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Introduction: Successful embryo implantation, is the initiating step of

pregnancy, relies on not only the high quality of the embryo but also the

synergistic development of a healthy endometrium. Characterization and

identification of biomarkers for the receptive endometrium is an effective

method for increasing the probability of successful embryo implantation.

Methods: Endometrial tissues from 22 women with a history of recurrent

implantation failure (RIF) and 19 fertile controls were collected using biopsy

catheters on 7-9 days after the peak of luteinizing hormone. Differentially

expressed proteins (DEPs) were identified in six patients with RIF and six fertile

controls using isobaric tag for relative and absolute quantitation (iTRAQ)-based

proteomics analysis.

Results: Two hundred and sixty-three DEPs, including proteins with multiple

bioactivities, such as protein translation, mitochondrial function, oxidoreductase

activity, fatty acid and amino acid metabolism, were identified from iTRAQ. Four

potential biomarkers for receptive endometrium named tubulin polymerization-

promoting protein family member 3 TPPP3, S100 Calcium Binding Protein A13

(S100A13), 17b-hydroxysteroid dehydrogenase 2 (HSD17B2), and alpha-2-

glycoprotein 1, zinc binding (AZGP1) were further verified using ProteinSimple

Wes and immunohistochemical staining in all included samples (n=22 for RIF and

n=19 for controls). Of the four proteins, the protein levels of TPPP3 and HSD17B2

were significantly downregulated in the endometrium of patients with RIF.

Discussion: Poor endometrial receptivity is considered the main reason for the

decrease in pregnancy success rates in patients suffering from RIF. iTRAQ

techniques based on isotope markers can identify and quantify low abundance

proteomics, andmay be suitable for identifying differentially expressed proteins in

RIF. This study provides novel evidence that TPPP3 and HSD17B2may be effective

targets for the diagnosis and treatment of non-receptive endometrium and RIF.
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Introduction

Infertility is a common disease that troubles 10-15% couples of

childbearing age globally (1, 2). In recent decades, the rapid

development and application of assisted reproductive technology

(ART) has provided the most effective methods for patients with

infertility (3). However, there are still approximately 10% of infertile

women undergoing IVF and suffering repeated implantation failure

(RIF), termed women who are under the age of 40 but fail to achieve

clinical pregnancy after transferring at least four high-quality

embryos in at least three fresh or frozen cycles (4). Except for

anatomical and chromosome abnormalities (such as uterine cavity

abnormalities , hydrosalpinx and embryonic karyotype

abnormalities), endometrial receptivity disorders are considered

other contributor to RIF (5).

During the menstrual cycle, the endometrium undergoes

periodic changes in menstrual repair, proliferation, and secretory

differentiation under the control of continuous and complex timing

interactions of female sex hormones (6). Endometrial receptivity

refers to the maturation of the endometrium to support blastocyst

acceptance and implantation, along with the endometrial

epithelium and stromal cells, in a functional but transient state

under the effects of ovarian estrogen and progesterone (7). This

period is also termed the window of implantation (WOI), which

usually occurs 6-8 days after the peak of luteinizing hormone (LH)

and lasts about 3-5 days. To date, there are numerous molecular

mediators reported to be involved in the regulation of endometrial

receptivity, including cytokines, lipids, adhesion molecules, and

growth factors (such as cyclooxygenase-2, Krueppel-like factor 5,

leukemia inhibitory factor, interleukins, insulin-like growth factor-

binding proteins, wingless/integrated factor, prolactin (PRL),

vascular endothelial growth factor, and homeobox A10) (8–13).

In pathological conditions such as chronic or acute inflammation,

this window narrows or shifts to preclude normal implantation of

the embryo, resulting in infertility or loss of pregnancy (7, 14).

Approximately 18.6%-30.6% of patients undergoing in vitro

fertilization and embryo transfer (IVF-ET) experience WOI

translocation, resulting in impaired endometrial receptivity,

considered one of the main causes of pregnancy failure when

transferring high-quality embryos (15–19).

