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and Xiaoqiang Liu1*

1Department of Urology, Tianjin Medical University General Hospital, Tianjin, China, 2Department of
Urology, Shanxian Central Hospital (Affiliated Huxi Hospital of Jining Medical University), Heze, China
Background: The prostate, as an endocrine and reproductive organ, undergoes

complex hormonal and metabolic changes. Recent studies have shown a

potential relationship between metabolic syndrome and the progression and

recurrence of prostate cancer (PCa). This study aimed to construct a metabolic

syndrome-related prognostic index (MSRPI) to predict biochemical recurrence-

free survival (BFS) in patients with PCa and to identify cold and hot tumors to

improve individualized treatment for patients with PCa.

Methods: The Cancer Genome Atlas database provided training and test data,

and the Gene Expression Omnibus database provided validation data. We

extracted prognostic differentially expressed metabolic syndrome-related

genes (DEMSRGs) related to BFS using univariate Cox analysis and identified

potential tumor subtypes by consensus clustering. The least absolute shrinkage

and selection operator (LASSO) algorithm and multivariate Cox regression were

used to construct the MSRPI. We further validated the predictive power of the

MSRPI using KaplanMeier survival analysis and receiver operating characteristic

(ROC) curves, both internally and externally. Drug sensitivity was predicted using

the half-maximal inhibitory concentration (IC50). Finally, we explored the

landscape of somatic mutations in the risk groups.

Results: Forty-six prognostic DEMSRGs and two metabolic syndrome-

associated molecular clusters were identified. Cluster 2 was more

immunogenic. Seven metabolic syndrome-related genes (CSF3R, TMEM132A,

STAB1, VIM, DUOXA1, PILRB, and SLC2A4) were used to construct risk equations.

The high-risk index was significantly associated with a poor BFS, which was also

validated in the validation cohort. The area under the ROC curve (AUC) for BFS at

1-, 3-, and 5- year in the entire cohort was 0.819, 0.785, and 0.772, respectively,

demonstrating the excellent predictive power of the MSRPI. Additionally, the

MSRPI was found to be an independent prognostic factor for BFS in PCa. More

importantly, MSRPI helped differentiate between cold and hot tumors. Hot

tumors were associated with the high-risk group. Multiple drugs demonstrated
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significantly lower IC50 values in the high-risk group, offering the prospect of

precision therapy for patients with PCa.

Conclusion: The MSRPI developed in this study was able to predict biochemical

recurrence in patients with PCa and identify cold and hot tumors. MSRPI has the

potential to improve personalized precision treatment.
KEYWORDS

metabolic syndrome, prostate cancer, biochemical recurrence, prognostic model,
immune microenvironment
1 Introduction

Prostate cancer (PCa) is the second most common cancer in

men worldwide (1). There were more than 1,400,000 new cases of

PCa worldwide and more than 370,000 deaths as a result in 2020

(2). The incidence and mortality of PCa is positively correlated with

age, with a mean age at diagnosis of 66 years (3). In addition, there

are significant geographic differences in the incidence and mortality

of PCa, which is particularly common in developed countries. In the

United States, PCa is the leading cause of cancer events and the

second most common cause of cancer death in men (4). In

comparison, Asia has the lowest incidence and mortality rates.

However, with economic development and westernization of

lifestyle, the incidence of PCa is rapidly increasing (5).

Radical prostatectomy (RP) is the primary treatment option for

localized PCa. Nevertheless, owing to persistently elevated prostate-

specific antigen (PSA) levels, nearly 50% of patients still experience

biochemical recurrence (BCR) after surgery, suggesting a proclivity

for poor prognosis (6). Nonetheless, it is not the case that every

patient undergoing BCR will suffer from progressive disease (7).

The impact of BCR on survival was mainly observed in patients

with specific clinical risk factors such as a high Gleason score after

RP (8). Long-term follow-up of patients with PCa often spans

decades, and many patients do not die from PCa, making it difficult

to reach the endpoint of overall survival (OS) in clinical trials. Thus,

BCR serves as an intermediate clinical endpoint that can indicate

clinical progression when the disease is at a low load (9, 10).

