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Season and temperature do
not affect cumulative live
birth rate and time to live
birth in in vitro fertilization

Mingze Du †, Junwei Zhang †, Zhancai Wei, Li Li , Xinmi Liu,
Manman Liu, Xingling Wang and Yichun Guan*

The Reproductive Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou,
Henan, China
Objective: To explore whether season and temperature on oocyte retrieval day

affect the cumulative live birth rate and time to live birth.

Methods: This was a retrospective cohort study. A total of 14420 oocyte retrieval

cycles from October 2015 to September 2019. According to the date of oocyte

retrieval, the patients were divided into four groups (Spring(n=3634);Summer

(n=4414); Autumn(n=3706); Winter(n=2666)). The primary outcome measures

were cumulative live birth rate and time to live birth. The secondary outcome

measures included the number of oocytes retrieved, number of 2PN, number of

available embryos and number of high-quality embryos.

Results: The number of oocytes retrieved was similar among the groups. Other

outcomes, including the number of 2PN (P=0.02), number of available embryos

(p=0.04), and number of high-quality embryos (p<0.01) were different among

the groups. The quality of embryos in summer was relatively poor. There were no

differences between the four groups in terms of cumulative live birth rate

(P=0.17) or time to live birth (P=0.08). After adjusting for confounding factors

by binary logistic regression, temperature (P=0.80), season (P=0.47) and duration

of sunshine(P=0.46) had no effect on cumulative live births. Only maternal age

(P<0.01) and basal FSH (P<0.01) had an effect on cumulative live births. Cox

regression analysis suggested no effect of season(P=0.18) and temperature

(P=0.89) on time to live birth. Maternal age did have an effect on time to live

birth (P<0.01).

Conclusion: Although season has an effect on the embryo, there was no

evidence that season or temperature affect the cumulative live birth rate or

time to live birth. It is not necessary to select a specific season when preparing

for IVF.
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Introduction

Climate change poses potential future risks to human health.

Climate change may increase the frequency of heat stress, floods,

droughts, and severe storms, with adverse effects on human health

(1). Earth’s surface temperature is rising as greenhouse gas

emissions increase. Earth warmed by approximately 0.85°C

between 1880 and 2012 (2). The temperature of the Earth’s

surface continues to rise as past emissions remain in the

atmosphere and greenhouse gas emissions continue (3). The

impact of rising ambient temperature on human health is well

known (4). There is growing evidence that maternal heat exposure

is associated with an increased risk of stillbirth, preterm birth, low

birth weight, placental abruption, low amniotic fluid, and birth

defects (5–11). However, little research has been done on fertility in

women exposed to heat. Many animal studies have revealed the

effects of temperature on fertility. Studies in South Africa on the

iconic ostrich (Struthio camelus) have found that overheating

adversely affects the number of oocytes females lay rather than

gamete viability (12). In sows, elevated temperatures can adversely

affect the farrowing rate and fertility performance (13–16). In dairy

cows, high temperatures can affect embryonic development and

endometrial receptivity, thereby reducing cow fecundity (17, 18).

Studies on the effect of high temperature on human female fertility

suggest that high temperature can adversely affect fertility, but the

specific mechanism remains unclear. Barreca et al. showed that

exposure to 8-10 months of days with a mean temperature above

80°F causes a significant drop in birth rates (19). A study that

analyzed 55 years of data from 65 countries suggested that higher

maximum temperatures can negatively affect human fertility and

that these effects can persist into the next generation (20). Exposure

to higher ambient temperatures is associated with lower ovarian

reserve, according to a study from the Massachusetts General

Hospital Fertility Center (21).

Natural conception birth rates vary by season (22, 23). Cultural

behaviors and sociodemographic influences affect the relationship

between fertility and seasons (24, 25). As many factors affecting

human reproductive activity are relatively controllable through

assisted reproductive technology, many studies have examined

assisted reproductive technology as a means of elucidating the

relationship between seasonality and reproductive outcomes.