Examinations of endometrial receptivity by different methods,

including endometrial biopsies and imaging examinations (such as

ultrasound), have paved the way for treating unexplained RIF in the

past few years. Although ultrasound is widely used and non-

invasive, it is empirical and difficult to unify the evaluation

criteria, with a poor ability to predict pregnancy rates and strong

subjectivity (20). Since the 1920s, researchers have explored novel

effective assessments of endometrial receptivity at the tissue level

using endometrial microtubule structure (such as pinocytosis) and

morphology (pinopodes), single molecule level by PRL, integrins,

and multiple microarrays of -omics in recent years. In the past 20

years, microarrays (such as the endometrial receptivity array, ERA)

and RNA sequencing techniques in whole-tissue transcriptional

analysis have been widely used to assess endometrial receptivity and

to determine the timing of IVF-ET (21). A recent study used single-
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cell RNA sequencing to analyze the presence of endometrial cells at

WOI in patients with RIF and healthy controls and provided

detailed molecular and cellular patterns of healthy and RIF

endometrium at WOI (22). However, it is doubtful that

techniques such as transcriptome-based ERA detection can

improve the success rate of implantation (23).

Proteins in the endometrium are considered the most direct

functional molecule of an organism and the final effector of

transcriptional gene translation. The change in functional

proteins directly affects the exertion of individual biological

functions. Several studies have focused on whether there are

identifiable proteome counterparts for transcriptional features. To

compare and quantify the total expression profiles of complex

protein mixtures, previous studies have typically used two-

dimensional differential in-gel electrophoresis(DIGE), Nanobore

liquid chromatography-tandem mass spectrometry (LC-MS/MS),

and MALDI-TOF-TOF techniques (24–26). Isobaric tag for relative

and absolute quantitation (iTRAQ) is a widely used labeling

quantitative proteome technology developed by Applied

Biosystems Inc. (ABI) in 2004. It involves a set of molecules

binding to N-terminal amino groups and free amino groups of

lysine residues, thereby labeling the peptides and achieving the

purpose of proteome comparison between different samples by

labeling different source samples with reagents of different

molecular weights (27, 28). However, most of the biomarkers

screened by proteomics have not been further verified by

traditional molecular biology methods. There is still a long way to

go before applying these markers in clinical practice.

Therefore, we employ proteomics to identify the differentially

expressed proteins that may trigger RIF. To compare proteins in

multiple groups of samples qualitatively and quantitatively, we use

iTRAQ labeling combined with LC-MS/MS techniques to screen

differential WOI endometrial proteins and identify potential

biomarkers in patients with RIF. In this study, ProteinSimple Wes

and immunohistochemistry are used to verify the screened protein

molecules, providing experimental data for the establishment of

endometrial receptivity indicators and the diagnosis of RIF. Potent

protein biomarkers are further confirmed in decidual and

endometrial tissues from other published databases.
2 Materials and methods

2.1 Study population and study design

This study was evaluated and approved by the ethics committee

of Shenzhen Zhongshan Urology Hospital (Approval number:

SZZSECHU-20180023). The study included 41 females who

visited the Fertility Center of Shenzhen Zhongshan Urology

Hospital from January 2018 to December 2019. These patients

included 22 females with a history of RIF who experienced failed

pregnancy in the next period after endometrial scratch and 19 fertile

females who retrieved successful pregnancy in the next period after

endometrial scratch. Herein, RIF was defined as women who

experienced two or more retrieval cycles and transferred more
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https://doi.org/10.3389/fendo.2023.1144393
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yang et al. 10.3389/fendo.2023.1144393
than ten high-quality embryos without pregnancy (29). Among

these patients, endometria from six RIF patients and six controls

were subjected to proteomics analysis using isobaric tags for relative

and absolute quantification (iTRAQ). All included patients were

recruited for the validation of key deferentially expressed proteins

(DEPs). Table 1 presents the baseline characteristics of the

study population.
2.2 Endometrial preparation program and
sample collection

Natural cycles were used for the included patients before

collecting the endometrium. During the cycles, progesterone

(Dydrogesterone Tablet, Solvay Pharmaceuticals, Netherlands)

was commenced at a dose of 20 mg per day for 18 days of the

cycle and continued until the mid-luteal phase of the menstrual

cycle. The endometrial tissues were collected by biopsy catheter

(Gynetics, Lommel, Belgium) after 7-9 days of LH surge (LH 7-9) of
Frontiers in Endocrinology 03
the natural menstrual cycle before controlled ovarian

hyperstimulation, which is confirmed by ultrasound monitoring

of ovulation (30). Endometrial tissues were divided into two parts.