Currently, there are no accepted molecular clusters and

personalized scoring criteria associated with BCR, despite efforts

to identify biomarkers or subtypes of PCa for BCR prediction (11).

The metabolic syndrome (MetS) is a set of combined clinical

risk factors, primarily including obesity, insulin resistance,

dyslipidemia and hypertension, and is significantly associated

with an increased risk of type 2 diabetes and cardiovascular

disease. The WHO definition for MetS includes insulin resistance

as an essential component. However, the National Cholesterol

Education Program Adult Treatment Panel III (NCEP ATP III)

does not require that criterion. In contrast, the NCEP ATP III

considers patients who meet three of the five criteria of obesity,

hyperlipidemia, hypertension, elevated blood glucose levels and

reduced HDL cholesterol levels to be diagnosed with MetS, which
02
is considered by clinicians to be more applicable to clinical practice

(12). The prevalence of MetS is highly correlated with age. In

France, the prevalence is 5.6% and 17.5% in people aged 30-39 years

and 60-64 years, respectively. Furthermore, in the US population,

the prevalence rises from 7% in participants aged 20–29 years to

44% in those aged 60–69 years (13). From 2015 to 2017, the

prevalence of MetS among Chinese residents aged 20 years and

older was 31.1%. In addition, due to the unique urban-rural

differences in China, the prevalence of MetS is relatively higher in

urban areas than in rural areas (14). In recent years, the prevalence

of MetS has increased significantly with the increase in obesity rates

among adolescents (13). This particular syndrome is the result of

the interaction between multiple genes and the environment.

Similarly, cancer, as a group of multifactorial diseases, is thought

to be correlated with genetic and metabolic abnormalities (15).

Consistent with the original theory of Otto Warburg, there is

growing evidence that cancer is principally a metabolic disease

(16). In the past few years, the association of MetS with cancer has

been documented, including PCa, but the exact mechanism

underlying the relationship remains unclear (17, 18). According

to studies published to date, obesity and insulin resistance (IR), the

central clinical features of MetS, are associated with a high risk of

cancer at multiple sites (18). Generally, obesity can promote IR (19),

subsequently leading to hyperinsulinemia and hyperglycemia.

Hyperinsulinemia contributes to cell mitosis. Overproduction of

reactive oxygen species (ROS) by hyperglycemia causes oncogenic

mutations and carcinogenesis. In addition, hyperglycemia decreases

sex hormone binding globulin, leading to elevated insulin-like

growth factor-1 (IGF-1) and suppressed apoptosis. Overall, this

process leads to tumorigenesis (20).

As a male-specific endocrine and reproductive organ, the

prostate harbors complex hormonal and metabolic variations.

Therefore, MetS and PCa may be linked intrinsically (21). It has

been investigated that the presence of MetS is correlated with

malignant outcomes of PCa, especially BCR (22). An et al.

reported in a real-world study that metastatic prostate cancer

(mPCa) patients with MetS traits were more likely to progress to

castration-resistant prostate cancer (CRPC) and had lower PSA

remission rates and shorter survival times (23). However, to the best

of our knowledge, studies addressing MetS and BCR in PCa

are limited.
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In this era of immune-targeted therapies, the concept of hot and

