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Sphingolipids in thyroid
eye disease
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Essen, Essen, Germany
Graves’ disease (GD) is caused by an autoimmune formation of autoantibodies

and autoreactive T-cells against the thyroid stimulating hormone receptor

(TSHR). The autoimmune reaction does not only lead to overstimulation of the

thyroid gland, but very often also to an immune reaction against antigens within

the orbital tissue leading to thyroid eye disease, which is characterized by

activation of orbital fibroblasts, orbital generation of adipocytes and

myofibroblasts and increased hyaluronan production in the orbit. Thyroid eye

disease is the most common extra-thyroidal manifestation of the autoimmune

Graves’ disease. Several studies indicate an important role of sphingolipids, in

particular the acid sphingomyelinase/ceramide system and sphingosine 1-

phosphate in thyroid eye disease. Here, we discuss how the biophysical

properties of sphingolipids contribute to cell signaling, in particular in the

context of thyroid eye disease. We further review the role of the acid

sphingomyelinase/ceramide system in autoimmune diseases and its function in

T lymphocytes to provide some novel hypotheses for the pathogenesis of thyroid

eye disease and potentially allowing the development of novel treatments.
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1 Introduction

Sphingolipids have been shown to be important in several autoimmune diseases such as

multiple sclerosis and arthritis (1–4). Both, the de novo synthesis of sphingolipids and the

sphingomyelinase-pathway are implied in the pathogenesis of auto-immune disorders (1–4).

However, at present only limited information is available on the role of sphingolipids in

Graves’ disease (GD) and thyroid eye disease. GD is an autoimmune disorder, which is

caused by activation of the immune system against the endogenous thyroid stimulating

hormone receptor (TSHR), with the formation of auto-antibodies that trigger alterations and

the clinical symptoms affecting the thyroid, the eye orbit and other tissues. Here, we

summarize the current knowledge about the role of sphingolipids in autoimmune diseases,

in particular GD, present an overview about the pathophysiology of GD and thyroid eye

disease and discuss hypotheses how to combine the two areas of research. The current
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knowledge on thyroid eye disease is briefly summarized in Figure 1

(please refer for an extended presentation to the chapters below). The

pathways of ceramide synthesis and sphingomyelinase-activities are

given in Figure 2.
2 Sphingolipids and ceramide

Sphingolipids belong to the major components of the biological

membranes. They are composed of the very hydrophobic ceramide

moiety and a hydrophilic headgroup, for instance phosphorylcholine

for the abundant membrane lipid sphingomyelin. Sphingolipids are

critically involved in the structure of cellular membranes (5, 6).

However, they are not only structural molecules of cellular

membranes, but also involved in cellular signal transduction, cell

stimulation, stress and death. Sphingomyelin molecules interact with

each other and together with cholesterol molecules that stabilize the

bulky sphingomyelin aggregates, they contribute to the organization

of cellular membranes and the formation of small distinct membrane

domains (5–7). These very small domains, with a diameter of

approximately 20 nm (8), were named rafts (7), which may serve

to sort receptor molecules, although this function still needs to be

formally proved in vivo.

The hydrolysis of sphingomyelin results in the formation of

ceramide, which is an amide ester of D-erythro-sphingosine and a

fatty acid containing 2-32 (or even longer) carbon atoms in the acyl

chain (5, 6). The hydrolysis of ceramide is mediated by acid, neutral

or alkaline sphingomyelinases. However, ceramide can be also

generated by the de novo synthase pathway, a retrograde

production from sphingosine via ceramidases and upon

hydrolysis of complex glycosylated lipids or dephosphorylation of

ceramide 1-phosphate (5, 9–11). The generation of ceramide from
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sphingomyelin in small rafts has a dramatic effect on the biophysical

properties of these small membrane domains: Ceramide molecules

are very hydrophobic and thereby these molecules have the

tendency to spontaneously self-associate to small microdomains

that further fuse to large ceramide-enriched membrane domains,

also named platforms (5, 6, 12, 13). A variety of studies has shown

the formation of such ceramide-enriched membrane domains in

particular upon application of stress and stimulation of certain

receptors, for instance upon infection of mammalian cells with

pathogens such as Pseudomonas aeruginosa , Neisseriae

gonorrhoeae, Rhinovirus or SARS-CoV-2, stimulation of receptors

such as CD95, CD40 or DR5 or application of stress stimuli such as

platelet activating factor, irradiation, UV-light or Cu2+ application

(14–26). Although ceramide-enriched membrane domains do not

seem to have specific signaling functions for all of these diverse

stimuli, they are central for cell activation, because they serve to

trap, cluster and organize receptor and intracellular signaling

molecules in the cell membrane, such as CD95, CD40, DR5, b1-
integrin or NADPH-oxidase (12, 19, 20, 23, 25, 27). The

