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preoperative diagnosis in
neuroendocrine carcinoma
of digestive system
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Yuhong Dai1, Yan Luo3*† and Hong Qiu1*†
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Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
3Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China
Objectives: To develop and validate a contrast-enhanced CT-based radiomics

nomogram for the diagnosis of neuroendocrine carcinoma of the digestive system.

Methods: The clinical data and contrast-enhanced CT images of 60 patients with

pathologically confirmed neuroendocrine carcinoma of the digestive system and

60 patients with non-neuroendocrine carcinoma of the digestive system were

retrospectively collected from August 2015 to December 2021 at Tongji Hospital,

Tongji Medical College, Huazhong University of Science and Technology, and

randomly divided into a training cohort (n=84) and a validation cohort (n=36).

Clinical characteristics were analyzed by logistic regression and a clinical

diagnosis model was developed. Radiomics signature were established by

extracting radiomic features from contrast-enhanced CT images. Based on the

radiomic signature and clinical characteristics, radiomic nomogram was

developed. ROC curves and Delong’s test were used to evaluate the diagnostic

efficacy of the three models, calibration curves and application decision curves

were used to analyze the accuracy and clinical application value of nomogram.

Results: Logistic regression results showed that TNM stage (stage IV) (OR 6.8,

95% CI 1.320-43.164, p=0. 028) was an independent factor affecting the

diagnosis for NECs of the digestive system, and a clinical model was

constructed based on TNM stage (stage IV). The AUCs of the clinical model,

radiomics signature, and radiomics nomogram for the diagnosis of NECs of the

digestive system in the training, validation cohorts and pooled patients were

0.643, 0.893, 0.913; 0.722, 0.867, 0.932 and 0.667, 0.887, 0.917 respectively. The

AUCs of radiomics signature and radiomics nomogram were higher than clinical

model, with statistically significant difference (Z=4.46, 6.85, both p < 0.001); the

AUC difference between radiomics signature and radiomics nomogram was not
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statistically significant (Z=1.63, p = 0.104). The results of the calibration curve

showed favorable agreement between the predicted values of the nomogram

and the pathological results, and the decision curve analysis indicated that the

nomogram had favorable application in clinical practice.

Conclusions: The nomogram constructed based on contrast-enhanced CT

radiomics and clinical characteristics was able to effectively diagnose

neuroendocrine carcinoma of the digestive system.
KEYWORDS

radiomics, contrast-enhanced CT, neuroendocrine carcinoma, diagnosis model,
digestive system
Introduction
Neuroendocrine neoplasms (NENs) are rare tumors arising

from neuroendocrine cells and peptidergic neurons, which are

characterized by secreting biogenic amines and various peptide

hormones (1). They can develop in almost any organ of the body,

mainly in the digestive and respiratory systems, such as the

esophagus, gastroenteropancreas and lung tissues, and the biology

of the disease is highly heterogeneous (2). Although relatively rare,

the incidence of NENs has been increasing, with a more than 6-fold

increase over a 40-year period, particularly in the digestive system

(3). The latest 2019 WHO guidelines classified NENs into poorly

differentiated and highly aggressive neuroendocrine cancers (NECs)

and highly differentiated and inert neuroendocrine tumors (NETs)

based on mitotic rate and Ki-67 index (4).

Due to the unspecific clinical symptoms of NECs of digestive

system, it is prone to misdiagnose NECs as adenocarcinomas or

squamous carcinomas before surgery in clinical practice. The low-

differentiated digestive system NECs are highly malignant and

aggressive, and most patients have distant metastasis at the time of

diagnosis (5). For patients with combined distant metastasis, surgery

does not benefit due to the rapidly progressive biology of NECs, and

platinum-based chemotherapy is the primary recommended first-line

treatment option. In the case of locally advanced non-NECs such as

adenocarcinomas or squamous carcinomas of the digestive system,

surgery is still an important treatment modality. In addition, the

prognosis of NECs is also significantly worse compared to non-

NECs. If the tumor can be diagnosed preoperatively, it will be

beneficial to select a more suitable treatment modality and judge the

prognosis. Currently, NECs in the digestive system are clearly

diagnosed by postoperative pathological findings, and there is still a

lack of effective and definitive methods for preoperative diagnosis.

