-5p alleviates high glucose-
induced apoptosis via the activation of autophagy (35), while miR-25-3p attenuates high glucose-induced injury through suppressing dual specificity
protein phosphatase 1 and subsequently activating autophagy in podocytes (36).
• Promotion of autophagy by inhibiting Akt/mTOR pathway protects the DN serum-treated or high glucose-treated podocytes against apoptosis (34, 37,
38).
• Activation of epidermal growth factor receptor in podocytes contributes to progression of DN partly caused by up-regulating rubicon and inhibiting
the subsequent autophagy (39).
• Regulating Bcl-2-mediated crosstalk between autophagy and apoptosis attenuates podocytes injury in diabetes (40).
• Activation of AMPK and Sirt1-mediated autophagy ameliorates lipid accumulation, oxidative stress, apoptosis, and inflammation in podocytes
exposed to high glucose (41–43).
• Promotion of autophagy by regulating Sirt1/glycogen synthase kinase 3b and Sirt1/NF-kB pathways reduces podocytes injury in diabetes (22, 44, 45).
• Promotion of autophagy by inhibiting AMPK/mTOR pathway prevents diabetic podocytes injury (46–48).
• Inhibition of autophagy by activating liver X receptor aggravates podocytes injury in diabetes (49).
• Progranulin facilitates mitophagy and mitochondrial homeostasis via Sirt1-PGC-1a/FoxO1 signaling to prevent podocytes injury in DN (50).

Renal
tubular
epithelial
cells

• High glucose-induced lipophagy deficiency in tubular cells causes ectopic lipid accumulation-associated kidney damage, which is relieved by
promoting autophagy (29).
• Smad family member 3 directly binds to the 3’ untranslated region of transcription factor EB and suppresses lysosome biogenesis to inhibit autophagy
in tubular epithelial cells in DN (30).
• Inhibition of autophagy by miR-22 targeting phosphatase and tensin homolog and miR-155-5p targeting Sirt1 induces renal tubular fibrosis in DN
(32).
• Promotion of autophagy by up-regulating AMPK pathway improves mitochondrial health (11, 51) and reduces fibrosis (52, 53) in renal tubular
epithelial cells to reduce DN.
• Autophagy causes the degradation of AGEs by up-regulation of lysosomal biogenesis and function in tubular epithelial cells to reduce DN (54).
• Promotion of autophagy by inhibiting mTOR pathway counteracts high glucose-induced injury in tubular epithelial cells (55).

Glomerular
mesangial
cells

• Promotion of autophagy by activating AMPK/Sirt1 pathway (28, 56) or by Sirt1/NF-kB pathway (33) relieves high glucose-induced injury in
glomerular mesangial cells.
• Activation of Akt/mTOR pathway inhibits autophagy and accelerates inflammation and fibrosis in high glucose-treated glomerular mesangial cells (57,
58).

Glomerular
endothelial
cells

• Inhibition of AGE/RAGE axis restores the disturbed autophagy to alleviate glomerular endothelial permeability in DN (59).
• Autophagy deficiency accompanying oxidative stress and apoptosis in high glucose-cultured glomerular endothelial cells is associated with CaMKKb-
LKB1-AMPK pathway (60).
• Promotion of autophagy by inhibiting miR-34a/Atg4b pathway in glomerular endothelial cells relieves diabetic kidney damage (61).
F
rontiers in Endo
DN, diabetic nephropathy; Sirt1, silent information regulator of transcription 1; AMPK, adenosine 5’-monophosphate-activated protein kinase; Akt, protein kinase B; mTOR, mammalian target
of rapamycin; Bcl-2, B-cell lymphoma-2; NF-kB, nuclear factor kappa-B; PGC-1a, peroxisome proliferator-activated receptor-gamma coactivator-1a; FoxO1, forkhead box O1; AGEs, advanced
glycation end-products; CAMKKb, calcium/calmodulin-dependent protein kinase kinase b; LKB1, liver kinase B1; Atg, autophagy-related gene.
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rather than the mammalian target of rapamycin (mTOR) (66). The

impairment of autophagy in diabetic podocytes as evidenced by the

decreased expression of autophagy-related proteins (beclin1, LC3II/

I, Atg12, Atg7, etc.) and the accumulation of the autophagic

substrate p62 (40, 67) exacerbates the loss of podocytes with the

help of the increased cellular lipid accumulation, oxidative stress,

and inflammation (11, 41). Knockout of the Atg5 in podocytes has

been reported to cause glomerular lesions accompanied by

podocyte loss and albuminuria (68). These findings imply that the

shortage of autophagy mediates podocyte damage in diabetes (22).