One part was frozen at -80°C for iTRAQ or ProteinSimple Wes

analysis. The other part was fixed in 4% formaldehyde for

immunohistochemical (IHC) staining.
2.3 Measurements of serum
hormone levels

On day 3 of the menstrual cycle, the concentrations of estradiol

(E2), progesterone (P), follicle-stimulating hormone (FSH), anti-

muellerian hormone (AMH), luteinizing hormone (LH), prolactin

(PRL), and testosterone (T) in the sera of the patients were

measured with Elecsys Estradiol III, progesterone II, FSH, AMH,

LH, Prolactin II, and Testosterone II kit (Elecsys, Olathe, USA) and

analyzed in an immunology analyzer (Roche Diagnostics,

Basel, Switzerland).
TABLE 1 Baseline characteristics of the study population.

1a. Population for iTRAQ analysis

Group Normal pregnancy
(n = 6)

Repeated implantation failure (n = 6) p-value

Age (years) 33.2 ± 3.8 34.7 ± 5.8 0.61

BMI (kg/m2) 21.7 ± 2.0 20.2 ± 2.5 0.27

E2 (pg/mL) 30.0 ± 17.4 38.1 ± 20.0 0.47

P (ng/mL) 0.7 ± 1.1 0.4 ± 0.2 0.58

FSH (IU/L) 6.3 ± 1.9 8.4 ± 2.8 0.15

AMH (ng/mL) 2.8 ± 0.9 1.9 ± 0.7 0.14

LH (IU/L) 6.5 ± 4.2 3.8 ± 1.8 0.17

PRL (ng/mL) 18.8 ± 4.2 15.8 ± 7.8 0.47

T (ng/mL) 0.2 ± 0.1 0.2 ± 0.2 0.47

Endometrial thickness (mm) 9.8 ± 0.8 9.2 ± 1.4 0.34

1b. Population for validation

Group Normal pregnancy
(n = 19)

Repeated implantation failure (n = 22) p-value

Age (years) 33.2 ± 4.1 33.5 ± 4.2 0.82

BMI (kg/m2) 21.4 ± 2.3 21.2 ± 2.3 0.81

E2 (pg/mL) 39.0 ± 39.6 43.5 ± 41.8 0.74

P (ng/mL) 0.4 ± 0.6 0.5 ± 0.3 0.83

FSH (IU/L) 5.5 ± 1.7 6.6 ± 1.5 0.05

AMH (ng/mL) 2.8 ± 1.3 2.3 ± 1.3 0.30

LH (IU/L) 4.0 ± 3.2 4.0 ± 1.6 0.94

PRL (ng/mL) 16.6 ± 7.0 17.4 ± 7.5 0.77

T (ng/mL) 0.3 ± 0.2 0.3 ± 0.2 0.98

Endometrial thickness (mm) 10.3 ± 2.1 9.7 ± 2.0 0.31
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2.4 iTRAQ-based proteomics analysis

Protein sample preparation, iTRAQ labeling, and liquid

chromatography-tandem mass spectrometry (LC-MS/MS)-based

protein identificat ion were accomplished by FitGene

Biotechnology Company (Guangzhou, China). Tissues were

briefly lysed and sonicated for protein collection. Protein

concentration was determined using the Bradford method. 8-plex

iTRAQ labeling was performed following the manufacturer’s

protocol (AB Scienx). Labeled peptides were fractionated,

followed by LC-MS/MS analysis.
2.5 Biological analysis

iTRAQ experiments generate large datasets. Initially, MS-based

proteomics was used to identify and quantify the proteins present in

each sample. The original data from MS-based proteomics were

analyzed using the ProteinPilot software to obtain reliable proteins.