cold tumors has been proposed, laying the foundation for precise

patient stratification and individualized treatment (24). PCa has

been portrayed as an immunological desert, and the majority of PCa

patients respond weakly to checkpoint inhibitors, such as anti-PD1

or anti-CTLA-4 (25). Therefore, our purpose was to identify

prognostic metabolic syndrome-related genes associated with

BCR in PCa. These genes may be involved in the metabolic

process of PCa progression and may be potential targets for

controlling disease progression and recurrence. We then

constructed a metabolic syndrome-related prognostic index

(MSRPI) using seven genes to stratify patients and effectively

identify hot tumors to provide a basis for establishing

individualized treatment regimens and drug choices.
2 Materials and methods

2.1 Data collection and processing

We downloaded the transcriptomic and clinical data of PCa

patients from The Cancer Genome Atlas (TCGA) (https://

portal.gdc.cancer.gov/) (26). In this study, we combined the data

types of “biochemical recurrence” and “new tumor event after initial

treatment” to define the state of BCR. In addition, “days to first

biochemical recurrence” or “days to new tumor event after initial

treatment” was identified as the time to BCR. For the samples with

the data of “biochemical recurrence” and “days to first biochemical

recurrence”, we considered them as the state of BCR and the time to

BCR, respectively. In those with data of “biochemical recurrence” but

no “days to first biochemical recurrence,” we consider “new tumor

event after initial treatment” and “days to new tumor event after

initial treatment” as the state of BCR and the time to BCR,

respectively; in those with data of “days to first biochemical

recurrence” but no “biochemical recurrence,” we utilized “new

tumor event after initial treatment” as the state of BCR. BCR-free

survival (BFS) was defined as the interval from radical treatment to

the first BCR or death. Finally, we screened 400 PCa samples with the

state of BCR and the time to BCR, which were randomly divided into

training (n = 200) and test cohorts (n = 200). The validation cohort

was the dataset GSE70769 extracted from the Gene Expression

Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/).

Differentially expressed genes (DEGs) for PCa were obtained

from Gene Expression Profiling Interactive Analysis (GEPIA)

(http://gepia2.cancer-pku.cn/) using the Limma differential

method (|log2FC| >1, padj <0.01) (Supplementary Data sheet 1)

(27). The metabolic syndrome network containing 1,243 genes was

acquired from the Molecular Signatures Database (MsigDB) (http://

www.broad.mit.edu/gsea/msigdb/) (Supplementary Data sheet 2)

(28, 29). We screened for differentially expressed metabolic

syndrome-related genes (DEMSRGs) associated with BFS in the

training cohort using univariate Cox regression analysis.
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2.2 Functional enrichment

By uploading 208 DEMSRGs into the Database for Annotation,

Visualization, and Integrated Discovery (DAVID) (30), we obtained

the results of Gene Ontology (GO) analysis. The first ten results are

displayed in ascending order of p-values. Gene set enrichment

analysis (GSEA) was used for Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways using GSEA software (28). P < 0.05

was considered statistically significant.
2.3 Clusters based on 46
prognostic DEMSRGs

Based on the prognostic DEMSRGs, potential molecular

clusters were explored using the ConsensusClusterPlus R package

(31). Principal component analysis (PCA) was performed using the

Rtsne R package.
2.4 A novel metabolic syndrome-related
prognostic index for BCR-free survival

We performed least absolute shrinkage and selection operator

(LASSO) on the 46 prognostic DEMSRGs and extracted 13

DEMSRGs at the appearance of minimal partial likelihood

deviance. Seven of these 13 DEMSRGs were subsequently

screened using multivariate Cox regression analysis to participate

in the construction of the MSRPI.

The MSRPI was calculated using the following formula:

MSRPI = gene (A) expression*coef  (A)

+ gene (B) expression*coef  (B) +…

+ gene (i) expression*coef  (i) :

Patients in the training cohort, test cohort, and entire cohort

were divided into high- and low-risk groups based on the median

MSRPI of the training cohort. KaplanMeier survival analysis was

performed using the survival and survminer R packages. P < 0.05

was considered statistically significant. Time-dependent receiver

operating characteristic (ROC) curves were generated using the

timeROC R package to verify the predictive power of different

factors on BFS.
2.5 A predictive nomogram and calibration

The patient data for constructing the nomogram were derived

from the entire TCGA cohort. Using the rms R package, the

nomogram was constructed using age, Gleason score, T stage, N

stage and risk to predict 1-, 3-, and 5-year BFS. The calibration

curve demonstrates the accuracy of the prediction.
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2.6 Immune infiltrating cells and activation
of immune checkpoints