However, the results of these studies are controversial. Some

studies have suggested that assisted reproductive outcomes are

not related to season (26–29). A Belgian study found a link

between weather conditions in the month prior to IVF treatment

and live birth rates per cycle (30). A University of Arizona study

suggested that higher temperatures are associated with higher odds

of clinical pregnancy (31). Another recent study found that higher

oocyte retrieval day temperatures are associated with higher odds of

clinical pregnancy and live birth at the time of frozen embryo

transfer cycles, independent of temperature at the time of frozen

embryo transfer (32). This suggests that temperature may affect

ovarian function more than uterine receptivity.

As global temperatures rise, the effects of temperature on

fertility will increase. Several recent studies suggested that higher

temperatures may have an impact on IVF clinical pregnancy rates
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and live birth rates. Should we advise patients to retrieve oocytes at

specific temperatures or during certain seasons to improve IVF

outcomes? This study aimed to explore whether the temperature on

oocyte retrieval day affects the cumulative live birth rate (CLBR)

and time to live birth.
Materials and methods

Study design and population

This was a retrospective cohort study conducted at the

Reproductive Center of the Third Affiliated Hospital of

Zhengzhou University. This study was approved by the Ethics

Committee of the Third Affiliated Hospital of Zhengzhou

University (2022–199–01). The oocyte retrieval time of the

included patients was from October 2015 to September 2019.

Exclusion criteria were as follows: ① Intracytoplasmic sperm

injection (ICSI) or preimplantation genetic testing (PGT) cycle; ②

oocyte recipient cycle, oocyte donor cycle, and oocyte freezing

recovery cycle; ③ had not obtained oocyte cycle; ④ any

chromosome abnormality in either spouse; ⑤ cycle with

incomplete data.

According to the date of oocyte retrieval, the patients were

divided into four groups (spring, summer, autumn, and winter).

Because the meteorological season can better reflect actual climate

change, we used the meteorological season as the basis for grouping:

spring (March to May); summer (June to August); autumn

(September to November), and winter (December to February).

Embryo evaluation standards refer to the Istanbul consensus (33).

Embryos of grades I, II and III were available embryos, and embryos

of grades I and II were high-quality embryos.

The primary outcome measures were CLBR and time to live

birth. CLBR: In one IVF cycle (one oocyte retrieval cycle, including

fresh embryo transfer and subsequent frozen embryo transfer

cycle), the number of cycles of the first live birth (gestation ≥28

weeks, live birth) was used as the numerator, the entire number of

oocyte retrieval cycles was used as the denominator, and the end-of-

observation standard was to obtain at least one live birth or utilize

all of the embryos in the ovulation induction (34). The observation

period was 2 years, and single births, twins, or other multiple births

were registered as one birth. We used conservative methods to

calculate the cumulative live birth rate. The observation and follow-

up period was 2 years. Time to live birth: Time from oocyte retrieval

to delivery. The secondary outcome measures included the number

of oocytes retrieved, number of 2PN, number of available embryos,

and number of high-quality embryos.
Statistical analysis

Zhengzhou’s climate data were obtained from the China

Meteorological Administration Meteorological Data Center

(http://data.cma.cn/), China’s surface climate data daily value

dataset (V3.0). This study extracted the daily average temperature

and cumulative daylight duration. All data presented in this article
frontiersin.org
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were obtained from the electronic medical record database of The

Reproductive Center, The Third Affi liated Hospital of

Zhengzhou University.

Quantitative data are presented as the mean ± standard

deviation (�x ± s), quantitative data were compared using one-way

analysis of variance, qualitative data are presented as the percentage

(%), and multiple sets of qualitative data were compared using the

chi-square test. Binary logistic regression was used to analyze the

effects of season and temperature on the clinical outcomes. Factors

analyzed included maternal age, basal follicle-stimulating hormone

(FSH) level, infertility type, and duration of infertility. Cox

regression analysis was used to assess the time to live birth

(adjusted by maternal age, basal follicle-stimulating hormone

(FSH) level, infertility type, and duration of infertility). When P

was <0.05, the difference was considered statistically significant.