It is interesting to note that the increased autophagosomes in high

glucose-treated podocytes was not consistent with the impaired

autophagy in the diabetic rat kidney characterized by glomerular

hypertrophy, renal tubular expansion, and mesangial cell

proliferation (44). To further clarify whether the rise in

autophagosomes is caused by autophagy induction or the

obstructed fusion of autophagosomes and lysosomes, the fusion

inhibitor such as chloroquine can be adopted or the colocalization

of LC3 and lysosomes need to be explored. In addition, this

contradiction in different diabetic kidney models might be related

to the different roles of autophagy in each stage of diabetes (3).

Nutrient signaling pathways are involved in the disorder of

autophagy in diabetic podocytes. Increased mTOR activity and

decreased expression of AMPK and silent information regulator of

transcription 1 (Sirt1) in diabetes can inhibit autophagy to

aggravate cellular dysfunction and the progression of DN (69,

70). The silence of AMPK or Sirt1 was reported to inhibit

autophagy and promote the loss of podocyte function in a high

glucose environment (12, 42, 43). Furthermore, the up-regulation

AMPK/mTOR signaling pathway-mediated autophagy prevents the

loss of podocyte markers (nephrin, podocin) and ameliorates

diabetic kidney injury (46–48). Liver X receptor and high

mobility group box 1 also induce podocyte injury by altering

autophagy through the nutrient-sensing signal pathway (34, 49).
3.2 Renal tubular epithelial cells

The enhancement of autophagy in proximal tubular epithelial

cells (PTECs) in response to multiple stresses such as ischemia and

nephrotoxic medications has been reported to protect the kidney

(71). Morphological alterations including hypertrophy, hyperplasia

and epithelial-mesenchymal transition (EMT) in RTECs, especially

in PTECs, primarily owing to the shortage of autophagy in diabetes,

are regarded as an early sign of DN, which can easily cause renal

dysfunction and even ESRD if not corrected in time (51, 72, 73).

It is noteworthy that the interaction of autophagy with EMT in

RTECs is complicated, various factors and signaling pathways are

associated with the effect of autophagy-related EMT on the

progression of DN (33, 74). The role of rapamycin in reducing

profibrotic cytokines, fibroblast proliferation, tubulointerstitial

inflammation, and EMT confirms that mTOR-regulated

autophagy is necessary for EMT in diabetic RTECs (69, 75).

Interestingly, hyperglycemia-induced miR-22 promotes EMT by

suppressing autophagy via targeting phosphatase and tensin

homolog/protein kinase B (Akt)/mTOR signaling pathway, which
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suggests that targeting miRNA may be a promising therapeutic

approach in preventing DN (32). Recently, mesenchymal stem cell-

derived exosomes was reported to activate autophagy to inhibit

transforming growth factor-b (TGF-b)-induced EMT progression

in RTECs (76). Thus, the role of exosomes on the EMT in diabetic

RTECs is worth further investigation.

In the presence of diabetes, carbonyl compounds created by

advanced glycation end-products (AGEs) are filtered by the

glomerulus and then reabsorbed by the proximal tubule, easily

resulting in tubular toxicity (77, 78). Through interaction with the

receptor for AGEs (RAGE), accumulation of AGEs triggers various

abnormal cellular cascades like oxidative stress, inflammation, and

apoptosis and inhibits the protective effect of autophagy in the

diabetic kidney (79). The impairment of the autophagy-lysosomal

pathway in diabetes promotes the accumulation of AGEs and the

excessive AGEs aggravates lysosomal dysfunction, thus forming

positive feedback to allow tubulointerstitial inflammation and

fibrosis, which might be crucial to the development of DN (17,

80). Inhibiting AGEs/RAGE signaling is reported to restore the

disturbed autophagy in glomerular endothelial cells and attenuate

DN (59). It is said that AGEs can enhance the expression of

profibrotic molecules linked to EMT and ER stress in the human

renal tubular epithelial cell line to gradually render renal fibrosis

(81), which is prevented by the enhancement of autophagy in

RTECs (54). Therefore, the specific role of the AGEs/RAGE axis

in DN is worthy of exploring.
3.3 Glomerular mesangial cells

Proliferation and hypertrophy in GMCs and mesangial

expansion manifested as excess extracellular matrix (ECM)