The analysis process was described as follows: DEPs screening was

conducted based on the following inclusion criteria: (1) After

the retrieval was completed, examining the Unused value for the

original retrieval results, and setting Unused ≥ 1.3, so that the

reliability of the protein was above 95%. (2) Removing the records

beginning with “RRRR” and the reverse database from the search

results. ProteinPilot™ performed false discovery rate (FDR)

analysis to evaluate the accuracy of the retrieval results. The FDR

analysis was realized by reverse library retrieval. Subsequently,

DEPs were selected based on the following inclusion criteria: (1)

coefficient of variation<0.5; (2) p-value<0.05 (t-test); (3) fold change

≥ 1.2 or ≤ 0.83. The detailed values (unused, citable accession, gene

name, fold change, and p-value) for DEPs, including 15 proteins

(fold change > 1.5 or < 0.67) are listed in Supplementary Table 2.

The R package pheatmap, a free online platform (http://

www.bioinformatics.com.cn), was used to visualize the DEPs,

shown as volcano and heat maps (31).

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses were performed based on

the DEPs. The bubble charts of GO terms were plotted by an online

platform (http://www.bioinformatics.com.cn), whereas the chord

diagrams of KEGG pathways were visualized by the clusterProfiler

package. Furthermore, the protein-protein interaction (PPI)

networks predicted by STRING (https://string-db.org/cgi/input.pl)

were further visualized in Cytoscape software (version 3.8.2). The

top ten hub proteins were identified from the PPI network of

proteins through the calculation of degrees algorithm, and their

expression levels were revealed in a heat map (32).

Key proteins were further investigated according to fold change,

biological function, and top enriched GO terms and KEGG pathways.

The screening process is shown in Figure 1A, and the expression levels

of key proteins are shown in a heatmap. Key proteins includingTPPP3

and HSD17B2 were further reviewed in published literature and the

Human Protein Atlas (https://www.proteinatlas.org/). The expression

levels of TPPP3 and HSD17B2 in decidual tissues were obtained from
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the research by Yu et al. (33). The immunoreactive pattern of TPPP3

and HSD17B2 in the endometrium were further contrasted with

immunohistochemistry images for those antigens in endometrial

sections available in the Human Protein Atlas database.
2.6 Immunohistochemistry

Specifically, the samples were fixed and embedded in paraffin for

IHC staining. Using Bond polymer refine detection kit (Leica

Microsystems, Germany), the samples were stained in an automatic

immunostaining machine (Leica Bond Rx system, Germany). The

images were collected by the multispectral panoramic tissue program

analysis system Panel Detection 1.0 (Panovue, Beijing, China) and

visualized by the HALO digital pathological image analysis platform

(lndica Labs, USA). Detailed information regarding the primary

antibodies used is provided in Supplementary Table 1.
2.7 ProteinSimple Wes analysis

Endometrial tissues were lysed with Radio Immunoprecipitation

Assay (RIPA) Lysis Buffer (Beyotime, Shanghai, China), and the lysates

were centrifuged 12000 × g for 15min at 4°C to collect the supernatant.

The BCA assay kit (Beyotime, Shanghai, China), was used to quantify

the concentrations of total proteins. An automated Wes Capillary

System (Protein Simple, San Jose, CA, 12-230 kDa kit cat. SM-W004)

was used to detect the protein levels. Total protein loading was at a

concentration of 1 mg/mL for each sample. Immunoblot analysis was

executed using the Compass for Simple Western Program

(ProteinSimple Wes, USA). More detailed information about

primary antibodies is presented in Supplementary Table 1.
2.8 Statistical analysis