All statistical management and analyses were performed using

SPSS software, version 22.0.
Results

Study population

Overall, 14420 oocyte retrieval cycles from October 2015 to

September 2019 were included in the analysis. The cycles were

allocated to four groups according to the date of oocyte retrieval: ①

spring (March to May); ② summer (June to August); ③ autumn

(September to November); ④ and winter (December to February).
Baseline characteristics

The details of the baseline and cycle characteristics among the

four groups are described in Table 1. The temperature differed
Frontiers in Endocrinology 03
among the groups (spring 18.0 ± 5.9°C; summer, 27.5 ± 2.8°C;

autumn, 16.3 ± 6.5°C; and winter, 2.6 ± 3.5°C, P<0.01). There were

significant differences in cumulative sunshine at oocyte retrieval

(spring 6.6 ± 4.0 h; summer, 6.3 ± 3.9 h; autumn, 4.6 ± 3.8 h; and

winter, 3.9 ± 3.3 h, P<0.01). Other basic characteristics, including

maternal age (P=0.08), paternal age (P=0.33), infertility type

(P=0.20), duration of infertility (P=0.23), body mass index

(P=0.34), basal FSH level (P=0.11) and anti-Müllerian hormone

(AMH) level (P=0.78) were similar among the groups (Table 1).
Embryo quality by the season of
oocyte retrieval

The number of oocytes retrieved was similar among the groups.

Other outcomes, including the number of 2PN (P=0.02), number of

available embryos (P=0.04), and number of high-quality embryos

(P<0.01) differed among the groups. The quality of embryos in

summer was relatively poor (Table 2).
Clinical outcomes by season and
temperature at oocyte retrieval

There were no differences between the four groups in terms of

CLBR (P=0.17) or time to live birth (P=0.08). After adjusting for

confounding factors by binary logistic regression analysis, season

(P=0.47) (Table 3), temperature (P=0.80) (Table 4) and duration of

sunshine (P=0.46) (Table 5) had no effect on cumulative live births.

Only maternal age (P<0.01) and basal FSH level (P<0.01) had an

effect on cumulative live births. Cox regression analysis suggested

no effect of season (P=0.18) (Figure 1) and temperature (P=0.89)

(Figure 2) on time to live birth. Maternal age did have an effect on

time to live birth (P<0.01).
TABLE 1 Comparison of demographic characteristic among groups (±s).

Characteristic Spring(n=3634) Summer(n=4414) Autumn(n=3706) Winter(n=2666) P value

Maternal age (year) 33.0 ± 6.1 32.9 ± 5.8 33.2 ± 5.9 32.9 ± 6.0 0.08

Paternal age (year) 33.8 ± 6.6 33.8 ± 6.4 34.0 ± 6.4 33.9 ± 6.5 0.33

Infertility type 0.20

Primary infertility 1343(37.0%) 1732(39.2%) 1433(38.7%) 1021(38.3%)

Secondary infertility 2291(63.0%) 2682(60.8%) 2273(61.3%) 1645(61.7%)

Duration of infertility(year) 3.6 ± 3.0 3.7 ± 3.1 3.7 ± 3.1 3.6 ± 3.1 0.23

Body mass index(Kg/m2) 23.6 ± 3.2 23.6 ± 3.2 23.5 ± 3.2 23.6 ± 3.2 0.34

Basal FSH(IU/L) 7.9 ± 4.1 7.8 ± 4.1 7.8 ± 4.0 7.7 ± 3.8 0.11

AMH(ng/ml) 3.4 ± 4.4 3.5 ± 4.8 3.4 ± 3.5 3.4 ± 3.4 0.78

Temperature(℃) 18.0 ± 5.9 27.5 ± 2.8 16.3 ± 6.5 2.6 ± 3.5 <0.01

Duration of sunshine(h) 6.6 ± 4.0 6.3 ± 3.9 4.6 ± 3.8 3.9 ± 3.3 <0.01
fro
h, hour; AMH, anti-Müllerian hormone; FSH, follicle stimulating hormone.
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Discussion

This study explored the effects of temperature and season on the

cumulative live birth rate and time to reach live birth. We found

that the CLBR and the time to live birth had no relationship with

the season or temperature on the oocyte retrieval day.

