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Background: Research on exosomes in metabolic diseases has been gaining

attention, but a comprehensive and objective report on the current state of

research is lacking. This study aimed to conduct a bibliometric analysis of

publications on “exosomes in metabolic diseases” to analyze the current status

and trends of research using visualization methods.

Methods: The web of science core collection was searched for publications on

exosomes in metabolic diseases from 2007 to 2022. Three software packages,

VOSviewer, CiteSpace, and R package “bibliometrix” were used for the

bibliometric analysis.

Results: A total of 532 papers were analyzed, authored by 29,705 researchers

from 46 countries/regions and 923 institutions, published in 310 academic

journals. The number of publications related to exosomes in metabolic

diseases is gradually increasing. China and the United States were the most

productive countries, while Ciber Centro de Investigacion Biomedica en Red was

the most active institution. The International Journal of Molecular Sciences

published the most relevant studies, and Plos One received the most citations.

Khalyfa, Abdelnaby published the most papers and Thery, C was the most cited.

The ten most co-cited references were considered as the knowledge base. After

analysis, the most common keywords were microRNAs, biomarkers, insulin

resistance, expression, and obesity. Applying basic research related on

exosomes in metabolic diseases to clinical diagnosis and treatment is a

research hotspot and trend.

Conclusion: This study provides a comprehensive summary of research trends

and developments in exosomes in metabolic diseases through bibliometrics. The

information points out the research frontiers and hot directions in recent years

and will provide a reference for researchers in this field.

KEYWORDS

exosomes, metabolic diseases, bibliometric, knowledge-map, citespace,
VOSviewer, bibliometrix
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1 Introduction

Metabolic diseases are a group of diseases caused by

abnormalities in amino acid and glucolipid metabolism within the

body. These conditions are influenced by various factors such as

genetics, environment, and lifestyle. Metabolic diseases encompass

a wide range of illnesses, including but not limited to, obesity, type 2

diabetes(T2D), insulin resistance(IR), hyperlipidemia, non-

alcoholic fatty liver disease(NAFLD), atherosclerosis(AS), and

metabolism-related cancers (1). In recent years, unhealthy dietary

patterns and sedentary lifestyles, attributable to improving living

standards, have contributed to the rising of metabolic diseases (2).

Therefore, metabolic diseases have become an critical factor

threatening human health globally.

Exosomes are small vesicles, 30-200 nm in diameter, that are

released into the extracellular space by multivesicular bodies. They

contain various biologically active substances such as proteins,

nucleic acids, lipids, and enzymes. These substances exert their

effects on neighboring target cells through autocrine or paracrine

mechanisms or on specific, distant target cells through humoral

transport. Subsequently, exosomes interact directly with target cells

by membrane fusion or endocytosis, exhibiting complex functions

in intercellular communication and compound exchange, which

play important roles in human health and disease (3). Recent

research has found that the number, contents and metabolism of

exosomes are strongly associated with the occurrence and

progression of metabolic diseases. Therefore, the use of exosomes

in the treatment of metabolic diseases is a promising avenue of

research (4).

Bibliometrics is a literature analysis method that evaluates the

intrinsic connections and distribution patterns among research

literature from quantitative and qualitative perspectives. Its

objective is to gain insights into the current status of research,
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research hotspots, and future trends in a specific field (5). When

combined with visualization analysis, bibliometrics becomes an

effective tool for integrating information and enhancing

understanding of the research process (6). Therefore, this article

presents a bibliometric analysis of the relevant literature on

exosomes in metabolic diseases obtained from the Web of Science

Core Collection(WoSCC) database from January 2007 to December

2022. This analysis intends to provide directions for future research.
2 Materials and methods

2.1 Data collection

We conducted a literature search on the WoSCC database on 6

February 2022. And the retrieval strategy was [TS = (“exosome” OR

“exosomes” AND “metabolic diseases”)] AND [article type =

(article AND reviews)] AND [Time span = (January 2007 to

December 2022)]. Publicly available data sets were analyzed in

this study, and ethics statement was not required. A total of 532

items matching the search criteria were located and further

analyzed (Figure 1).
2.2 Data analysis

VOSviewer9(version 1.6.18), CiteSpace(version 6.1.R3), Excel

(version 2019), and R package “bibliometrix”(version 3.2.1) were

used to perform bibliometric analysis and visualization.