Using the gsva R package, single-sample gene set enrichment analysis

(ssGSEA) was used to calculate the scores of immune-infiltrating cells

and immune function. Using the “infiltration estimation for tcga” file

from the TIMER2.0 (http://timer.cistrome.org/) (32), relying on limma,

scales, ggplot2, ggtext and pheatmap R packages, the immune infiltration

analysis was performed using different methods and the results were

visualized using a bubble chart and a heatmap. In addition, we compared

the tumor microenvironment (TME) scores (including stromal score,

immune score, and estimate score) by estimating the R package and the

activation of immune checkpoints using the ggpubr R package between

different subgroups.
2.7 Drug sensitivity and landscape of
somatic mutation

To evaluate the treatment response, we used the pRRophetic R

package to calculate half-maximal inhibitory concentrations (IC50)

for each patient using the Genomics of Drug Sensitivity in Cancer

(GDSC) (https://www.cancerrxgene.org/) (33). Finally, we explored

the landscape of somatic mutations and calculated the tumor

mutational burden (TMB) of patients in the risk groups using the

maftools R package. Single-nucleotide mutation data of the patients

were obtained from TCGA database.
3 Results

3.1 Functional enrichment and cox
regression analysis

The flow of this study is presented in Figure 1. The clinical

characteristics of the training cohort and the testing cohort are showed

in Table 1. We identified 208 DEMSRGs (Figure 2A) and the results of

their functional enrichment analysis are presented in Figures 2B–D. Based

on the results of GO enrichment analysis, the most relevant biological

processes (BP) were angiogenesis, extracellular matrix organization, and

collagen biosynthetic process (Figure 2B), and the most relevant cellular

components (CC) were the extracellular matrix, plasma membrane, and

endoplasmic reticulum lumen (Figure 2C). The most relevant molecular

functions (MF) were extracellular matrix structural constituent,

extracellular matrix structural constituent conferring tensile strength, and

transforming growth factor beta binding (Figure 2D). Subsequently, 46

prognostic DEMSRGs related to BFS were screened using univariate Cox

regression analysis (P < 0.05) (Figure 2E). The correlation network of the

46 DEMSRGs is shown in Figure 2F.
3.2 Identification of two metabolic
syndrome-associated molecular clusters

Based on these 46 genes, consensus clustering analysis was

performed to classify patients into two clusters (Figure 3A). We then
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performed a principal component analysis (PCA) to clearly distinguish

the two clusters (Figure 3B). There was no significant difference in the

BFS between the two clusters (Figure 3C). However, according to the

analyses of the different platforms, cluster 2 was infiltrated more by

immune cells (Figure 3D). In addition, immune checkpoints, such as

CD274, CD40, CD44, and LAG-3, showed a greater degree of activation

in cluster 2 (Figure 3E). Single-sample GSEA (ssGSEA) was used to score

immune cell infiltration and function. The results showed that cluster 2

had a higher percentage of infiltrating B cells, CD8+ T cells, dendritic

cells (DCs), T helper cells, and regulatory T (Treg) cells than cluster 1

(Figure 3F). The results also revealed that cluster 2 had a higher score for

a series of immune functions, such as parainflammation, T-cell co-

stimulation, and type II IFN response (Figure 3G). Consistently, the

stromal, immune, and Estimation of STromal and Immune cells in

MAlignant Tumor tissues using Expression data (ESTIMATE) scores in

cluster 2 were markedly higher than those in cluster 1 (Figures 3H–J).

Additionally, we further analyzed the correlation coefficients of each

DEMSRGs with immune cell infiltration in the two clusters

(Supplementary Figure 1). Overall, cluster 2 was more immunogenic,

indicating that cluster 2 was hotter than cluster 1.

3.3 Construction and validation of MSRPI

First, we performed LASSO regression on the 46 DEMSRGs in

the training cohort, extracting 13 DEMSRGs (Figures 4A, B).

Subsequently, multivariate Cox regression was performed on

these 13 DEMSRGs, seven of which were screened for the

construction of the MSRPI (including CSF3R, TMEM132A,

STAB1, VIM, DUOXA1, PILRB, and SLC2A4).