Therefore, exploring an effective new method for preoperative

diagnosis is crucial for clinical practice.

Contrast-enhanced CT is one of the most common and important

imaging examinations for diagnosing tumor of the digestive system.

Medical images contain a large amount of invisible data, and it is the

value of radiomics to reveal these invisible disease features. Radiomics
02
has been defined as the use of mathematical algorithms to transform

the underlying pathophysiological information contained in medical

images into quantitative, high-dimensional image features and to

explore the correlation of these image features with clinical

outcomes or biological properties (6, 7). When radiomics is applied

to cancer research, it is possible to characterize the imaging of tumor

patients non-invasively, quantify the heterogeneity between tissues,

describe the microenvironment of the tumor, assess the effectiveness

of treatment, and predict survival after obtaining radiological images

by CT, MRI, and other examination methods (8, 9).

In recent years, radiomics has been gradually and widely used in

the diagnosis of cancers (10), identification of molecular typing of

tumors (11), prediction of survival status of patients (12), and the

use of imaging genomics to analyze the relationship between

imaging features and genomic features to dissect tumor

heterogeneity (13). Radiomics studies targeting NETs are also

increasing, and radiomics can be applied in the diagnosis of

pancreatic NETs (14), predicting the grading of pancreatic NETs

(15), determining the prognosis of NETs (16), and assessing the

effects of drug therapy for NETs (17). However, there are few

radiomics studies for NECs,Wang et al. (18) identified gastric NECs

from gastric adenocarcinoma with CT radiomics. To our

knowledge, there are no radiomics studies for other digestive

system NECs such as esophageal, intestinal and pancreatic.

Therefore, we aim to conduct a study to extract tumor radiomics

features based on contrast-enhanced CT images and construct a

nomogram in combination with clinicopathological characteristics

to diagnose NECs of the digestive system before surgery.
Materials and methods

Patients

This retrospective study was approved by the Medical Ethics

Review Committee of Tongji Hospital, Tongji Medical College,

Huazhong University of Science and Technology, and written

consent was waived. The inclusion criteria were as follows: patients

with pathological diagnosis of esophageal or gastroenteropancreatic
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NEC by surgery or biopsy; CT examination within 2 weeks before

surgery or biopsy. The exclusion criteria were as follows: receiving the

corresponding treatment before the contrast-enhanced CT

examination; No contrast-enhanced CT examination or

unavailability of contrast-enhanced CT image data; poor image

quality affecting image segmentation and evaluation.

A total of 177 patients pathologically-diagnosed NECs of the

digestive system from August 2015 to December 2021 were

identified from the hospital database. According to the above

inclusion and exclusion criteria, 60 patients with NEC of the

digestive system were finally included, including 23 esophageal

NECs, 22 gastric NECs, 6 intestinal NECs, and 9 pancreatic

NECs. The same number of adenocarcinomas or squamous

carcinomas of the digestive system at the same sites were

systematically sampled and matched as a control group for NECs.

Patients were randomized in a 7:3 ratio into a training cohort

(n=84) and a validation cohort (n=36) (Supplementary Figure 1).
Image acquisition

All 120 patients underwent contrast-enhanced CT examination

within 2 weeks before surgery or biopsy using a 64-slice MDCT

system (Discovery C750 HD, GE Healthcare). Patients were trained

to breathe and hold their breath before the scanning examination.

The patient was advised to be in a supine position during the

examination, and the patient was told to over-supine the neck and

lower the shoulders as much as possible during the scan and avoid

swallowing movements.