derived from GMCs are two pathological characteristics of DN,

which lead to glomerulosclerosis and tubulointerstitial fibrosis (82,

83). Hyperglycemia, AGEs, and ROS all effectively activate TGF-b
to cause ECM accumulation both in Smad-dependent and

-independent pathways (84–86), which can be reversed by the up-

regulation of autophagy (33, 57).

Sirt1 has been revealed to inhibit ECM accumulation in high

glucose-treated GMCs via enhancing autophagy (33) and blocking

mTOR-suppressed autophagy has also been documented to

effectively reduce inflammation, proliferation, and fibrosis in

diabetic GMCs (15, 28, 57). All of the above indicate that

autophagy is important for maintaining the structural and

functional integrity of GMCs to resist DN.
3.4 Glomerular endothelial cells

GEnCs, the first barrier of glomerular filtration, are vulnerable

to hyperglycemia. The abnormal structure manifested as

endothelial glycocalyx and endothelial-mesenchymal transition

usually occur in the early stage of DN (87). Severe damage to the

glomerular endothelium owing to autophagy reduction has been

reported in endothelial-specific autophagy-deficient mice and

Atg16L-knockdown GEnCs (88, 89). In addition, activation of
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calcium/calmodulin-dependent protein kinase kinase b
(CAMKKb)/liver kinase B1 (LKB1)/AMPK signaling (60) and

inhibition of miR-34a/Atg4b signaling (61) promote autophagy in

GEnCs to attenuate DN. It is well established that the interplay of

podocytes, GEnCs, and GMCs is key to keep the integrity of the

GFB and the pathological alteration in one component evidently

affects the other two (87, 90, 91). These results imply that

appropriate autophagy in GEnCs can minimize DN by preserving

glomerular structural integrity.
4 Autophagic pathways in DN

Autophagy in eukaryotic cells is tightly regulated to adapt or

counteract cellular stresses through multiple signaling pathways

(17) because both insufficient and excessive autophagy are harmful

(92). Nutrient-sensing pathways including AMPK, mTOR, and

Sirt1 are well-recognized to regulate autophagy in diabetic

complications (10). Moreover, various cellular stresses such as

ROS, ER stress, and hypoxia are involved in pathogenic
Frontiers in Endocrinology 05
autophagy in DN (Figure 2) (93). Thus, autophagy in the

development of DN is precisely regulated.
4.1 Nutrient-sensing pathways

4.1.1 mTOR pathway
Rapamycin-sensitive type of mTOR (mTORC1), a master

inhibitor of autophagy, is inhibited by starvation to reduce the

phosphorylation of ULK1 at Ser757, which frees ULK1 to be

activated by AMPK and then initiates autophagy to provide

nutrients for the cell’s use by degrading the captured cytoplasmic

components (94, 95). mTOR is over-mobilized in the diabetic

kidney to promote the inflammatory response and exacerbate

renal impairment (96, 97), which is reversed by rapamycin (98).