VOSviewer is a bibliometric analysis software adept at creating

and visualizing knowledge maps to extract critical information from

numerous publications, often used to construct collaborative, co-

citation, and co-occurrence networks (7). In our study, the software
FIGURE 1

Flow chart of the data collection for research on exosomes in metabolic diseases.
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accomplished the following analyses: country and institution

analysis, author and co-citation author analysis journal and co-

citation journal analysis, and keyword co-occurrence analysis.

CiteSpace is a bibliometric and visual analysis tool for detecting

collaborations, internal structures, key points, potential trends, and

dynamics in a scientific field (8). In this study, we mainly use

CiteSpace to analyze bursts, clustering, and timelines of keywords.

In addition, we analyzed trend topics and word growth using

the R package “bibliometrix” (9), and publications were analyzed

quantitatively using Microsoft Office Excel. Moreover, the Impact

Factor (IF) and Journal Citation Reports (JCR) departments of the

journals were obtained from Web of Science on February 6, 2023.
3 Results

3.1 Publication trend

As of 2022, there are 532 articles related to exosomes in

metabolic diseases, including 255 reviews and 277 articles. As

shown in Figure 2, the first relevant literature was published in

2007, and in the following six years (2007 - 2012), there were few

publications, with an average of 1.5 publications per year, which was

at the initial stage of exosome research in metabolic diseases. The

period of 2013 - 2022 saw a significant increase in the number of

publications, with an average of 53.2 publications per year;

especially in 2015 - 2021, the number of publications showed an

exponential rise, indicating that exosomes are gradually becoming a

hot spot in the field of metabolic diseases.
3.2 Country and institutional
distribution analysis

These publications were from 46 countries/regions and 923

institutions. As shown in Table 1, among the top 10 regions/

countries and institutions engaged in exosome research in

metabolic diseases, China ranked first with 166 publications,

followed by the United States (159 publications), Italy (49
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publications), Spain (34 publications), and Australia (31

publications); the top five institutions with the most publications

were located in Spain, the United States, China, and France, with

Ciber Centro de Investigacion Biomedica en Red (18 publications)

was the most prolific institution, followed by the University of

California System (15 publications), Chinese Academy of Sciences,

Harvard University, and Institut National de la Sante et de la

Recherche Medicale Inserm, all with 13 publications.

The global country and institutional distribution network of

publications was visualized by using VOSviewer, and the

association strength method was used for normalization.

According to this national collaboration network (Figure 3A), we

can find a lot of active cooperation among different countries. For

example, China has close collaboration with the United States,

Singapore and the Netherlands, and the United States has active

collaboration with Australia, Italy and Japan. And the network map

of the institution’s publications (Figure 3B) shows that the

University of Queensland established collaborations with the

University of Illinois and Massachusetts general hospital on

the topic of exosomes in metabolic diseases in the early period,

while 11 universities from China(Chinese Academy of Sciences,

Shandong University, Shanghai Jiao Tong University, etc.) have

collaborated closely on this topic in the last five years.
3.3 Journal distribution analysis

Papers on exosomes in metabolic diseases were published in 310

journals. As shown in Table 2, International Journal of Molecular

Sciences published the most studies with 33 articles, followed by

Frontiers in Endocrinology and Frontiers in Immunology, both with

16 articles. In 2022, the impact factors of these journals ranged from

4.7 to 11.6, with Theranostics having the highest impact factor and

Plos One having the lowest impact factor. According to the JCR

partition analysis, Q1 accounts for 50% of this ranking, and Q2

accounts for 50%. Besides, the top 10 co-cited journals were all cited

more than 500 times, with Plos One (1272 citations) and Journal of

Biological Chemistry (1115 citations) being the most cited, followed

by Proceedings of The National Academy of Sciences of the United

States of America (cited 983 times) and Nature (cited 879 times).