reorganization process of receptors and signaling molecules

results in the spatial and temporal organization of the

signalosome generated by a specific receptor or stress stimulus.

This re-organization process allows receptors to associate with

down-stream signaling molecules, to exclude inhibitory

molecules, to concentrate a high number of receptor molecules in

a small area of the plasma membrane and thereby to greatly amplify

the primary signals finally permitting a specific receptor to transmit

its signal into the cell (27). This mechanism is, in particular,

mediated by the acid sphingomyelinase, which resides in

lysosomes. Upon cellular activation, the acid sphingomyelinase is

often exposed onto the cell surface by fusion of secretory lysosomes

with the plasma membrane (12, 28, 29). This fusion process of
FIGURE 1

Summary of the main molecular mechanisms in thyroid eye disease (TED).
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secretory lysosomes with the plasma membrane is mediated by a

syntaxin 4-regulated transport of intracellular vesicles (28),

although many details of this process are still unknown. The acid

sphingomyelinase generates ceramide on the cell surface, for

instance after irradiation or CD95 stimulation (12, 29), but it is

also possible that ceramide is already generated in secretory

lysosomes and exposed together with the acid sphingomyelinase.

These processes are certainly not exclusive and a local surface acid

sphingomyelinase activity may lead to further formation of

ceramide and thereby control the strength and the duration of

signals generated by receptor clustering.

In addition to re-organizing the cell membrane and to form

membrane platforms, ceramide has been also shown to directly

regulate several molecules, i.e. cathepsin D (30), phospholipase A2

(31), kinase suppressor of Ras (32), ceramide-activated protein

serine-threonine phosphatases [CAPP] (33), protein kinase C

isoforms (34, 35), phosphatase 2A (36), Lc3B (37) and

phospholipase D (38). Studies by Schneider-Schaulies et al.

demonstrated an important impact of ceramide on the

cytoskeleton, in particular F-actin, ezrin and moesin, and

migratory properties of lymphocytes (39), although it is unknown

whether this is mediated by a direct interaction of membrane

ceramide with cytoskeletal proteins or via an indirect effect of

ceramide. Further, it has been demonstrated that ceramide

regulates the activity of ion channels, such as the potassium

channel Kv1.3 and calcium release-activated calcium channels

(40–43), but it is again unknown whether this effect is direct or

mediated via re-organization and/or lipid-protein interactions of

the ion channels in ceramide-enriched membrane domains.
3 Thyroid eye disease

3.1 Clinics

Graves’ disease (GD) is an autoimmune disorder that is caused

by autoantibodies against the thyroid stimulating hormone receptor

(TSHR). These anti-TSHR-antibodies are often stimulating

antibodies of the TSHR and therefore lead to an overstimulation

of the thyroid gland (44). TSHR-stimulating autoantibodies bind to
Frontiers in Endocrinology 03
the TSHR at a similar extracellular site as the thyroid stimulating

hormone (TSH) itself and cause deregulated TSHR hyper-activation

(44) resulting in Graves’ disease (45).