Statistical analyses were performed using SPSS for Windows

(version 25.0, SPSS Inc., Chicago, IL). Variables were analyzed by

student’s t-test, and shown as mean ± standard deviation. In

all comparisons, a two-tailed p-value < 0.05 was considered

statistically significant.
3 Results

3.1 Baseline characteristics of the
study population

Baseline characteristics, including maternal age, body mass

index (BMI), baseline serum hormone levels (E2, P, FSH, AMH,

LH, PRL and T), and endometrial thickness were comparable

between the RIF group and the fertile controls (Table 1, p ≥ 0.05

for each parameter). Table 1 presents the baseline characteristics of

the study population.
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3.2 Functional enrichment analysis and
protein-protein interaction network
analysis of DEPs

Totally, there were 263 DEPs identified in the endometrial

tissues of RIF patients compared with those from fertile controls,

including 202 down-regulated proteins and 61 up-regulated

proteins (Figure 2A; Supplementary Table 2). These DEPs were

expressed at exactly opposite levels between RIF and control group

(Figure 2B). GO term enrichment showed that DEPs were primarily

enriched in translation, ribosomal subunits, carboxylic acid

metabolic processes, oxidoreductase activity, and mitochondrial

function (Figure 3A). KEGG pathways were mainly enriched in

ribosome, immune response, and metabolism, including fatty acid,

amino acid, carbon, and other organic acid metabolism.

(Figure 3B). The top ten hub proteins were ribosomal proteins,

including RPL5, RPL23A, RPL23, RPL27, RPS3A, RPS6, RPS8,

RPS12, RPS18 and RPS24 (Figure 4). These hub proteins were all

down-regulated in the endometria of patients with RIF, suggesting

that deficiency of ribosomal protein small subunit (RPS) and
Frontiers in Endocrinology 05
ribosomal protein large subunit (RPL) may be associated with

impaired endometrial receptivity.
3.3 Validation of key proteins

Key proteins were further screened according to fold change (>

1.5 or < 0.67), biological functions (cell proliferation or apoptosis,

immune response, or angiogenesis), and top-enriched GO terms

and KEGG pathways. The screening process is shown in Figure 1A.

iTRAQ analysis showed that the expressions of HSD17B2 and

AZGP1 decreased in the endometria from RIF patients compared

with those from fertile controls, whereas TPPP3, APEX1, and

S100A13 increased in the RIF group (Figure 1B). Both

ProteinSimple Wes analysis and IHC staining verified the down-

regulation of HSD17B2, AZGP1, TPPP3, and S100A13 in the

endometrial tissues of the RIF patients compared to those from

the fertile controls (Figures 5A, B, 6). Interestingly, the expression

levels of TPPP3 and HSD17B2 also decreased in the decidual tissues

of patients with miscarriage (Figures 7A, E). These two proteins
A

B

FIGURE 1

Selection and the expression of key proteins. (A) The screening process of key proteins. (B) Heatmap of the key proteins in patients with RIF
compared with the normal pregnancy women.
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were further examined in the Human Protein Atlas. The signals of

TPPP3 were primarily located in the cell nucleus and expressed in

the endometrial ciliated cells (Figures 7B–D). The signals of

HSD17B2 were mostly located in endoplasmic reticulum and

expressed in glandular and luminal cells (Figures 7F–H).
Discussion

Although ART has made rapid progress in the past 40 years, the

clinical pregnancy rate and live birth rate of ART remain at only

54.7% and 45.0%, respectively (34). RIF and repeated pregnancy

failure remain the common reproductive disorders that significantly

affect the physical and mental health of 10-15% of couples of

childbearing age (35, 36). Poor endometrial receptivity is

considered the main reason for the decrease in pregnancy success

rates in patients suffering from RIF. Therefore, exploring the

functional protein molecular changes of endometrium during

WOI is crucial for the identification of biomarkers for

endometrial receptivity and the diagnosis and treatment of

pathogenic RIF. Therefore, we employed iTRAQ to compare the

proteomics of endometrial receptive states in the endometria from

fertile controls and RIF patients. Compared with the endometria

from normal pregnant people, there are 263 DEPs in endometrial

tissues of patients with RIF, which are mainly enriched in ribosomal

subunits and metabolic process. Furthermore, the expression

patterns of AZGP, HSD17B2, S100A13, and TPPP3 in RIF

patients were further verified by Protein Simple Wes analysis and

IHC staining as well as in other published databases.
Frontiers in Endocrinology 06
Recently, researchers sought to evaluating whole genome and

transcriptome through ERA or RNA-seq in the endometria from

RIF to identify the abnormal interruptions in endometrial

receptivity gene expression profiles (17, 19, 37–39). However, the

correlation between mRNA and the translated protein derivatives is

usually very low. The transcriptional results cannot echo for the

protein changes caused by post-transcriptional and post-

translational regulations, especially in the endometrium (40, 41).