Among them, Nature had the highest impact factor (IF= 69.504,

2022), followed by Nature Communications (17.694, 2022). We use

VOSviewer to visualize the journal network (Supplementary

Figure 1A) and the co-citation network diagram (Supplementary

Figure 1B), which shows active journal citation relationship and co-

citation relationship. We also used CiteSpace to map the links

between cited and cited journals (Figure 4) and found that the main

citation paths were molecular, biology, immunology-molecular to

molecular, biology, genetics (z=7.71, f=19770).
3.4 Author distribution analysis

A total of 29705 authors were involved in exosome research in

metabolic diseases. Table 3 lists the most published and cited

authors, Khalyfa, Abdelnaby from the University of Missouri
FIGURE 2

Trends of exosomes in metabolic diseases publications from 2007
to 2022.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1176430
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xu et al. 10.3389/fendo.2023.1176430
Columbia, USA (7 papers), followed by Gozal, David, also from the

University of Missouri Columbia, USA (5 papers), and Liu, Jing

from Dalian Medical University, China (5 papers). The most cited

author was Thery, Clotilde from Paris Sciences & Lettres-PSL

University, France (169 citations), followed by Raposo, G from

Institut Curie, France (114 citations). We also screened and mapped

the author network (Supplementary Figure 2A) and the co-cited

network (Supplementary Figure 2B) through VOSviewer, and

found that there was active cooperation between authors and co-

cited authors.
3.5 Reference distribution analysis

Table 4 lists the top 10 most frequently cited studies, all of

which were cited more than 50 times. “Exosome-mediated transfer

of mRNAs and microRNAs is a novel mechanism of genetic

exchange between cells” (10), published by Hadi Valadi et al. in
Frontiers in Endocrinology 04
Nature Cell Biology in 2007, had the highest number of citations

at 103.

We then used CiteSpace to analyze and visualize the co-citation

network of the top 16 publications shortlisted (Figure 5A), and it

can be seen that “Adipose-derived circulating miRNAs regulating

gene expression in other tissues” (11) published in Nature by

Thomas Thomou in 2013 is the pivotal node in the co-citation

network. Figure 5B shows the top 25 citations with strong citation

bursts, and citation bursts for references appeared as early as 2013

and as late as 2021. The literature with the strongest citation burst is

“Biogenesis, secretion, and intercellular interactions of exosomes

and other extracellular vesicles” (12) (strength = 12.54) by Marina

Colombo et al. in 2014 in Annual Review of Cell and Developmental

Biology, with citation bursts from 2015 to 2019. Next is the article

“Extracellular vesicles: exosomes, microvesicles, and friends” (13)

(strength = 12.5) by Graça Raposo and Willem Stoorvogel in

Journal of Cell biology in 2013, with a citation burst from 2014

to 2018.
TABLE 1 Top 10 countries/regions and institutions related to exosomes in metabolic diseases research.

Country/
Region

Count Percent (%) Institute Count Percent (%)

China 166 31.203 Ciber Centro de Investigacion Biomedica en Red 18 3.383

USA 159 29.887 University of California System 15 2.82

Italy 49 9.211 Chinese Academy of Sciences 13 2.444

Spain 34 6.391 Harvard University 13 2.444

Australia 31 5.827 Institut National de la sante et de la Recherche Medicale Inserm 13 2.444

England 25 4.699 National Institutes of Health NIH USA 12 2.256

Germany 23 4.323 Shandong University 11 2.068

Japan 21 3.947 Shanghai Jiao Tong University 11 2.068

France 20 3.759 University of Queensland 11 2.068

Canada 17 3.195 Us Department of Veterans Affairs 11 2.068
TABLE 2 Top 10 journals and co-cited journals for research of exosomes in metabolic diseases.

Journals Documents 2022
IF

2022
Q

co-cited journals co-
citation

2022
IF

2022
Q

International Journal of
Molecular Sciences

33 6.208 Q1 Plos One 1272 3.752 Q2

Frontiers in Endocrinology 16 6.055 Q1 Jounal of biological Chemistry 1115 5.486 Q2

Frontiers in Immunology 16 8.786 Q1 Proceedings of the National Academy of Sciences of The
United States of America

983 9.661 Q1

Cells 11 7.666 Q2 Nature 879 69.504 Q1

Frontiers in Physiology 11 4.755 Q1 Scientific Reports 864 4.996 Q2

Cancers 9 6.575 Q1 Cell 836 66.85 Q1

Scientific Reports 8 4.996 Q2 Diabetes 792 9.337 Q1

Plos One 7 3.752 Q2 Journal of Extracellular Vesicles 791 17.331 Q1

Frontiers in Oncology 6 4.755 Q1 International Journal of Molecular Sciences 601 6.208 Q1