The continuous stimulation of TSHR leads to uncontrolled

production of thyroid hormones T3 and T4 in the thyroid. To date,

TSHR hyper-activation is treated by anti-thyroid drugs correcting the

“clinically evident” consequences. This involves pharmacological

downstream suppression of the enzyme thyroperoxidase to impair

thyroid hormone synthesis and thyroid hormone release from the

thyroid. About half of the patients go into remission over time due to

spontaneous decay of anti-TSHR antibodies, the other half suffers from

chronic relapsing course due to persistence of the immune response

(46). In these patients the thyroid will be treated by thyroidectomy or

radioiodine therapy. In some of these patients anti-TSHR antibodies

persist particularly after radioiodine therapy, and therefore

extrathyroidal manifestations can also occur later in the course of

these cases with Graves’ disease (47). The most common extrathyroidal

manifestation is thyroid eye disease, also known as Graves’Orbitopathy

(TED or GO) (46, 48, 49). Acropachy and pretiabial myxedema are

much less common. About half of Graves’ disease patients develop

thyroid eye disease and 3 to 5% develop a severe course of disease

threatening their vision (46).
3.2 Molecular mechanisms of thyroid
eye disease

The TSHR belongs to the glycoprotein hormone receptors, a

subfamily of class A G-protein-coupled receptors. The interplay

between TSH and TSHR constitutes the pituitary-thyroid axis,

which tightly regulates growth, development and metabolism.

There have been numerous publications showing the relation

between anti-TSHR antibodies level and activity and thyroid eye

disease (e.g. 50–56).

Anti-TSHR antibodies do not only bind to follicular epithelial

cells of the thyroid gland, but also to retro-orbital fibroblasts, which

express TSHR (57). Therefore, autoimmune anti-TSHR

autoantibodies activate the TSHR in the orbit causing Thyroid

eye disease, a potentially quality of life-reducing and sight-

threatening disease.
FIGURE 2

Schematic overview over the synthesis and consumption of ceramide, sphingomelin and sphingosine.
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Binding of anti-TSHR antibodies to the TSHR results in direct

activation of target cells, but also immediate stimulation of

hyaluronan secretion, one of the central patho-mechanisms of

thyroid eye disease, since hyaluronic acid binds water molecules,

which leads to increase of volume of orbital tissues (58).

Anti-TSHR antibodies also stimulate human orbital

preadipocytes to differentiate into mature adipocytes via

phosphoinositide 3-kinase activation, which also contributes to

the tissue volume increase in the orbit (59, 60). These two

pathomechanisms lead clinically to swollen extraocular muscles

and exophthalmos. Since the volume increases occur in a bony-

limited orbit, it can lead to more or less compression of the orbit

depending on the strength of the orbital ligaments, impairment of

orbital venous and lymphatic outflow and tissue hypoxia (61, 62).

In addition to the stimulation of TSHR in fibroblasts and

adipocytes, the autoimmune reaction in the orbit also leads to

infiltration with macrophages and T cells into orbital tissues,

resulting in the release of several potent inflammatory mediators.

In the initial phase of the disease an increased activity of Th1

lymphocytes has been shown, which leads to the production and

release of typical cytokines, such as IL-1b, IL-2, TNF-a and IFN-g,
enhancing the proliferation of orbital fibroblasts and production of

glycosaminoglycans (63). These cytokines further attract infiltration

of immune cells T and B cells, monocytes, and neutrophils via

cytokines like CCL2, CCL5 and CCL20, which migrate into the

orbital tissue and enhance the inflammatory process (64, 65).

During the ongoing inflammatory process Th2 lymphocytes get

activated as well and further release cytokines, such as IL-4, IL-5, IL-

10 and IL-13 (66). In the later stages of the disease tissue expansion,

remodeling and fibrosis dominate the autoimmune disorder (67). In

addition, an impaired suppressor function of Treg lymphocytes in

patients with thyroid eye disease has been suggested (65). Tregs are

important for tolerance to self-antigens and for modulating the

autoimmune system by the release of anti-inflammatory cytokines

(68). Patients with thyroid eye disease show a significant increase in

Th17-cells in the serum, contributing to the inflammatory

infiltration by mediating pro-inflammatory responses (69). This

suggests a dysregulation of the Th17/Treg balance towards lower

Tregs and higher Th17 levels in thyroid eye disease patients.

In addition, sphingolipids are known to be involved in the

control of development, differentiation, activation, proliferation and

attraction of lymphocytes (70–72).

These changes are found to varying degrees in human tissue and

also in the thyroid eye disease animal model. This high variability of

autoimmune-driven inflammation in in vivo and in vitro models is

also reflected by the clinical manifestation, which varies greatly

among patients depending on their age and risk factors.