We calculated MSRPI with the formula:

MSRPI = (1:405977046)*CSF3R + (0:69687348)*TMEM132A + (0:898243278)*

STAB1 + (0:594172062)*VIM + (� 1:073071594)*DUOXA1 + (0:508225585)*

PILRB + (� 0:956336578)*SLC2A4 :

The MSRPI was calculated for each patient in the training, test,

entire cohort, and validation cohorts. As shown in Figure 4C, the
FIGURE 1

Flow chart of this study. TCGA, The Cancer Genome Atlas; DEGs,
differentially expressed genes; GEPIA, Gene Expression Profiling
Interactive Analysis; MSRGs, metabolic syndrome-related genes;
MsigDB, molecular signatures database; DEMSRGs, differentially
expressed metabolic syndrome-related genes; BFS, BCR-free
survival; LASSO, least absolute shrinkage and selection operator;
ROC, receiver operating characteristics.
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principal component analysis (PCA) was able to distinguish high-

risk samples from low-risk samples. Patients in the training, test,

and entire cohorts were divided into high- and low-risk groups

(Figure 4D). The BFS status and expression heat map of the seven

DEMSRGs of the training, testing, and entire cohort are shown in

Figures 4E, F, respectively. The Sankey diagram presented the

relationship between the clusters and risk groups (Figure 4G).

The BFS of high-risk patients in the training (Figure 5A), test

(Figure 5C), entire (Figure 5E), and validation cohorts (Figure 5G) was

significantly lower than that of the low-risk patients. We utilized ROC

curves to evaluate the sensitivity and specificity of the MSRPI for

biochemical recurrence. The area under the ROC curve (AUC)

represents the outcome of the ROC. The 1-, 3-, and 5-year AUC of

the training cohort were 0.883, 0.835, and 0.877, respectively
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(Figure 5B). Those of the test cohort were 0.770, 0.762, and 0.702

(Figure 5D), respectively. The 1-, 3-, and 5-year AUC for the entire

cohort were 0.819, 0.785, and 0.772 (Figure 5F), and those of the

validation cohort were 0.622, 0.653, and 0.626, respectively (Figure 5H).

The risk level based on the MSRPI showed remarkable predictive

power compared to clinical factors (Figure 5I). BFS remained lower in

the high-risk group in the subgroups of age (Figures 6A, E), clinical T

(Figures 6B, F), Gleason score (Figures 6C, G), pathologic T

(Figures 6D, H), clusters (Figures 6I, J), and pathologic N0

(Figure 6K). In the pathological N1 subgroup, the difference in BFS

between the risk groups was not statistically significant (Figure 6L).

Moreover, we found a significant positive correlation between the

MSRPI and several staging indicators (pathologic T, pathologic N,

clinical T, and Gleason score) of PCa (P < 0.05) (Figures 6M–P). In

contrast, the MSRPI did not show a significant correlation with age

(Figure 6Q) or race (Figure 6R).
3.4 Construction of a nomogram
predicting the 1-, 3- and 5-year BFS

We performed univariate and multivariate Cox regression

analyses on the MSRPI and clinical factors in TCGA (Figures 7A,

B) and validation cohorts (Figures 7C, D), respectively. The MSRPI

was an independent predictor of BFS in PCa patients in both

cohorts (TCGA: univariate: HR = 1.019, P < 0.001; multivariate:

HR = 1.013, P = 0.002; GSE70769: univariate: HR = 2.041, P = 0.005;

multivariate: HR = 1.752, P = 0.040). In addition, we found that

Gleason score was also an independent prognostic parameter

(TCGA: univariate: HR = 2.325, P < 0.001; multivariate: HR =

1.901, P < 0.001; GSE70769: univariate: HR = 2.349, P < 0.001;

multivariate: HR = 2.105, P < 0.001) (Figures 7A–D).

According to age, Gleason score, T stage, N stage and risk level

based on the MSRPI, we constructed a nomogram to predict the 1-,

3-, and 5-year BFS of patients with PCa (Figure 7E). The calibration

plot showed the excellent predictive power of the nomogram for 1-,

3-, and 5-year BFS (Figure 7F).
3.5 Differentiating between cold
and hot tumors and precision
treatment in risk groups

GSEA was conducted for KEGG functional enrichment analysis

in the high-risk group. Glycosaminoglycan biosynthesis,

chondroitin sulfate, glycosylphosphatidylinositol (GPI) anchor

biosynthesis, N-glycan biosynthesis, nod-like receptor signaling

pathway, spliceosome, T cell receptor signaling pathway, and

ubiquitin-mediated proteolysis were the main KEGG enriched

pathways in the high-risk group (Figure 8A). In addition, we

found that almost all immune checkpoints were highly activated

in the high-risk group, including CD276, CTLA4, HAVCR2

(TIM3), and NRP1 (Figure 8B). In addition, the landscape of

immune infiltration based on different platforms demonstrated

that the high-risk group possessed a richer immune abundance

(Figure 8C). We further explored the correlation between the
TABLE 1 The clinical characteristics of PCa patients in the training and
testing cohorts.