Theranostics 6 11.6 Q1 Nature Communications 582 17.694 Q1
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3.6 Keyword co-occurrence
cluster analysis

Keywords represent the central theme of a paper, and the

keyword co-occurrence analysis can quickly capture the research

hotspots in a certain field. Table 5 shows the top 25 high-frequency
Frontiers in Endocrinology 05
keywords and the frequency of occurrence of exosomal research in

metabolic diseases, among which microRNA (miRNA, miR)

appeared 123 times, which is the hot spot for exosomes in

metabolic diseases. The keywords were analyzed using VOSviewer

(Figure 6A), and the threshold value was set at a minimum of 23

occurrences of the keywords, so a total of 29 keywords were

identified, which were mainly divided into 4 clusters in different

colors, representing different research directions. The keywords in

the blue cluster include miRNAs, mesenchymal stem-cells,

oxidative stress, etc.; the keywords in the yellow cluster include

cancer, biomarkers, biogenesis, etc.; the keywords in the red cluster

include metabolism, inflammation; the keywords in the green

cluster include IR, adipose-tissue, obesity, etc.

Using Citespace’s log-likelihood ratio-based algorithm to

cluster the 18 keywords (Figure 6B) and further refining them, we

can broadly group them into 5 categories, including related diseases

(#2insulin resistance, #4neurodegeneration, # 7vascular

complication, #11metabolically healthy, #12aerobic metabolism,

#16preedampsia), related cells (#3mesenchymal stem cells, #6stem

cell, #9cancer stem cells), cell biology-related (#5activation,

#8apoptosis, #15nuclecic acids, #17phosphorylation), mass

spectrometry-related (#0complex, #1mass spectrometry), and

biomarkers (#13biomarker, #14hscrp).

To study the hot trends, based on R-bibliometrix we conducted a

word dynamics analysis. Figure 7 shows the annual growth rate of the

top 20 keywords, and we can see that all keywords started to increase

from 2012. Among them, exosome shows a “j” curve, two keywords

exosomes and miRNA also continue to grow quickly, the term diabetes

mellitus been rapidly increasing since 2016, and the term IR grows at a

slope about three times as high as before from 2020 onwards.

To further reflect the phase hotspots and developmental

pathways of exosomes in metabolic diseases, we performed a

timeline clustering of keywords using Citespace (Figure 8A) and a

trend topic analysis using R-bibliometrix (Figure 8B). Combining

the two figures, it can be seen that in 2007-2010, exosomes were less

studied in metabolic diseases, focusing mainly on the cellular and

extracellular vesicle levels; in 2010-2019, this theme received

extensive attention, with studies focusing on specific molecular

mechanisms associated with exosomes in different metabolic

diseases, and the main keywords were insulin sensity, mutation,
A

B

FIGURE 3

The distribution of countries and institutions publishing research on
exosomes in metabolic diseases. (A) The network map of countries/
regions publishing research on exosomes in metabolic diseases by
VOSviewer. (B) The network map of institutes involved in research
on exosomes in metabolic diseases by VOSviewer.
TABLE 3 The top authors in the field of exosomes in metabolic diseases ranked by publication and citation numbers.

Author(publications ≥ 5) Count Co-cited author(Citations ≥ 80) Citation

Khalyfa, Abdelnaby 7 Thery, C 169

Gozal, David 5 Raposo, G 114

Liu, Jing 5 Valadi, H 104

Salomon, Carlos 5 Zhang, Y 104

Andriantsitohaina, Ramaroson 4 Ying, W 95

Melnik, Bodo C. 4 Van Niel, G 93

Qang, Qun 4 Colombo, M 91

Bernabei, Roberto 3 Kranendonk, Meg 83

Bruschi, Maurizio 3 Guay, C 80
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argonaute protein, protein kinase, transcellular biosynthesis, RNA,

tricarboxylic acid cycle, etc.; after 2019, researchers began to explore

exosomal exosome-associated miRNAs as well as the linkages

between exosomes and mitochondrial, and they started to apply

exosomes as biomarkers and therapeutics in metabolic diseases

such as T2D, obesity, and NAFLD, which point the way to

future research.
4 Discussion

4.1 General information

The objective of this article is to analyze the existing research

literature on exosomes in metabolic diseases up to the year 2022. To

achieve this goal, we utilized bibliometric techniques to examine the
Frontiers in Endocrinology 06
publication landscape with respect to trends, country and institutional

distribution, journal distribution, and author distribution.