Therefore, proteomics might provide more physiological

information than genomics. iTRAQ techniques based on isotope

markers can identify and quantify low abundance proteomics, and

may be suitable for identifying differentially expressed proteins in

menstrual endometrium (42, 43).

In this study, iTRAQ LC-MS/MS was employed to screen

specific proteins related to endometrial receptivity. We detected

more than 5000 proteins in each iTRAQ experiment, and screened

263 DEPs after three parallel experiments. Among all the DEPs

identified in this study, the central protein of the protein interaction

network is ribosomal proteins, including RPL and RPS. Our data

showed that both RPL and RPS are down-regulated in the

endometria from patients with RIF, suggesting that defects in

ribosomal subunits may lead to failed embryo implantation by

impairing endometrial receptivity. Simultaneously, DEPs were

primarily enriched in the translation, ribosomal subunits and

synthesis of GO biology, and the results from KEGG pathway

analysis also echo this observation. Moreover, GO molecular

functional association network and KEGG pathway analysis

indicated that DEPs were primarily rich in carboxylic acid

metabolism, oxidoreductase activity and mitochondrial function,
A B

FIGURE 2

Endometrial proteomic profile of the study population. (A) Volcano plot of all endometrium-expressed proteins (P divided by RIF, log2-fold-change
threshold = 1). (B) Heatmap of the DEPs identified in patients with RIF compared with the normal pregnancy women.
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and active in immune response and metabolic pathways, including

fatty acid, amino acid, carbon metabolism, and other organic acid

metabolism. This suggests that the mechanism of altering cell

metabolism may be closely related to the disturbance of

endometrial receptivity. Material metabolism and mitochondrial

function are very important for embryo implantation and

pregnancy. Studies have shown that the samples from patients

with RIF exhibit obvious mitochondrial dysfunction characteristics,

and biological metabolic processes, such as hormones and lipids,

also differ significantly from samples from patients with normal

pregnancy (44, 45). Several recent studies have provided additional

evidences for this observation. Mediators of glycose and lipid

metabolism (such as lysophosphatidic acid receptor 3 and glucose
Frontiers in Endocrinology 07
transporter 1) and cholesterol-derived steroids (including

progesterone and estrogen) were linked with endometrial

receptivity, embryonic septum, and decidualization. These

mediators regulated the organization and function of the

endometrium during preparation for blastocyst implantation (8,

46–48).

The key functional proteins according to the multiple changes

were further enriched in GO terms and KEGG pathway. ITRAQ

analysis showed that compared with the fertile control, the protein

levels of HSD17B2 and AZGP1 in the endometria from RIF were

down-regulated, whereas the expression of TPPP3, APEX1, and

S100A13 were up-regulated. These proteins are primarily involved

in biological processes such as cell proliferation and apoptosis,
A

B

FIGURE 3

Functional enrichment analyses of the DEPs in patients with RIF compared with the normal pregnancy females. (A) The bubble chart of top 10 GO
terms for biological process, cellular component, and molecular function. (B) The chord diagram of top 10 KEGG pathways (P vs. RIF). Fold change is
calculated by dividing the expression of DEP in control group by the corresponding value in RIF group.
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immune response or angiogenesis, which play important roles in

the process of embryo implantation. Consequently, we expanded

the sample size and further verified the expression of these five key

proteins by Protein Simple Wes and IHC staining. The results

showed that the protein levels of HSD17B2, AZGP1, TPPP3, and

S100A13 in endometrium of RIF patients were significantly lower

than patients with normal pregnancy.
Frontiers in Endocrinology 08
TPPP3 is a member of the tubulin polymerization promoting