The effects of season and temperature on human fertility have

been studied for many years, but exploring the effects of natural

pregnancy also often includes exploring cultural behaviors and

sociodemographic factors (24, 25). With the maturity and

development of assisted reproductive technology, it has become

preferable to explore the effects of season and temperature on

human fertility through assisted reproductive technology. Compared

with natural pregnancy, assisted reproductive technology provides a

good model to study the effects of season and temperature on the

female reproductive process. In summer, the number of 2PN, number

of available embryos, and number of high-quality embryos were

relatively low, consistent with a previous study (35).

Regarding the clinical pregnancy rate and live birth rate, most

early studies concluded that season and temperature were not

independent factors (28, 36, 37). However, as research has

continued, some recent studies suggested a different view. A study

from the Chinese University of Hong Kong on IVF treatment

suggested that changes in environmental temperature can alter

the pregnancy rate (38). The authors of a recent study reported
Frontiers in Endocrinology 04
slightly higher clinical pregnancy rates in patients who had oocytes

retrieved in June and July, and further analysis found that higher

temperatures at the time of oocyte retrieval were associated with

higher clinical pregnancy rates but not live birth rates (31). Another

study examining frozen embryo transfer cycles reported the

interesting finding that summer oocyte retrieval and oocyte

retrieval at higher temperatures were associated with higher

clinical pregnancy and live birth rates but not with seasonal

parameters of frozen transfer day, suggesting that any seasonal

effect on IVF success was associated with ovarian function and

oocyte quality (32). In a nationwide, register-based cohort study,

live birth rates were significantly higher in spring than in summer

(39). These findings are controversial, however. This may be due to

differences in the meteorological characteristics and geographical

environments of the study populations or may be related to

inconsistencies regarding time (day of oocyte retrieval/day of

embryo transfer) and time length.

To further examine the effects of season and temperature on the

day of oocyte retrieval on assisted reproductive technology, we

evaluated the CLBR and time to live birth. The cumulative

pregnancy rate assessment included the overall treatment

outcome of both fresh embryo transfer and subsequent frozen

embryo transfer cycles, reflecting the chance of a live birth

throughout the course of treatment, which is of greater

significance to both the patient and the clinician. CLBR is a more

comprehensive and accurate indicator for evaluating the efficacy

and safety of treatment. The time to live birth could be used to

further evaluate the effectiveness of assisted reproductive

technology, and we therefore analyzed the influence of

temperature and season on live birth time using Cox regression.

The association between seasonal variation and IVF outcomes has
frontiersin.org
TABLE 2 Comparison of outcomes of ovarian stimulation (±s).

Characteristic Spring(n=3634) Summer(n=4414) Autumn(n=3706) Winter(n=2666) P value

Number of oocytes retrieved 11.3 ± 7.8 11.0 ± 7.1 11.3 ± 7.9 11.4 ± 7.6 0.08

Number of 2PN 7.5 ± 6.0 7.2 ± 5.5 7.4 ± 5.7 7.7 ± 6.0 0.02

Number of available embryos 5.9 ± 5.1 5.6 ± 4.7 5.7 ± 4.9 5.9 ± 4.9 0.04

Number of high-quality embryos 3.4 ± 3.8 3.1 ± 3.4 3.1 ± 3.5 3.4 ± 3.6 <0.01

Cumulative live birth rate 1832(50.4%) 2320(52.6%) 1884(50.8%) 1395(52.3%) 0.17

Time to live birth(d) 324 ± 97 321 ± 94 329 ± 100 323 ± 94 0.08
2PN, 2 pronuclei.
TABLE 3 The effect of seasons on cumulative live birth rate.