Research on exosomes in metabolic diseases has seen a gradual

increase in annual publications since 2007, with a significant surge

in interest over the past three years. China and the United States are

the leading countries conducting research on this topic, together

accounting for 60% of the global publications, with 80% of the top

10 institutions come from China and the United States. However, it

is important to note that while the two countries have a strong

collaborative relationship, China’s cooperation with other countries

in this field is not as extensive as that of the United States. In

addition, inter-institutional cooperation is mostly limited to

domestic and lacks cross-country exchanges, which can hinder

the development of this field.

The majority of literature on exosomes in metabolic diseases is

currently published in journals related to molecular, cellular,
FIGURE 4

A dual-map overlay of journals related to the exosomes in metabolic diseases from 2007 to 2022.
TABLE 4 Top 10 documents in citation analysis of publications on exosomes in metabolic diseases.

Rank Title First
author

Corresponding
author

Source Publication
year

Total
citation

1 Exosome-mediated transfer of mRNAs and microRNAs is a novel
mechanism of genetic exchange between cells

Hadi
Valadi

Jan O Lötvall Nature Cell Biology 2007 103

2 Biogenesis, secretion, and intercellular interactions of exosomes and
other extracellular vesicles

Marina
Colombo

Clotilde Théry Annual Review of Cell and
Developmental Biology

2014 75

3 Adipose-derived circulating miRNAs regulate gene expression in
other tissues

Thomas
Thomou

C Ronald
Kahn

Nature 2013 73

4 Extracellular vesicles: exosomes, microvesicles, and friends Graça
Raposo

Willem
Stoorvogel

the Journal of Cell Biology 2013 72

5 Adipose Tissue Macrophage-Derived Exosomal miRNAs Can
Modulate In Vivo and In Vitro Insulin Sensitivity

Wei Ying Jerrold M
Olefsky

Cell 2017 72

6 Adipose tissue exosome-like vesicles mediate activation of
macrophage-induced insulin resistance

Zhong-bin
Deng

Huang-Ge
Zhang

Diabetes 2009 66

7 Shedding light on the cell biology of extracellular vesicles Guillaume
van Niel

Graça Raposo Nature Reviews. Molecular
Cell Biology

2017 58

8 Minimal information for studies of extracellular vesicles 2018
(MISEV2018): a position statement of the International Society for
Extracellular Vesicles and update of the MISEV2014 guidelines

Clotilde
Théry

Ewa K Zuba-
Surma

Journal of Extracellular
vesicles

2018 57

9 Biological properties of extracellular vesicles and their physiological
functions

Marıá
Yáñez-Mó

Olivier De
Wever

Journal of Extracellular
vesicles

2015 52

10 Proteomic comparison defines novel markers to characterize
heterogeneous populations of extracellular vesicle subtypes

Joanna
Kowal

Clotilde Théry Proceedings of the National
Academy of Science of the
United States of America

2016 51
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A

B

FIGURE 5

(A) The visualization of co-cited references on research of exosomes in metabolic diseases. (B) Top 25 references with strong citation bursts. A red
bar indicates high citations in that year.
TABLE 5 Top 25 keywords of documents on exosomes in metabolic diseases.

Rank Keyword Count Rank Keyword Count

1 exosomes 346 14 mesenchymal stem-cells 40

2 extracellular vesicles 189 15 disease 34

3 mirnas 123 16 activation 33

4 biomarkers 79 16 metabolic syndrome 33

5 insulin-resistance 76 18 oxidative stress 32

6 expression 74 19 metabolism 31

7 obesity 70 20 in-vitro 29

8 cells 65 20 secretion 29

9 inflammation 61 22 in-vivo 28

9 microvesicles 61 23 biogenesis 27

11 cancer 57 23 circulating micrornas 27

12 adipose-tissue 50 25 identification 25

13 gene-expression 42 25 therapy 25
F
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immune, endocrine, and cancer research. Among these, the

International Journal of Molecular Sciences is the most widely

read journal in this field, while Theranostics has the highest

impact factor. Co-cited journals are mostly Q1 journals with high

impact and quality, providing a reliable theoretical foundation for

future research and dissemination of research findings. However, it

is important to note that current research on exosomes in metabolic

diseases is primarily focused on basic research, and more efforts are

needed to translate these research findings into clinical applications.
Frontiers in Endocrinology 08
Among the top 10 authors and co-cited authors, Khalyfa

Abdelnaby from the University of Missouri School of Medicine,

USA has published extensively on the topic, with a specialization in

biochemistry, molecular biology, and cell biology. His research

focuses on the relationship between exosomes, sleep-disordered

breathing, cardiovascular disease, and metabolic disorders (14–19).