In addition, the mTOR signaling pathway can be activated by

vascular endothelial growth factor via PI3K/Akt cascade, which

suppresses autophagy via phosphorylating its downstream

phosphoprotein 70 ribosomal protein S6 kinase (p70S6K) and

exacerbates DN (99, 100). All of these suggest that the
FIGURE 2

Regulation of autophagy during diabetic nephropathy. Hyperglycemia is considered a state of overnutrition, leading to over-activation of the
mammalian target of rapamycin (mTOR) and inhibition of adenosine 5’-monophosphate-activated protein kinase (AMPK) and silent information
regulator of transcription 1 (Sirt1). The activated mTOR inhibits autophagy by blocking unc-51-like kinase 1 (ULK1) activation by AMPK and its
downstream target phosphoprotein 70 ribosomal protein S6 kinase (p70S6K). The inhibition of AMPK blocks the dissociation of the beclin1/Bcl-2 (B-
cell lymphoma-2) complex and the phosphorylation of ULK1, while promotes mTOR activity to reduce autophagy. The inactivated Sirt1 reduces the
deacetylation of several target genes like forkhead box O3 (FoxO3), FoxO1, nuclear factor kappa-B (NF-kB), p53, and peroxisome proliferator-
activated receptor-gamma coactivator-1a (PGC-1a) to inhibit autophagy. In addition, other cellular events, including reactive oxygen species (ROS),
endoplasmic reticulum (ER) stress, and hypoxia, can also regulate autophagy to affect the development of diabetic nephropathy. Hypoxia-inducible
factor 1a (HIF-1a) induced by hypoxia promotes the transcription of Bcl-2/adenovirus E1V19-kDa interacting protein 3 (BNIP3) and induces
autophagy. ER stress enhances the expression of ER membrane proteins like protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1a
(IRE1a), and activating transcription factor 6 (ATF6), leading to autophagy. In addition, autophagy under ER stress may be associated with the
signaling pathway of PERK/a-subunit of eukaryotic initiation factor 2 (eIF2a)/ATF4 and IRE1a/c-Jun N-terminal kinase (JNK)/beclin1. Significantly, the
endogenous autophagy induced by ER stress, oxidative stress and hypoxia in diabetes is hampered, which aggravates the progression of diabetic
nephropathy. Thus, impaired autophagy accelerates the progression of diabetic nephropathy, resulting in a series of renal pathological damages.
Rheb, ras homolog enriched in brain; PI3K, class III phosphatidylinositol-3-kinase; Akt, protein kinase B.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1139444
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Han et al. 10.3389/fendo.2023.1139444
overactivation of the mTOR pathway is extremely detrimental to

the development of DN (101, 102). Numerous studies have

demonstrated the critical role that long noncoding RNAs

(LncRNAs) play in the pathophysiology of DN (103). LncRNAs

potently affect the pathological alteration in the diabetic kidney by

inhibiting the autophagy-related Akt/mTOR pathway, which has

been supported by growing evidence that LncRNA silencing sperm-

associated antigen 5 antisense RNA1 promotes hyperglycemia-

induced injury in podocytes targeting Akt/mTOR signaling (37),

and LncRNA nuclear enriched abundant transcript 1 accelerates

(58), whereas LncRNA SOX2 overlapping transcript inhibits (15),

proliferation and fibrosis in diabetic GMCs via modulating Akt/

mTOR signaling-related autophagy. Thus, the effect of LncRNAs is

diversified depending on the type of LncRNAs in the development

of DN though the same target of Akt/mTOR signaling-related

autophagy may be involved.

4.1.2 AMPK pathway
AMPK belongs to the serine/threonine protein kinase family

and is composed of the catalytic subunit a and the regulatory

subunits b and g (104). The phosphorylation of the threonine 172

(Thr172) site on the subunit a is necessary for the activation of

AMPK (105). AMPK is regulated by the AMP/ATP ratio as an

energy sensor (3). Under harmful conditions like hunger and

hypoxia, the ratio of AMP/ATP ratio rises and renders AMP

binding to the subunit g of AMPK, which promotes Thr172

phosphorylation by LKB1 (106). In addition, AMPK is even

activated by CAMKKb and TGF-b-activated kinase by the action

of hormones, drugs, or proinflammatory cytokines (106, 107) to

trigger autophagy for keeping cellular energy homeostasis

under starvation.

It has been shown that AMPK and autophagy are deactivated in

the diabetic kidney accompanied by proteinuria and renal

pathological alterations (11, 45, 56, 108). As shown in Figure 2,

AMPK can phosphorylate ULK1 at Ser317 and Ser377 to directly

initiate autophagy (109, 110) or indirectly promote autophagy by

blocking mTORC1 to release ULK1 through phosphorylating

tuberous sclerosis complex 2 (TSC2) and raptor, the critical

mTORC1-binding subunit (111), which benefits to hinder the

progression of DN (112). In addition, AMPK activates Sirt1 by

increasing cellular NAD+ levels (56) or phosphorylating and

redistributing glyceraldehyde 3-phosphate dehydrogenase into the

nucleus to free Sirt1 (111), which promotes autophagy and

alleviates DN (28, 56). AMPK can promote the dissociation of the

beclin1/B-cell lymphoma-2 (Bcl-2) complex via phosphorylating

beclin1 at Thr388 to initiate autophagy (113). Thus, AMPK-

regulated autophagy is key to the development of DN and AMPK

may be a promising target for preventing DN.