Characteristics Training cohort Testing cohort

Sample 200 200

Age – –

<=60 90 94

>60 110 106

Gender – –

Male 200 200

T stage – –

T2a 3 5

T2b 8 1

T2c 52 82

T3a 72 55

T3b 55 55

T4 5 2

Unknown 5 0

N stage – –

N0 144 142

N1 32 28

Unknown 24 30

M stage – –

M0 190 185

M1 0 2

Unknown 10 13

Gleason score – –

GS=6 17 21

GS=7 103 95

GS=8 28 22

GS=9 50 61

GS=10 2 1
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MSRPI and immune cell infiltration. According to the results of the

analysis employing different software platforms, more immune cells

were significantly and positively associated with the MSRPI

(Figure 8D), such as cancer-associated fibroblasts in EPIC,

macrophages and myeloid dendritic cells in XCELL, and Tregs

and T cell follicular helper in CIBERSORT-ABS (Figure 8E). The

stromal, immune, and ESTIMATE scores were also higher in the

high-risk group (Figure 8F). In summary, these indicate that the

high-risk group has immunologically hot tumors and are more

likely to benefit from immunotherapy. We screened 34 targeted
Frontiers in Endocrinology 06
agents that showed lower IC50 values in the high-risk group in the

treatment of PCa, 12 of which were displayed, such as AMG706

(motesanib) and rapamycin (Figure 8G).
3.6 Landscape of somatic mutation in
risk groups

To explore the difference in somatic mutations in the risk groups,

we calculated the proportion and type of mutation for each patient and
A B

D

E F

C

FIGURE 2

GO analyses and identification of prognostic DEMSRGs. (A) Venn diagram of DEGs and MSRGs. (B–D) BP, CC and MF of 208 DEMSRGs.
(E) Univariable Cox regression to identify 46 DEMSRGs related to BFS in the train cohort. (F) Correlation network of 46 DEMSRGs.
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the tumor mutational burden (TMB) of both groups. Figures 9A–D

shows the landscape of mutations in the high- and low-risk groups,

respectively. The top five genes with the highest mutation rates in the

high-risk group were TP53 (19%), TTN (14%), SPOP (10%), FOXA1

(8%), and KMT2D (8%). SPOP (11%), TTN (6%), TP53 (5%), KDM6A
Frontiers in Endocrinology 07
(4%), and KMT2D (4%) showed the highest mutation rates in the low-

risk group. TP53 and TTN had a higher proportion of mutations in the

high-risk group, whereas SPOP had a higher proportion of mutations

in the low-risk group. Moreover, TMB was higher in the high-risk

group than in the low-risk group (Figure 9E).
A B

D E

F G

IH J

C

FIGURE 3

Identification of two metabolic syndrome-associated clusters. (A) Consensus clustering. (B) PCA. (C) KM survival analysis of clusters. (D) Immune
infiltration analysis of the different platforms. (E) Expression of immune checkpoints. (F, G) SsGSEA of immune infiltrating cells and immune function.
(H–J) Stromal score, immune score, and ESTIMATE score for two clusters. *p<0.05, **p<0.01, ***p<0.001.
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4 Discussion

Despite tremendous progress in recent years in oncologic

therapeutic strategies targeting immune checkpoints, therapeutic

efficacy is not satisfactory in a wide range of PCa patients owing to

the immunosuppressive tumor microenvironment of PCa.