Contrast-enhanced CT scans were performed by injecting non-

ionic iodinated contrast agent Iopromide (Ultravist, Bayer Healthcare,

Wayne, NJ, iodine concentration of 370 mg/mL) at a flow rate of 3.0-

3.5 mL/s via the anterior elbow vein. Contrast-enhanced chest CT was

acquired 15 seconds after injection. Bolus tracking technique was used

for contrast-enhanced abdominal CT and arterial phase was

automatically triggered 5-8 seconds after the attenuation of

abdominal aorta reached 150 HU. The main scanning parameters

were as follows: tube voltage 100-120 kV, rotation time 0.5- 0.6 s, tube

current 200-350 mA, and slice thickness 5 mm. The acquired raw data

were reconstructed to a slice thickness of 1.25 mm and exported in

DICOM format for analysis.
Image segmentation and radiomics
feature extraction

On the picture archiving and communication system, two

experienced radiologists reviewed the contrast-enhanced CT

images and discussed together to determine the tumor location

with reference to endoscopy and other findings. Arterial phase

images of the contrast-enhanced CT were used for image

segmentation and radiomics feature extraction. Segmentation was

performed by two experienced oncologist and radiologist who were

blind to clinical information according to the tumor location

recorded by the two radiologists. The 3D Slicer image computing

platform (version 5.0.3) software was used to manually segment the
Frontiers in Endocrinology 03
3D volume of interest (VOI) of the entire tumor, and the cystic or

necrotic areas were avoided during the segmentation.

A total of 107 features, including First order features, Shape

features (3D), Shape features (2D), Gray level co-occurrence matrix

(GLCM) features, Gray level size zone matrix (GLSZM) features,

Gray level run length matrix (GLRLM) features, Neighbouring gray

tone difference matrix (NGTDM) features and Gray level

dependence matrix (GLDM) features were extracted using the

“Slicer Radiomics” extension package of 3D Slicer software. To

determine the intra- and inter-reader reproducibility of radiomics

features, 20 randomly-selected cases were segmented by the

oncologist after a period of 1 month and by radiologist with 5

years of experience.
Radiomics feature selection and radiomics
signature development

Radiomics features extracted from the images were subjected to

Z-score normalization. Intraclass correlation coefficients (ICC)

were calculated and features with ICC > 0.75 in intra- and inter-

reader reproducibility tests were considered reproducible and

include in feature selection. In the R software (version 4.2.0,

http://www.r-project.org), the least absolute shrinkage and

selection operator (LASSO) logistic regression algorithm using the

“glmnet” package was used to select features that were closely

associated with the diagnosis of NECs of the digestive system.

The features in the training cohort that were strongly correlated

with the diagnosis of NECs of the digestive system were screened by

a 10-fold cross-validation.

Based on the linear combination of the screened features and

their correlation coefficients, radiomics score (Rad-score) was

calculated. Receiver operating characteristic (ROC) curves were

plotted to analyze the efficacy of radiomics signature for

diagnosing NEC of the digestive system.
Clinical model and clinical-radiomics
model development
Clinical characteristics including age, gender, TNM stage,

preoperative CEA and preoperative CA199 were compared

between NECs and non-NECs of the digestive system, and factors

with statistical significance were further included into multivariable

logistic regression analysis to establish a clinical model.

The clinical features associated with the diagnosis of NECs were

combined with radiomics signature using multivariable logistic

regression analysis to build a clinical-radiomics model, and a

nomogram based on these clinical-radiomics model was also

built. ROC curves were plotted to assess the discrimination of the

models, and Delong’s test was used to compare the area under the

curve of different models. Calibration curves were used to estimate

the accuracy of the nomogram, and decision curve analysis (DCA)

was used to assess the clinical utility of the nomogram.
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Statistical analysis

All statistical analyses were performed in R software. The c² test
was used for the comparison of categorical data, and the t-test was

used for the comparison of quantitative data. The “Glm” package of

the R software package was used for logistic regression analysis, the

“Glmnet” package was used for LASSO regression algorithm

analysis, and the “pROC” package was used for ROC curves

plotting. The calibration curve and DCA were executed using the

“Rms” and “rmda” packages, respectively. The differences were

statistically significant at p<0.05.
Results

Patient characteristics and clinical model
construction and validation

There were 84 patients in the training cohort, among which 42

were NECs and 42 were non-NECs; there were 36 patients in the

validation cohort, among which 18 were NECs and 18 were non-NECs.

In the training and validation cohorts, the differences in TNM stage

between the NEC and non-NEC groups were statistically significant

(p<0.05), while the differences in clinical characteristics such as age,

gender, preoperative CEA and CA199 were not statistically significant

(all p>0.05), as shown in Table 1. In the training cohort, logistic

regression was performed on TNM stage, and the results showed that

only TNM stage (stage IV) (OR 6.8, 95%CI 1.320-43.164, p=0.028) was

an independent factor for the diagnosis of NECs, and the variables and
Frontiers in Endocrinology 04
coefficients of the clinical model are shown in Supplementary Table 1.