4.1.3 Sirt1 pathway
Sirt1, the most widely studied NAD-dependent deacetylase in

the Sirtuin family (114, 115), is highly expressed in renal tubular

cells and podocytes (115) and has been reported to attenuate

diabetic kidney disease by reducing the phosphorylation and

acetylation levels of NF-kB and signal transducer and activator of
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transcription 3 (33, 44, 116). In addition, Sirt1 reduces acetylation

or phosphorylation of several target genes such as AMPK, forkhead

box O1 (FoxO1), p53, and peroxisome proliferator-activated

receptor-gamma coactivator-1a (PGC-1a) to enhance autophagy

(Figure 2) (28, 50, 117). As a positive regulator of autophagy, Sirt1

has been revealed to up-regulate Bcl-2/adenovirus E1V19-kDa

interacting protein 3 (BNIP3) by deacetylating the transcription

factor FoxO3 to enhance autophagy and inhibit DN (118, 119).

LKB1 deacetylated by Sirt1 activates AMPK to enhance autophagy

(120, 121). In addition, deacetylation of p53 by Sirt1 potently

activates AMPK-dependent autophagy to ameliorate DN (12) and

this protective effect of Sirt1 against DN is inhibited by several

miRNAs including miR-135a-5p (122), miR-138 (65), miR-150-5p

(12), miR-155-5p (123), and miR-217 (124) targeting the 3’

untranslated region of Sirt1. The relationship between miRNAs

and Sirt1 is complicated in the progression of DN and more efforts

are needed to clarify the underlying mechanism by which Sirt1-

regulated autophagy prevents DN.
4.2 Cellular stress signaling

4.2.1 Oxidative stress
Excessive production of ROS and/or reactive nitrogen species

beyond the endogenous scavenging capacity leads to oxidative

stress. Oxidative damage of cellular lipids, proteins, nucleic acids,

and carbohydrates breaks the structural integrity and results in

physiological dysfunction (125). Oxidative stress induced by

hyperglycemia through de novo ROS generation and suppression

of the antioxidant defense system promotes mitochondria swelling,

cristae breakage, and mitochondrial disintegration in the diabetic

kidney, which can be reversed by the enhancing autophagy to

eliminate damaged mitochondria (126).

It should be noted that autophagy and oxidative stress are

interactive. ROS are reported as an early inducer for autophagy

initiation and execution, which may be a crucial adaptive response

to reduce oxidative stress and obtain the nutrient for reuse through

autophagy-dependent degrading oxidative damaged cellular

components (127). On the contrary, oxidative modification of key

upstream autophagy regulators and autophagy core proteins

including AMPK, Sirt1, Atg4, and Parkin impair autophagy (128).

Thus, oxidative stress affects autophagy in the development of DN

as a two-edged sword and antioxidant therapy may protect the

kidney against diabetes through activating autophagy. This notion

has been supported by some evidence that antioxidant compounds

derived from plants such as betulinic acid, ursolic acid, genistein,

and luteolin effectively attenuate the kidney injury induced by

diabetes or poisons by promoting autophagy (38, 129–132).
4.2.2 Endoplasmic reticulum stress
The accumulation of unfolded or misfolded proteins in the ER

lumen leads to ER stress which is evident in DN (24, 133).