protein family, which can bind to tubulin, promote microtubule

aggregation, and maintain the stability and integrity of the

microtubule system (49). Microtubule is the main component of

mitotic spindle, which controls cell division and chromosome

segregation (50). Studies have revealed that TPPP3 gene can

inhibit cell proliferation, induce apoptosis and cell cycle arrest,
A

B C

FIGURE 4

Protein-protein interaction network of the DEPs (A), and top 10 hub proteins among the DEPs (B). (A) medium confidence (0.400). (C) Heatmap of
the 10 hub proteins identified in RIF patients compared with the normal pregnancy females.
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and inhibit tumor growth (51–53). TPPP3 protein is also involved

in the development and regeneration of musculoskeletal and

nervous system (54, 55). Additionally, TPPP3 participates in

palmitic acid metabolism to activate oxidative stress and induce

cell damage (56). Recent studies found that inhibition of TPPP3

expression weakens b-catenin/NF- kappa B/COX-2 signal

transduction and damage decidualization in endometrial stromal

cells, and TPPP3 knockout can lead to embryo implantation failure

and inhibit the expression of receptive markers (57, 58). This is

consistent with our verification results that the expression of TPPP3

protein is significantly down-regulated in RIF patients. These

results suggest that TPPP3 plays an essential role in embryo

implantation and maintenance of pregnancy.

S100A13 is a small calcium (Ca2+)-binding protein belonging to

the S100 family. S100 proteins play fundamental roles in a series of

cellular processes, such as calcium homeostasis, cell proliferation,

apoptosis, and inflammation (59). The abnormal regulation of S100

proteins, including S100A13, is related to tumor cell proliferation,
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immune infiltration, and change of chemosensitivity (60–62).

Transcriptome or proteomics found that S100P, S100A4, S100A6,

S100A8, S100A9, S100A10, S100A11, S100A13, and S100A16 were

significantly down-regulated in endometria of RIF or failed

pregnancy, which are predictors of poor endometrial receptivity

(22, 25, 26, 42, 63–65). Additionally, S100A10 could affect the

decidualization and secretory transformation of primary

endometrial stromal cells and epithelial cells, and coordinate

Annexin A2 to promote embryo implantation (25, 66). S100A11

knockout in the uterus hindered mouse embryo implantation and

adversely affected the expression of endometrial receptivity-related

factors and the immune response of human endometrial cells (67).

This study showed that S100A13 was significantly down-regulated

in RIF patients, which was consistent with the above reports,

suggesting that S100A13 and its family members may be major

contributors in the establishment of endometrial receptivity.

HSD17B is an enzyme responsible for the synthesis

and inactivation of estrogen and androgen. In addition to
A

B

FIGURE 5

ProteinSimple Wes imaging (A) and quantitative analysis (B) of the expression of S100A13, TPPP3, HSD17B2, AZGP1 and APEX1 in endometrium of
the study population. n = 15 per group. ns, not significant, ** p<0.01, *** p < 0.001, **** p < 0.0001.
FIGURE 6

Immunohistochemical staining of TPPP3, S100A13, APEX1, HSD17B2 and AZGP1 in endometrial tissues. Red arrows indicate positive cells.
Magnification, × 200.
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producing active progesterone, HSD17B2 oxidizes estradiol to

estrone and testosterone and androstenediol to androstenedione

dehydroepiandrosterone (68–70). It plays an important role in sex

hormone-related diseases such as breast cancer, endometrial cancer

and osteoporosis (69, 71–73). In normal conditions, progesterone

acts on endometrial stromal cells and induces the secretion of

paracrine factors, and afterward stimulates adjacent epithelial

cells to express enzyme HSD17B2, which rapidly metabolizes

biologically potent estrogen E2 into weak estrogen. However, in

pathological condition such as endometriosis, progesterone is

unable to induce the expression of HSD17B2 in epithelial cells

owing to the defect of stromal cells. The metabolism of E2 in

endometriosis is insufficient, resulting in a high local concentration

(74–76). Our data showed that HSD17B2 in endometrial tissues

from RIF patients was significantly lower than those in normal

pregnant women. However, serum estradiol levels in RIF patients

were slightly higher than fertile controls without any significance.