The clinical model was constructed from TNM stage (stage IV).

The ROC curves of the clinical models in the training and

validation cohorts were plotted (Figure 1). In the training cohort, the

AUC of the clinical model for diagnosing NECs is 0.643 (95%CI 0.553-

0.733), the sensitivity is 0.405, the specificity is 0.881. In the validation

cohort, the AUC of the clinical model for diagnosing NECs is 0.722

(95%CI 0.592-0.853), the sensitivity is 0.500, the specificity is 0.944.
Radiomics signature construction
and validation

A total of 107 radiomics features were extracted, and the

consistency assessment showed that the ICC of all radiomics

features was >0.75. The best radiomics features with six non-zero

coefficients in the training cohort were determined by the LASSO

regression algorithm (Figure 2) to be closely related to the diagnosis

of NECs, and the best value of the LASSO adjustable parameter (l)
was 0.092. These six radiomics features and their corresponding

coefficients were linearly combined to construct the radiomics

signature with the following equation: Rad-score= 0.00885470+

(0.15453837 × LeastAxisLength) – (0.18987915 × SurfaceVolume

Ratio) – (0.10557837 × Uniformity) + (0.15860176 × Inverse

Variance) + (0.35593795 ×MCC) + (0.11645836 × Large

DependenceLowGrayLevelEmphasis).

The ROC curves were plotted for the Radiomics signature

(Figure 3). In the training cohort, the AUC of the radiomics

signature for diagnosing NECs is 0.893 (95%CI 0.822-0.965), the
TABLE 1 Patient clinical characteristics in the training and validation cohorts.

Characteristics Training cohort Validation cohort

NEC Non-NEC p-value NEC Non-NEC p-value

Age(year), mean ± SD 64.02 ± 9.02 56.24 ± 9.69 0.606 62.72 ± 11.21 56.83 ± 9.488 0.762

Sex 0.503 1.000

Female 27 24 3 3

Male 15 18 15 15

CEA*(ng/ml) 0.357 1.000

<5 27 35 10 12

≥5 8 6 4 4

CA199*(u/ml) 0.281 0.426

<37 29 32 12 10

≥37 2 6 1 4

TNM 0.012 0.014

I 3 6 1 1

II 8 17 6 10

III 14 14 2 6

IV 17 5 9 1
fron
*represents the presence of missing values.
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sensitivity is 0.833, the specificity is 0.833. In the validation cohort,

the AUC of the radiomics signature for diagnosing NECs is 0.867

(95%CI 0.751-0.983), the sensitivity is 0.889, the specificity is 0.778.
Nomogram construction and validation
Logistic regression analysis showed that both radiomics

signature (OR 56.869, 95% CI 11.354-471.239, p<0.001) and

TNM stage (stage IV) (OR 5.03, 95% CI 1.741-16.937, p=0.005)

were independent predictors for the diagnosis of NECs of the

digestive system, and a combined clinical-radiomics diagnostic
Frontiers in Endocrinology 05
model containing these two predictors was constructed to

generate a radiomics nomogram(Figure 4).

The ROC curves were plotted for the nomogram (Figure 5). In

the training cohort, the AUC of the radiomics nomogram for

diagnosing NECs is 0.913 (95%CI 0.849-0.976), the sensitivity is

0.833, the specificity is 0.833. In the validation cohort, the AUC of

the radiomics nomogram for diagnosing NECs is 0.932 (95%CI

0.857-1.000), the sensitivity is 1.000, the specificity is 0.722.

The ROC curves were plotted for the clinical model, radiomics

signature, and radiomics nomogram in the pooled population

(Figure 6). The AUC of the clinical model for diagnosing NECs is

0.667 (95%CI 0.593-0.741), the sensitivity is 0.433, the specificity is 0.9.

the AUC of the radiomics signature for diagnosing NECs is 0.887 (95%

CI 0.828-0.946), the sensitivity is 0.867, the specificity is 0.783. the AUC

of the radiomics nomogram for diagnosing NECs is 0.917 (95%CI

0.867-0.967), the sensitivity is 0.833, the specificity is 0.85. The

diagnosis performance of three models in the training and validation

cohort is shown in Supplementary Table 2.