Overproduction of ROS due to chronic hyperglycemia disrupts

intracellular Ca2+ homeostasis and oxidation of ER-resident

proteins to trigger ER stress, in turn, hyperactivates the oxidative
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folding machinery to correct improper disulfide bonds, further

producing ROS (134, 135). This vicious cycle leads to the

disruption of cellular homeostasis (Figure 2). Emerging evidence

suggests that autophagy is linked to the unfolded protein response

(UPR) to relieve ER stress by clearing misfolded proteins (24, 136,

137). Under ER stress, the UPR is triggered by three protein sensors,

protein kinase RNA-like ER kinase (PERK), inositol-requiring

enzyme 1a (IRE1a), and activating transcription factor 6 (ATF6)

after accumulation of misfolded proteins (24). As shown in

Figure 2, all these three sensors of the UPR under ER stress can

induce autophagy via activating signaling pathways of PERK/a-
subunit of eukaryotic initiation factor 2/activating transcription

factor 4 (PERK/eIF2a/ATF4) (138), IRE1a/c-Jun N-terminal

kinase (JNK)/beclin1 and ATF6 (24, 139). The negative regulator

of autophagy mTOR in diabetic PTECs is activated accompanying

the increase of ER stress (140) and activating autophagy by

Jujuboside A potently attenuates ER stress and cell death in the

diabetic kidney (141). The autophagy in the kidney is usually

inhibited under diabetic status (142, 143), which is reversed by

the ER stress inhibitors salubrinal and tauroursodeoxycholic acid

(143). Since ER stress inhibitors such as tauroursodeoxycholic acid,

ursodeoxycholic acid, and 4-phenylbutyrate potently rescue

diabetic renal tubules and podocytes (144, 145), investigating in

detail the interaction between ER stress and autophagy in the

progression of DN is promising.
4.2.3 Hypoxia stress
Kidney hypoxia, preceding the onset of albuminuria (146) and

correlating with reduced glomerular filtration rate, runs through the

whole stage of DN owing to the limited capacity of enhancing renal

plasma flow and oxygen delivery (147). Hypoxia-inducible factor

(HIF) is key to adaptively maintain cellular homeostasis by

transcriptionally activating the expression of several target genes

in response to hypoxia (148, 149).

Accumulating evidence shows that hypoxia is an important

pathogenic factor for DN. Deficiency of HIF-1a has been reported

to aggravate renal dysfunction (150), while up-regulation of HIF-1a
effectively enhances autophagy to mitigate DN, which may associate

with the increased expression of Sirt1, FoxO3, and BNIP3 (119, 151,

152). Recent studies demonstrate that up-regulation of sestrin2 byHIF-

1a is involved in hypoxia-related diseases (153), which may modulate

AMPK and mTORC1-dependent autophagy to reduce the production

of ROS and attenuate DN (154, 155). Thus, the deteriorating effect of

hypoxia on the diabetic kidney is not ignored and HIF-1a-related
autophagy may be a potential target for treating DN.
5 Therapeutic strategies targeting
autophagy for DN

The symptomatic treatment for DN usually includes glycemic

control, reducing albuminuria, and blocking RAS with the usage of

angiotensin-converting enzyme inhibitors (ACEI) and angiotensin
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receptor antagonists (ARB) (156, 157). New hypoglycemic agents

such as sodium-glucose cotransporter 2 (SGLT2) inhibitors,

glucagon-like peptide 1 receptor (GLP-1R) agonists, and

dipeptidyl peptidase-4 (DPP-4) inhibitors have been shown to

protect the diabetic kidney via modulating autophagy (Table 2).

Inhibiting SGLT2, located on the lumen surface of PTECs,

potently lowers blood glucose by reducing the reabsorption of

glucose (163). SGLT2 inhibitors empagliflozin and dapagliflozin

have been shown to enhance autophagy depending on AMPK/

mTOR pathway to attenuate diabetic kidney injury (51, 55, 158).

Additionally, the progression of renal complications in pre-diabetes

is slowed by dapagliflozin through the suppression of renal

inflammation, ER stress, and apoptosis (159). Although the

commercially available SGLT2 inhibitors including empagliflozin,

dapagliflozin, and canagliflozin have been used in clinics (147), the

protective effect against DN has not been fully elucidated (164).