This indicates that the abnormal decrease of HSD17B2 is the

possible cause of poor endometrial receptivity.

AZGP1, also known as zinc- a 2-glycoprotein (ZAG), is a

secretory adipose factor regulated by thyroid hormones, androgens,

and glucocorticoids (77). The change of AZGP1 level is closely

associated with obesity and related complications, such as diabetes,

obesity and polycystic ovary syndrome (78, 79). AZGP1 participates

in metabolic processes such as lipolysis and glucose transport, and

acts as a tumor suppressor in malignant tumors such as pancreatic

ductal adenocarcinoma and hepatocellular carcinoma (77, 78). The

structure and folding of ZAG are similar to those of MHC-I antigen
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presentation molecules. Decrease of AZGP1 expression is

accompanied with a significant increase of inflammatory factors.

Collectively, AZGP1 may play an important role in the regulation of

local immune responses (77, 80). Based on previous research, we

hypothesize that poor endometrial receptivity in patients with RIF

may be associated with a persistent hyperinflammatory endometrial

environment and metabolic abnormalities mediated by

downregulation of the AZGP1 protein.

We re-analyzed the data from a recurrent abortion DNA

methylome and transcriptome from Yu et al., (33) and discovered

that the expression levels of TPPP3 and HSD17B2 significantly

decreased in decidual tissues of patients with recurrent abortion.

These observations suggest that TPPP3 and HSP70B2 might play an

important role in embryo implantation and pregnancy maintenance.

Furthermore, we reviewed the expression patterns of these two

proteins in the public database (Human Protein Atlas). TPPP3 is

primarily located in the nucleus and expressed in endometrial ciliated

cells, whereas HSD17B2 is primarily located in the endoplasmic

reticulum and abundantly expressed in glandular and luminal cells.

The expression pattern is consistent with our observations, indicating

that our verification results are reliable and credible.

Although this study may provide new targets for the diagnosis

and treatment of RIF, it has some limitations. First, the sample size

of this study is inadequate, and some unknown bias may exist. This

may also be the main reason for the inconsistent expression trend of

two key proteins, TPPP3 and S100A13, in specimen verification and

proteomics analysis. To avoid the deviation caused by individual

heterogeneity, large sample sizes may be required to further verify
FIGURE 7

The expression levels of TPPP3 and HSD17B2 in decidual and endometrial tissues. (A) The expression levels of TPPP3 in decidual tissues of females
with normal pregnancy or recurrent miscarriage from Yu et al., (33). (B) The expression of TPPP3 in endometrium. (C) Subcellular localization of
TPPP3. (D) The expression levels of TPPP3 in endometrial cells (single cell-RNA seq). (E) The expression levels of HSD17B2 in decidual tissues of
females with normal pregnancy or recurrent miscarriage from Yu et al., (33). (F) The expression of HSD17B2 in endometrium. (G) Subcellular
localization of HSD17B2. (H) The expression levels of HSD17B2 in endometrial cells (single cell-RNA seq). Data in (B–D, F–H) were gained from
database of Human Protein Atlas.
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the findings. Second, proteomic specimens are obtained by invasive

endometrial biopsy, whether DEPs including TPPP3 and HSD17B2

are useful as an important reference for endometrial receptivity in

non-invasive acquisition of samples of blood, urine and cervical

swabs needed to be verified in the coming study. Finally, the

molecular mechanism and treatment strategies of the key proteins

including TPPP3 and HSD17B2 should be further verified in

animal studies.

In summary, our results suggest that endometrial TPPP3,

S100A13, HSD17B2, and AZGP1 levels may be key biochemical

markers for endometrial receptivity and the diagnosis of RIF. Our

results provide novel experimental evidences for the establishment

of endometrial receptivity indicators and a new outlook for the

pathogenesis of poor endometrial receptivity in patients with RIF.
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