Item
Cumulative live birth rate

AOR(95%CI) P value

Maternal age 0.85(0.84-0.86) <0.01

Basal FSH 0.92(0.91-0.93) <0.01

Infertility type 0.95(0.88-1.04) 0.25

Duration of infertility 1.00(0.98-1.01) 0.53

Season 0.47

Winter 1.00(Ref)

Spring 0.94(0.84-1.05)

Summer 1.01(0.91-1.12)

Autumn 0.97(0.87-1.09)
TABLE 4 The effect of temperature on cumulative live birth rate.

Item
Cumulative live birth rate

AOR(95%CI) P value

Maternal age 0.85(0.84-0.86) <0.01

Basal FSH 0.92(0.91-0.93) <0.01

Infertility type 0.95(0.88-1.04) 0.25

Duration of infertility 1.00(0.98-1.01) 0.53

Temperature 1.00(1.00-1.00) 0.80
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not been elucidated. Existing studies have published conflicting

reports. Our study also does not support the conclusion that season

or temperature affect clinical outcomes. It has been hypothesized

that the mechanism by which season may affect the outcome of IVF

involves serum vitamin D levels, increased vitamin D synthesis, and

increased blood vitamin D levels caused by exposure to more

sunlight in summer, which may influence assisted reproductive

technology(ART) outcome (40). Evidence as to whether vitamin D

levels are associated with IVF outcomes is conflicting, with some

studies reporting that increased vitamin D levels improve the

likelihood of IVF success (41, 42) and others not supporting this

conclusion (43, 44). A 2018 meta-analysis of 11 published cohort

studies concluded that adequate vitamin D levels are associated with

higher odds of clinical pregnancy and live birth in women

undergoing ART (37). However, a recent systematic review and

meta-analysis showed that serum vitamin D levels are not

associated with IVF/ICSI outcomes (43).

Another strength of the present study is that we selected the

cumulative live birth rate and time to live birth as measures of ART

outcomes, and we used Cox regression to analyze the time to live

birth. Another advantage is that we could adjust for confounding

factors such as maternal age, basal FSH level, infertility type, and
Frontiers in Endocrinology 05
duration of infertility. In addition, the amount of data in this study

was relatively large and reliable.

Of course, there are some limitations to our study. First, we did

not consider sperm parameters such as semen concentration, sperm

motility, or normal morphology. However, we only included IVF

cycles and did not include ICSI cycles with worse semen quality or

abnormal fertilization. In addition, we used meteorological data for

the day of oocyte retrieval to analyze the outcome, which may also

have had an impact on the outcome. And there is a certain

difference between the indoor environment and the atmospheric

environment. In the future, meteorological data from other time

periods may need to be considered to evaluate the outcome, such as

the average temperature during oocyte development. Another

limitation of the present study is that we did not consider the

impact of atmospheric pollutants on the outcome and the effect of

temperature on the drug. Finally, this study was a single-center,

retrospective analysis, and the results therefore may not be able to

be extended to regions with different climatic conditions.
Conclusion

Although season has an effect on embryos, there was no evidence

in the present study that season and temperature affect the cumulative

live birth rate and time to live birth. It is therefore not necessary to

select a specific season when preparing for IVF. Future multicenter

studies should be conducted to further explore this question.
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TABLE 5 The effect of duration of sunshine on cumulative live birth rate.

Item
Cumulative live birth rate

AOR(95%CI) P value

Maternal age 0.85(0.84-0.86) <0.01

Basal FSH 0.92(0.91-0.93) <0.01

Infertility type 0.95(0.88-1.04) 0.26

Duration of infertility 1.00(0.98-1.01) 0.53

Duration of sunshine 1.00(0.99-1.01) 0.46
FIGURE 1

The effect of seasons on time to live birth. Adjust for maternal age,
basal follicle-stimulating hormone (FSH), infertility type and duration
of infertility.
FIGURE 2

The effect of temperature on time to live birth. Adjust for maternal
age, basal follicle-stimulating hormone (FSH), infertility type and
duration of infertility.
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