Delong’s test was used to compare the significance of the AUCs

of the three different models. The results showed that the AUC of

the radiomics signature and the radiomics nomogram were higher

than those of the clinical model, and the differences were

statistically significant (Z=4.46, 6.85, both p<0.001); the difference

in the AUC of the radiomics signature and the radiomics

nomogram were not statistically significant (Z=1.63, p =0.104).

Calibration curves were developed to verify the discriminative

efficacy of the nomogram, and the mean absolute error of the

calibration curves for the training cohort was 0.017 (Figure 7A); the

mean absolute error of the calibration curves for the validation

cohort was 0.06 (Figure 7B). The calibration curve was close to the

ideal curve, which indicated that the prediction of the constructed

nomogram for the diagnosis of NECs of the digestive system fitted

well with the actual results.

DCA was used to verify the value of the nomogram for clinical

applications, and the results showed that in the training cohort,

DCA in the 4%-99% threshold range was more effective in

diagnosing NECs using radiomics signature or radiomics
FIGURE 1

ROC curves of clinical model in the training and validation cohorts.
A B

FIGURE 2

Radiomics feature selected by LASSO regression algorithm. (A) Plotting of multinomial deviance versus log(l). (B) LASSO coefficient profiles of the
radiomics features.
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nomogram than using clinical model (Figure 8A). In the validation

cohort, DCA in the 1%-35%, 37%-39%, and 69%-99% threshold

range was more effective in diagnosing NECs using radiomics

signature than using clinical model, DCA in the 1%-99%

threshold range was more effective in diagnosing NECs using

radiomics nomogram than using clinical model (Figure 8B). This

suggested that radiomics signature or radiomics nomogram had

great clinical application.
Frontiers in Endocrinology 06
Discussion

In this study, we developed and validated a new radiomics

nomogram for preoperative diagnosis of NECs and non-NECs in

the digestive system. The radiomics nomogram, which combines

radiomic signature and TNM stage (stage IV), could be an effective

method diagnosing NECs of the digestive system.

Due to the significant differences in treatment and prognosis

between NECs and non-NECs, preoperative diagnosis is significant

for the treatment options and prognosis of patients. At present, there is

still a lack of effective methods. CT examination is an important

examination for the diagnosis of cancer, which can not only detect

cancer lesions but is also essential for the clinical staging of cancer (19),

and contrast-enhanced CT will be more obvious. Contrast-enhanced

CT is largely able to reflect the status of microcirculation inside the

cancer, which could understand the differences between different

cancers and judge the nature of the cancer (20, 21). The internal

blood supply is overly adequate inmost NECs (22), whichmeans that it

is possible to detect differences between NECs and non-NECs by

contrast-enhanced CT, and contrast-enhanced CT is potentially an

effective tool for diagnosing NECs.

Radiomics has a good application in the diagnosis of cancer by

extracting information from the inner data of CT and MRI images,

and the image features reflect the underlying pathophysiological

changes to a certain extent, which can reflect the internal

heterogeneity of cancers noninvasively and at low cost (23, 24).

Radiomics analysis has also shown good clinical value in NETs.

Clinical characteristics of age, gender, TNM stage, preoperative

CEA and preoperative CA199 were included in this study to explore

the role of clinical characteristics in the diagnosis for NECs of the

digestive system. The results showed that TNM stage (stage IV) was

an independent predictor for the diagnosis of NECs. Stage IV
FIGURE 3

ROC curves of radiomics signature in the training and validation
cohorts.
FIGURE 4

Radiomics nomogram constructed based on clinical model and
radiomics signature.
FIGURE 5

ROC curves of radiomics nomogram in the training and validation
cohorts.
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indicated a higher possibility of diagnosis of NECs. This is

consistent with the biological characteristics of NECs, which is

highly malignant, with the majority having developed distant

metastases at the time of diagnosis (5), and has mostly developed

into stage IV at the time of diagnosis. However, we constructed

clinical models with relatively low AUCs developed from TNM

stage (stage IV) in the training cohort, validation cohort, and pooled

population, 0.643, 0.722, and 0.691, respectively, suggesting the

relatively limited predictive value of clinical model.