Liraglutide, a GLP-1R analogue to lower blood glucose, has been

shown to significantly improve the prognosis for DN (165), which

may be related to reducing apoptosis and oxidative stress through

promoting AMPK-regulated autophagy (161, 166). DPP-4 inhibitor

linagliptin not only hinders the degradation of endogenous GLP-1

to lower blood glucose, but also alleviates mesangial expansion,

podocyte foot process effacement, and albuminuria excretion in the

diabetic kidney by reactivating autophagy (160). Additionally, the

hypoglycemic agent metformin was reported to mitigate

tubulointerstitial fibrosis and oxidative stress in diabetes by

enhancing autophagy through AMPK/Sirt1/FoxO1 pathway (28,

52). Rapamycin has been shown to improve the short-term

pathological alterations in DN by enhancing autophagy by

blocking the mTORC1/ULK1 pathway (9). However, the serious

side effect of rapamycin limits its use in long-term clinical treatment

(75). Animal studies showed that melatonin, resveratrol, and

vitamin D analogs prevent DN by modulating AMPK-regulated

autophagy (11, 35, 53, 162), which may be the candidate drug for

treating DN in the clinic.

Recently, exosome is becoming a promising therapeutic target

for DN treatment (167). Exosome, as a kind of extracellular vesicles,

is involved in intercellular communication by carrying various

biomolecules and may be a novel biomarker for evaluating the

progression of DN (168, 169). MiRNAs contained in the exosome

derived from different cells attenuate high glucose-induced renal

cell injury by promoting autophagy (36, 170, 171). Additionally,

mesenchymal stem cell-derived exosomes induce autophagy via

inhibiting mTOR to attenuate diabetic renal fibrosis (172). It is

evident that the more we understand DN, the more we can do about

DN. Exosome therapy combined with autophagy regulation may be

promising for treating DN.
6 Conclusion

The significant increase in the incidence of diabetes has become

a serious worldwide health issue. The high mortality of diabetes is

strongly correlated with DN and the subsequent ESRD. Due to the
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complexity and diversity of the pathogenesis of DN, both rigorous

control of blood glucose and cholesterol and blocking RAS with the

usage of ACEI and ARB do not improve the endpoint of DN. The

role of autophagy in the progression of DN sheds light on treating

DN and how to keep the balance of autophagy in the diabetic kidney

may be a new direction for prevention and management of DN

though more efforts should be paid to exploring the precise

regulation of autophagy in DN.
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TABLE 2 Agents targeting autophagy for diabetic nephropathy.

Agent Experimental models Effect for pathology of renal injuries Reference

SGLT2
inhibitors

Dapagliflozin

Human PTECs (HK-2 cell)
exposed to high glucose

Ameliorating autophagic flux and reducing inflammation by inhibiting NF-kB
pathway through AMPK activation.

(55)

HFD-induced prediabetic rats
Reducing oxidative stress, ER stress, inflammation, and apoptosis and up-
regulating autophagy.

(158, 159)

Empagliflozin

STZ-induced diabetic mice;
Human PTECs (HKC-8) exposed
to high glucose

Enhancing autophagy and mitochondrial function to reverse renal
morphological changes.

(51)

db/db mice Reactivating autophagy and improving glomerular morphology. (160)

GLP-1R
agonists

Liraglutide
Zucker diabetic fatty rats;
Human PTECs (HKC-8) exposed
to AGEs

Activating autophagy and reducing oxidative stress via AMPK/mTOR
pathway.

(161)

DPP-4
inhibitors

Linagliptin db/db mice Reactivating glomerular autophagy and improving glomerular morphology. (160)

Metformin

HFD/STZ-induced diabetic rats;
Renal mesangial cells exposed to
high glucose

Enhancing autophagy via AMPK/Sirt1-FoxO1 pathway and alleviating
oxidative stress.

(28)

HFD/STZ-induced diabetic rats;
RTECs exposed to high glucose

Attenuating renal fibrosis via activating AMPK-induced autophagy and
suppressing EMT.

(52)

Rapamycin

STZ-induced diabetic rats Enhancing autophagy by inhibiting mTOR and improving renal function. (14)

db/db mice
Reducing fat deposition, pathological changes and renal dysfunctions via
inhibiting mTOR.

(98)

Other
candidate
drugs

Melatonin
STZ-induced diabetic rats;
RTECs (NRK52E) exposed to high
glucose

Enhancing autophagy and mitochondrial biogenesis via activating the AMPK/
Sirt1 axis.

(11)

Resveratrol

db/db mice;
Human podocytes exposed to high
glucose

Activating autophagy and attenuating apoptosis through the suppression of
miR-383-5p.