Therefore, we introduce the concept of hot and cold tumors, a
Frontiers in Endocrinology 08
classification based on the type and density of immune cells inside

the tumor, which can predict tumor prognosis more accurately than

the traditional TNM system and guide the choice of

immunotherapy for PCa (24). High-infiltration tumors with a

high immune score are usually referred to as hot tumors, while

low-infiltration tumors are referred to as cold tumors. BCR, a key

intermediate event after RP, is suggestive of clinical recurrence or
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FIGURE 4

Construction of the MSRPI. (A, B) LASSO regression analysis (C) and PCA. The distribution of (D) MSRPI, (E) survival status and (F) gene expression of
the train, test, and entire TCGA cohort. (G) The Sankey diagram of clusters and risk groups.
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metastasis of PCa (34). Through this study, for the very first time, a

recurrence risk signature at the polygenic level from the standpoint

of MetS was constructed and validated to provide a reference for

treatment decisions in clinical practice.

In this study, we first identified two MetS-related molecular

clusters using consensus clustering. The two clusters had different
Frontiers in Endocrinology 09
tumor immune microenvironments. Unfortunately, there was no

significant difference in BFS between the two clusters. Subsequently,

we constructed the MSRPI using the LASSO multivariate Cox

regression model. In the training cohort, test cohort, entire

cohort, and validation cohort, the high-risk group was associated

with poor BFS compared to the low-risk group. In the entire cohort,
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FIGURE 5

Survival analyses of different cohorts. KM analyses of BFS and 1-, 3- and 5-year ROC curves in the (A, B) train, (C, D) test, (E, F) entire and
(G, H) validation cohort. (I) The ROC curve of risk and other clinical factors.
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the area under the ROC curve for the MSRPI was 0.819 versus 0.773

for the Gleason score, demonstrating the outstanding predictive

performance of this index for BFS. Multivariate Cox regression

analysis revealed that the BFS-related MSRPI was an independent

predictor of PCa. More importantly, the high- and low-risk groups

exhibited distinctly different immune landscapes. The high-risk

group featured more CD8+ and CD4+ T cell infiltration, higher

immune scores, greater activation of immune checkpoints, and

stronger sensitivity to immunotherapy, which are characteristic of

hot tumors.

The MSRPI consists of seven metabolic syndrome-related genes

(MSRGs), including CSF3R, TMEM132A, STAB1, VIM, DUOXA1,
Frontiers in Endocrinology 10
PILRB, and SLC2A4. Of these MSRGs, abnormal colony-

stimulating factor receptor (CSFR) expression plays an oncogenic

role in many hematologic and solid tumors, such as

nasopharyngeal, breast, and ovarian cancers (35–37), but its role

in PCa remains unclear. Transmembrane protein 132A

(TMEM132A), a novel cellular pathway regulator, activates the

Wnt pathway (38), the dysregulation of which underlies the

metabolic traits of MetS (39). In addition, Wang et al. revealed

that Wnt regulation drives prostate cancer bone metastasis and

invasion (40). Stabilin-1 (STAB1) and triggering receptor expressed

on myeloid cell 2 (TREM2) are expressed in a lipid-associated

macrophage subset, which supports a tumor immunosuppressive
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FIGURE 6

Prognostic value of MSRPI and its relationship with clinicopathological factors. KM curves of BFS in patients stratified by (A, E) age, (B, F) clinical T,
(C, G) Gleason score, (D, H) pathologic T, (K, L) pathologic N, (I, J) and cluster. Relationships between MSRPI and other factors including
(M) pathologic T, (N) pathologic N, (O) clinical T, (P) Gleason score, (Q) age and (R) race. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001 and “ns” means not statistically significant.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1148117
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ren et al. 10.3389/fendo.2023.1148117
microenvironment and is involved in the progression of obesity and

its metabolic complications (41, 42). Cheaito et al. demonstrated

that vimentin (VIM) could serve as a biomarker of epithelial-to-

mesenchymal transition (EMT) to predict BFS in PCa (43).