In the past, therapeutic efforts focused on anti-inflammatory

therapy with the aim to stop the inflammatory reaction in the orbit

and the autoimmune reaction in general (73). In 2017, the results of

a phase 2 study were published, in which for the first time patients

with thyroid eye disease were treated with an antibody that blocks

the IGF1R (74). The results mark a turning point of thyroid eye

disease treatment, because for the first time, exophthalmos (80%)

and motility impairment (approx. 50%) could be efficiently

remedied (75). However, first case reports for the IGF-1R
Frontiers in Endocrinology 04
antibody therapy show recurrences after this therapy, since the

autoimmune reaction does not seem to be influenced by this

therapy (76). Therefore there is a strong need to further elucidate

the autoimmune reaction in thyroid eye disease to develop causative

treatments. Sphingolipids may play an important role here.
4 Sphingolipids in thyroid eye disease

The role of sphingolipids in thyroid eye disease is largely

unknown. Studies by our group demonstrated that fibroblasts in

the orbit of patients with thyroid eye disease exhibit an altered

phenotype with the expression of CD40, which is a co-stimulatory

receptor usually expressed on the surface of immune cells such as B-

lymphocytes or antigen-presenting cells (for review see e.g. 77).

Activated T lymphocytes express the ligand of CD40, i.e. CD154.

Binding of CD154 to its cognate receptor CD40 results in B

lymphocyte activation, in particular immunoglobulin class

switching from IgM to IgG (77). The T cell mediated help is a

central step in immune stimulation in general and also plays an

important role in the pathogenesis of autoimmune disorders (77).

Moreover, expression of CD40 is not restricted to B-lymphocytes

and antigen presenting cells, but it is also present on fibroblasts of

the orbit in patients with thyroid eye disease (78–80). Here, the

expression of CD40 in the diseased orbit creates a link to previous

studies demonstrating that cellular stimulation via CD40 results in a

rapid activation of the acid sphingomyelinase, a translocation of the

acid sphingomyelinase onto the cell surface and the generation of

surface ceramide with the subsequent formation of large ceramide-

enriched membrane platforms that cluster and signal CD40 (19).

Molecular studies demonstrated that the transmembranous domain

of CD40 mediates clustering of CD40 (81). In these studies, the

transmembranous domain of CD40 was exchanged with the

transmembranous domain of CD45, which does not cluster in

ceramide-enriched membrane domains (81). This chimeric fusion

protein did not cluster in ceramide-enriched membrane domains

anymore and did not signal under physiological conditions, while

forced cross-linking and clustering of this chimeric molecule using

crosslinked antibodies reconstituted CD40-typical signaling (81).

This establishes a central role of ceramide-mediated clustering of

CD40 for signaling of CD40.

Consistent with the hypothesis that CD40 clustering also

mediates activation of orbital fibroblasts in thyroid eye disease,

we observed an activation of the acid sphingomyelinase and a

release of ceramide upon activation of CD40 in thyroid eye

disease-derived fibroblasts (80).

The generation of ceramide also allows increased formation of

sphingosine 1-phosphate and it was demonstrated that activation of

fibroblasts isolated from the orbit of patients with thyroid eye

disease also shows a higher stimulation of sphingosine kinase 1

(80), which converts sphingosine to sphingosine 1-phosphate (82).

CD40 stimulation of these fibroblasts resulted in a further increased

formation of sphingosine and a release of sphingosine 1-phosphate

(80). Sphingosine 1-phosphate is known to be central in the

regulation of T lymphocyte emigration into tissues (82). Several

studies (72, 83, 84) demonstrated that sphingosine 1-phosphate is
frontiersin.org
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important in key aspects of thyroid eye disease, including the