In this study, six radiomics features, including LeastAxisLength,

SurfaceVolumeRatio, Uniformity, InverseVariance, MCC and

LargeDependenceLowGrayLevelEmphasis were screened to

obtain. Among them, 1 for First Order Features, 2 for Shape

Features (3D), 2 for GLCM, and 1 for GLDM. The First Order
Frontiers in Endocrinology 07
Features are mainly based on histogram analysis and are used to

depict the texture features associated with the gray frequency

distribution within the Region of Interest (ROI) (25). In this

study, Uniformity belongs to the First Order Features, which

describes the image consistency of the ROI. Shape Features (3D)

include features describing the size of the ROI and the similarity to a

sphere. In this study, LeastAxisLength and SurfaceVolumeRatio

belong to Shape Features (3D), which describe the minimum axis

length as well as the volume of the ROI. Previous studies have

shown that GLCM features are closely related to clinicopathology

and can be used to assess the gray-level spatial dependence of ROI

as well as to reflect tumor heterogeneity (26). InverseVariance and

MCC in this study belong to GLCM features and the texture

features derived from them are correlated with the diagnosis of

NECs. This is the same as the findings of Karahaliou et al. (27) and

Yang et al. (28) in breast and liver cancers, that GLCM features are

sensitive indicators of tumor heterogeneity, and the use of GLCM

features can improve the accuracy of diagnosis. GLDM features can

also reflect tumor heterogeneity to some extent (29).

LargeDependenceLowGrayLevelEmphasis in this study belongs to

GLDM features, which can quantify the image grayscale correlation

of ROI.

The results of the radiomics nomogram show that the AUC of

the ROC curves of the radiomics signature or the radiomics

nomogram is higher than the AUC of the ROC curves of the

clinical model, and the differences are statistically significant. This

implies that contrast-enhanced CT and TNM stage (stage IV) can

successfully identify patients with NECs of the digestive system,

demonstrating the value of radiomics signature or radiomics

nomogram to identify NECs of the digestive system. This can

provide a reliable basis for treatment options on the one hand,

and a valuable judgment on the prognosis of patients on the other

hand. The difference in the AUC of the ROC curves of the radiomics

nomogram and the radiomics signature is not statistically

significant. This suggests that TNM stage (stage IV) has little role

in improving the diagnostic efficacy of NECs of the digestive system

and that radiomic signature is more prominent for the diagnostic

value of NECs of the digestive system. In addition, the nomogram
FIGURE 6

ROC curves for clinical model, radiomics signature, and radiomics
nomogram in the pooled population.
A B

FIGURE 7

Calibration curves of the nomogram in the training (A) and validation (B) cohorts.
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developed in this study is easy to use and can be used as a tool for

individualized preoperative diagnostic prediction of patients.

However, some limitations are inevitable in this study: first, this

study was conducted on a malignancy of relatively rare incidence

and was a single-center retrospective study with not particularly

sufficient cases. Given the great clinical applicability of our findings

for the diagnosis of NECs of the digestive system, the next step

could be a large-sample multicenter study with more external

validation of the constructed model. Second, there was sample

selection bias in the retrospective study. Third, clinical

characteristics such as age, gender, TNM stage, preoperative CEA

and CA199 were included, and the study showed that only TNM

stage (stage IV) was associated with the diagnosis for NECs of the

digestive system, but the final diagnostic efficacy of the clinical

model was still limited, and further exploration with a larger sample

of clinical data may be needed in the future. Meanwhile, markers of

neuroendocrine differentiation, such as chromogranin A (CgA),

neuron-specific enolase (NSE) and synaptophysin (SYP) could be

included in the future to allow a more comprehensive analysis of the

diagnostic value of clinicopathological features for NECs of the

digestive system (30). In addition, this study explored the diagnostic

value of contrast-enhanced CT radiomics for NECs of the digestive

system, and functional imaging examinations such as somatostatin

receptor imaging and 18F-FDG-PET/CT (31) could be included in

the future to more systematically assess the diagnostic value of

preoperative radiomics for NECs of the digestive system.

In conclusion, we developed a radiomics nomogram that

combined radiomics signature and clinical characteristics to

effectively diagnose NECs of the digestive system. The nomogram

was validated by multiple methods and showed great predictive

ability. We expect that the radiomics nomogram can be used as a

potential tool to diagnose these patients.
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