Ostrakhovitch et al. reported that cell proliferation inhibition

associated with p21 upregulation occurs after transfection of the

dual oxidase 1 (DUOXA1) and low expression of DUOXA1

correlates with tumor aggressiveness (44). Moreover, the oxygen

radicals produced by DUOXA1 are associated with intravascular

plaque formation, which is a critical risk factor for atherosclerosis

(45). Using bioinformatics and immunohistochemistry approaches,

Che et al. indicated that PILRB was enriched in high-risk PCa

patients and could serve as a predictor of recurrence-free survival

(46). Solute carrier family-2-member-4-gene (SLC2A4) is an

insulin-sensitive glucose transporter protein that plays a key

regulatory role in the pathogenesis of type 2 diabetes (47). Given

that accelerated glycolysis initiated by glucose transport is essential

for rapid proliferation in oncogenesis, it has been suggested that
Frontiers in Endocrinology 11
SLC2A4 may serve as a prospective biomarker for a variety of

tumors (48–50). Interestingly, although there have been few studies

on the role of SLC2A4 in PCa in recent years, Gonzalez-Menendez

et al. revealed that SLC2A4 appears to be more important for

glucose uptake in androgen-insensitive PCa than in androgen-

sensitive PCa (51).

We explored the somatic mutation landscape of patients with

PCa in the TCGA cohort, where TP53, TTN, and SPOP were three

of the high-frequency mutated genes. Mutations in TP53, a widely

known and prominent tumor suppressor gene, can upregulate

Twist1 expression and promote the epithelial-to-mesenchymal

transition and recurrence in advanced PCa (52). Furthermore,

mutant p53 proteins can aggregate, resulting in a negative effect

on wild-type p53 proteins. Zhang et al. demonstrated the

therapeutic potential of targeting mutant p53 proteins in PCa

cells using a peptide inhibitor of p53 aggregation (53). There is a

strong positive correlation between the number of Titin (TTN)

mutations and TMB. Several studies have indicated that increased
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C

FIGURE 7

Cox regression analysis and construction of the nomogram. Univariate and multivariate Cox regression of MSRPI and other clinical parameters in the (A, B)
entire TCGA and (C, D) validation cohorts. (E) Nomogram based on T stage, N stage, age, Gleason score and risk level. (F) Calibration plot of nomogram.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1148117
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ren et al. 10.3389/fendo.2023.1148117
TMB correlates with improved response rates and survival benefits

of immune checkpoint blockade therapy (54, 55). In our study, the

high-risk group with more TTN mutations and higher TMB was

associated with poor BFS and was more sensit ive to
Frontiers in Endocrinology 12
immunotherapeutic agents, which was consistent with previous

reports. Missense mutations in speckle-type POZ protein (SPOP)

are one of the most common genetic mutations in PCa. Shi et al.

showed that SPOPmutations prolonged the survival of PCa cells by
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FIGURE 8

Immune infiltration analysis between the high- and low-risk groups. (A) Main results of GSEA in high-risk group. (B) Immune checkpoints activation.
(C) Heat map of immune infiltration. (D, E) Association of infiltrating immune cells with MSRPI based on different software platforms. (F) Stromal
score, immune score, and ESTIMATE score for two risk groups. (G) Drug sensitivity prediction in risk groups. *p<0.05, **p<0.01, ***p<0.001.
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upregulating cell cycle-associated protein 1 (Caprin1)-dependent

stress granule assembly (56). It has also been reported that PCa-

related SPOP mutants fail to ubiquitinate SQSTM1, promoting

SQSTM1-dependent autophagy and exerting tumorigenic

effects (57).

In this study, we constructed and externally validated a

metabolic syndrome-associated risk model using seven genes.

This risk formula contains fewer genes than similar studies,

making its application simpler and easier. However, this study

has some limitations. Firstly, we were not able to identify

metabolic differences between the two clusters of PCa patients

due to limitations of patient information in public databases.

Basic experiments on the potential biological mechanisms of

DEMSRGs are needed in the future. In addition, we need more

real-world samples to verify the stability of the model.
5 Conclusion

In this study, 46 DEMSRGs were significantly associated with

BFS, and two metabolic syndrome-associated molecular clusters

were identified. The MSRPI is a potent and promising biochemical

marker for PCa recurrence. Although PCa tends to have a barren

tumor immune microenvironment, we were still able to categorize

PCa tumors into hot and cold through MSRPI. Hot tumors appear

to be more sensitive to immunotherapy and consequently, patients
Frontiers in Endocrinology 13
with hot tumors can benefit from this, providing a basis for

personalized treatment options for PCa.
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