induction of inflammation, increased adipogenesis in the orbit

and the induction of orbital fibrosis (72, 83, 84). These studies

demonstrated increased expression of sphingosine 1-phosphate

receptors 1, 2 and 3 in the orbit from patients with thyroid eye

disease (72, 83, 84). In vitro data showed that adipocytes responded

with increased differentiation upon stimulation with sphingosine 1-

phosphate, which was prevented by an inhibitor of the sphingosine

1-phosphate receptor 1 (72). Further, orbital fibroblasts from

patients with Graves’ orbitopathy exhibited an increased

production of reactive oxygen species, which was also blocked by

an inhibitor of sphingosine 1-phosphate receptors (83). It remains

to be determined whether the increased production of reactive

oxygen species also mediates a constitutive activation of the acid

sphingomyelinase, which is regulated by redox mechanisms (85,

86). Such a stimulation would also result in the formation of

ceramide-enriched membrane platforms that serve to cluster

NADPH-oxidase and thereby further promote the formation of

reactive oxygen species (86). Such a vicious cycle, once initiated by

the inflammation-triggered alteration of orbital fibroblasts may

continuously drive the autoimmune disease, even after down-

regulating antigen expression. It is also tempting to speculate that

cigarette smoking, one of the most important risks for thyroid eye

disease (87), drives such a reactive oxygen species – acid

sphingomyelinase – ceramide cycle and thereby promotes the

disease. In accordance, Ko et al. demonstrated increased

expression levels of sphingosine 1-phosphate 1 receptor mRNA

and of sphingosine 1-phosphate in orbital fibroblasts from patients

with GD, in particular after stimulation with cigarette smoke extract

(84). The changes of sphingosine 1-phosphate correlated with

increased formation of collagen Ia, fibronectin, and a-smooth

muscle actin, as well as IL-1b– induced expression of

metalloproteases MMP-1, MMP-2, MMP-9, and TIMP-1, events

that were prevented by inhibition of sphingosine 1-phosphate

receptors (83).

Our own studies demonstrated that stimulation of fibroblasts

isolated from the orbit of patients with Graves’ orbitopathy via

CD40 attracted T lymphocytes, which was blocked by a sphingosine

kinase inhibitor (80). Thus, alterations of fibroblasts in the orbit of

patients with Graves’ orbitopathy may drive the influx of T

lymphocytes into the orbit via the generation of sphingosine

1-phosphate.

Collectively, these studies indicate that sphingosine 1-

phosphate seems to be important for several aspects of thyroid

eye disease, in particular adipogenesis and activation of local

fibroblasts. At present, the role of ceramide and sphingosine in

thyroid eye disease requires definition.
5 Sphingolipids in autoimmune
lymphocyte activation

The state of the current knowledge on the role of sphingolipids in

thyroid eye disease is presented above. However, there is good

evidence to postulate an important role of the acid
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sphingomyelinase in autoimmune disorders. Thus, it was shown

that the acid sphingomyelinase plays an important role in multiple

sclerosis (1, 2, 4), the most important autoimmune disorder of the

central nervous system and the leading cause of neurological

disability among young adults in the Western world (88, 89).

Multiple sclerosis is characterized by focal inflammation in the

central nervous system eventually leading to local demyelination,

loss of neurons, glia scars and neurological symptoms, such as motor

and sensory deficits or impairment of vision. As in thyroid eye disease

the autoimmune process is initiated by infiltration of CD4+ and CD8+

T lymphocytes as well as macrophages (88, 90–92), which then

orchestrate and execute central nervous inflammation and damage.

Studies on the role of the acid sphingomyelinase in multiple sclerosis

demonstrated that genetic deficiency of acid sphingomyelinase

prevented many aspects of multiple sclerosis, including blood-brain

barrier disruption, influx of immune cells into the central nervous

system and, thereby, neuroinflammation (1, 2) . Acid

sphingomyelinase-deficient mice were almost completely protected

against the induction of an experimental multiple sclerosis, i.e.

experimental autoimmune encephalomyelitis (1, 2). Experimental

autoimmune encephalomyelitis was also inhibited by treatment of the

mice with functional inhibitors of the acid sphingomyelinase, such as

amitriptyline or sertraline (2). These drugs interfere with binding of

the acid sphingomyelinase to membranes and displace the acid

sphingomyelinase from intralysosomal membranes resulting in

proteolytic degradation of the acid sphingomyelinase (93–95).

These drugs are often antidepressants (94, 95).

Deficiency or pharmacological blockade of the acid

sphingomyelinase also prevented the induction of another

autoimmune disorder, i.e. autoimmune arthritis (3). These studies

revealed an induction of severe arthritis upon autoimmune

immunization, which was prevented by genetic deficiency or

pharmacological inhibition of the acid sphingomyelinase (3). In

summary, the data clearly demonstrate that the acid

sphingomyelinase plays a pivotal role in autoimmune disorders,

although the molecular mechanisms of the involvement of the acid

sphingomyelinase are still unknown. It is therefore tempting to

speculate that the acid sphingomyelinase also plays a role in GD,

although this needs to be tested.