(35)

STZ-induced diabetic rats
Normalizing lipid metabolism by inducing AMPK/mTOR-mediated
autophagy.

(162)

Vitamin D
analogs

STZ-induced diabetic mice;
Human PTECs (HK-2 cell)
exposed to high glucose

Restoring defective autophagy through CAMKKb-AMPK pathway. (53)
f

SGLT2, sodium-glucose cotransporter 2; PTECs, proximal tubular epithelial cells; NF-kB, nuclear factor kappa-B; AMPK, adenosine 5’-monophosphate-activated protein kinase; HFD, high-fat
diet; ER, endoplasmic reticulum; STZ, streptozotocin; GLP-1R, glucagon-like peptide 1 receptor; AGEs, advanced glycation end-products; mTOR, mammalian target of rapamycin; DPP-4,
dipeptidyl peptidase-4; FoxO1, forkhead box O1; EMT, epithelial-mesenchymal transition; CAMKKb, calcium/calmodulin-dependent protein kinase kinase b.
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Glossary

ACEI angiotensin-converting enzyme inhibitors

AGEs advanced glycation end-products

Akt protein kinase B

Atg autophagy-related gene

AMPK adenosine 5’-monophosphate-activated protein kinase

ARB angiotensin receptor antagonists

ATF activating transcription factor

Bcl-2 B-cell lymphoma-2

BNIP3 Bcl-2/adenovirus E1V19-kDa interacting protein 3

CAMKKb calcium/calmodulin-dependent protein kinase kinase b

DN diabetic nephropathy

DPP-4 dipeptidyl peptidase-4

ECM extracellular matrix

EMT epithelial-mesenchymal transition

ER endoplasmic reticulum

ESRD end-stage renal disease

eIF2a a-subunit of eukaryotic initiation factor 2

FoxO forkhead box O

GBM glomerular basement membrane

GEnCs glomerular endothelial cells

GFB glomerular filtration barrier

GLP-1R glucagon-like peptide 1 receptor

GMCs glomerular mesangial cells

HFD high-fat diet

HIF hypoxia-inducible factor

IDF International Diabetes Federation

IRE1a inositol-requiring enzyme 1a

JNK c-Jun N-terminal kinase

LC3 microtubule-associated protein 1A/1B-light chain 3

LKB1 liver kinase B1

LncRNAs long noncoding RNAs

mTOR mammalian target of rapamycin

NF-kB nuclear factor kappa-B

PERK protein kinase RNA-like ER kinase

p70S6K phosphoprotein 70 ribosomal protein S6 kinase

PGC-1a peroxisome proliferator-activated receptor-gamma coactivator-1a

PI3K class III phosphatidylinositol-3-kinase

PTECs proximal tubular epithelial cells

(Continued)
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RAS renin-angiotensin system

RAGE receptor for advanced glycation end-products

Rheb ras homolog enriched in brain

ROS reactive oxygen species

RTECs renal tubular epithelial cells

SGLT2 sodium-glucose cotransporter 2

Sirt1 silent information regulator of transcription 1

STZ streptozotocin

TGF-b transforming growth factor-b

TSC2 tuberous sclerosis complex 2

ULK1 unc-51-like kinase 1

UPR unfolded protein response
frontiersin.org

https://doi.org/10.3389/fendo.2023.1139444
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Autophagy and its therapeutic potential in diabetic nephropathy
	1 Introduction
	2 Profile of autophagy in DN
	3 Autophagy in renal cells during diabetes
	3.1 Podocytes
	3.2 Renal tubular epithelial cells
	3.3 Glomerular mesangial cells
	3.4 Glomerular endothelial cells

	4 Autophagic pathways in DN
	4.1 Nutrient-sensing pathways
	4.1.1 mTOR pathway
	4.1.2 AMPK pathway
	4.1.3 Sirt1 pathway

	4.2 Cellular stress signaling
	4.2.1 Oxidative stress
	4.2.2 Endoplasmic reticulum stress
	4.2.3 Hypoxia stress


	5 Therapeutic strategies targeting autophagy for DN
	6 Conclusion
	Author contributions
	Funding
	References
	Glossary



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