Sphingomyelinases have been shown to regulate several aspects

of lymphocyte biology, although a comprehensive picture

is missing.

Several studies have shown that deletion of the acid

sphingomyelinase results in an increased formation of regulatory T

lymphocytes that are able to down-regulate or even inhibit immune

responses (96, 97). Acid sphingomyelinase-deficient mice have higher

number of regulatory T cells compared to littermate control mice. In

vitro stimulation of acid sphingomyelinase-deficient T-lymphocytes

resulted in higher number of Foxp3+ -induced regulatory T cells,

compared with control T-cells (97). This effect might be mediated by

Akt and Rictor, since acid sphingomyelinase-deficient induced

regulatory T cells demonstrated reduced phosphorylation of Akt

and reduced expression of Rictor, a protein that complexes with

mTor2 and has been shown to be involved in regulation of cell

growth and proliferation (96).
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The generation of regulatory T cells in mice lacking the acid

sphingomyelinase might explain, at least in part, the inhibition of

autoimmune responses in acid sphingomyelinase-deficient mice or

upon treatment with pharmacological inhibitors of the

acid sphingomyelinase.

A recent study using T cell-specific acid sphingomyelinase- or

acid ceramidase-deficient mice revealed that T cell-specific ablation

of acid sphingomyelinase resulted in reduced ceramide levels in T

cells and an impairment of T cell responses, whereas T cell specific

deletion of the acid ceramidase elevated T cell activation (98).

Decreased ceramide concentrations promoted differentiation of

CD4+ regulatory T cells, but also negatively interfered with

cytotoxic activity of CD8+ T cells, which was improved by

elevated ceramide concentrations (98). The studies also linked the

T cell receptor (TCR/CD3) complex to ceramide-enriched

membrane domains, since ceramide co-localized with the TCR/

CD3 complex forming an immune synapse in stimulated T cells, an

event that seems to regulate the strength of TCR/CD3

signaling (99).

Several studies imply that also neutral sphingomyelinases are

important in T cell activation (100, 101). These studies

demonstrated that inhibition of neutral sphingomyelinases

interfered with lymph node homing and adhesion of T cells to

activated endothelial cells (99, 100). In accordance, pharmacological

or genetic ablation of neutral sphingomyelinase 2 interfered with T

cell polarization, suggesting that neutral sphingomyelinases are

involved in T cell recruitment and migration (99, 100). Besides

regulation of T cell polarization and migration, neutral

sphingomyelinase-2 is also critically involved in fine-tuning of
Frontiers in Endocrinology 06
signaling generated via the TCR/CD3 (99, 100). Thus, deletion of

neutral sphingomyelinase-2 resulted in hyper-responsivity of T cells

upon stimulation via CD3/CD28 (99, 100). This effect seems to be

mediated by an increased metabolic activity with an accumulation

of ATP in mitochondria and higher basal glycolytic activity in

lymphocytes upon downregulation of neutral sphingomyelinase-2

(101). Whether down-regulation of neutral sphingomyelinase-2

results in an altered immune response in vivo remains to

be determined.
6 Perspective

The role of sphingolipids in thyroid eye disease, in particular

sphingomyelin, ceramide, sphingosine and sphingosine 1-phosphate

and of the enzymes involved in the metabolism of these sphingolipids

such as acid sphingomyelinase, acid ceramidase and sphingosine

kinases requires definition and only a few data are available. An

overview is presented in Figure 3. However, already these few data

clearly indicate that this pathway and in particular the acid

sphingomyelinase and ceramide have a very important role in the

immune-pathogenesis of autoimmune disorders such as multiple

sclerosis, immune arthritis and possibly also thyroid eye disease.

Further, sphingolipids, in particular ceramide and sphingosine 1-

phosphate seem to be critically involved in regulating and mediating

the local alterations of the orbit in thyroid eye disease. Therefore, it

might be very interesting to test the development of thyroid eye

disease in animal models and to investigate the impact of a genetic

deficiency or a pharmacological inhibition of the acid
FIGURE 3

Possible function of sphingolipids in thyroid eye disease (TED).
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sphingomyelinase on thyroid eye disease. These studies may also

serve to develop novel treatments of thyroid eye disease based on

inhibition of the acid sphingomyelinase and/or neutralization of

ceramide and sphingosine 1-phosphate.
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