He emphasized the biological significance of exosomes and their

role in various pathological conditions, highlighting the importance

of their contents and transport. Notably, miRNAs circulating in

exosomes can serve as functional biomarkers for diagnosis and

outcome prediction, while synthetic miRNAs delivered through

polymer-based nanoparticles are potential candidates for clinical

therapy (19).

Thery C, from Paris Sciences & Lettres-PSL University in

France, is the most highly cited co-cited author in the field of

exosomes with 66 publications. With expertise in cell biology and

immunology, Thery C has made significant contributions to the

field of exosomes. In 1999, Thery C identified the selective

accumulation of the heat shock protein hsc73 in dendritic cell-

derived exosomes (20). In 2002, he published a review summarizing

the composition, biogenesis, and function of exosomes (21), which

he updated in 2014 (12, 22). In 2019, Thery C discussed the

differences in properties between exosomes and other types of

extracellular vesicles, highlighting their role as important

mediators of intercellular communication (23). More recently, in

2021, he illustrated the properties of exosome versus small exosome

secretion by tracking CD63 and CD9 intracellularly in vivo (24).

These findings have laid a solid theoretical and experimental

foundation for the study of exosomes in metabolic diseases.
4.2 Knowledge base
Co-cited literature is literature in the field that has been co-cited

by multiple publications, and these articles generally deal with the

characteristics, biological properties, classification, function of the

research object and the important research mechanisms involved,

which are seminal or summative for the field (25). The knowledge

base is a collection of co-cited references that are frequently cited by

researchers in a specific community, and it is not necessarily the

same as highly cited references (26).In this study, we introduce the

research base of exosomes in metabolic diseases by screening

the top 10 co-cited references (Table 4).
A

B

FIGURE 6

(A) Co-occurrence network of keywords by VOSviewer. (B) Keyword
Cluster Analysis.
FIGURE 7

The cumulative growth keywords (top 20).
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The most frequently cited literature in the field of exosomes in

metabolic diseases is a letter co-authored by Hadi Valadi and five

other scholars, published in Nature Cell Biology in 2007 (10). The

article reports on experiments using flow cytometry, microarray,

and other techniques to demonstrate that exosomes contain mRNA

and miRNA, which are transported to recipient cells to regulate

their function, providing a novel mechanism for intercellular

communication. Valadi et al. coined the term “exosomal shuttle

RNA” to refer to these RNAs carried by exosomes.

Marina Colombo and two other researchers have published the

second most co-cited literature in the Annual Review of Cell and

Developmental Biology (12). In this review, the authors provide an

illustrated definition of exosomes and other secreted extracellular

vesicles, and discuss their isolation methods, biogenesis, secretion,

and role in intercellular communication. Also, this paper links

extracellular vesicles to infection biology, which has important

implications for developing novel biomarkers, vaccines

and therapeutics.

The third co-cited paper was published by Thomas Thomou

et al. in Nature 2013 (11). In this paper the researchers

demonstrated, using an adipose-specific knockout mouse model

of the miRNA processing enzyme Dicer and the blood of humans

suffering from lipodystrophy, that adipose tissue constitutes a major
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source of circulating exosomal miRNA that regulates mRNA

expression, translation and systemic metabolism in distant tissues,

resulting in a new class of adipokines.

The fourth co-cited review reveals the characteristics of

exosomes and the mechanisms of their formation, targeting and

function (13). The fifth co-cited paper shows through extensive

experiments that adipose tissue macrophages secrete exosomes

containing miR-155 carriers, which can be transferred to insulin

target cells through paracrine or endocrine regulatory mechanisms

to produce IR (27). The sixth co-cited paper, on the other hand,

confirmed that exosome-like vesicles released from adipose tissue

mediated the induction of tumor necrosis factor aand interleukin

(IL)-6 and IR in macrophages via the TLR4/TRIF pathway (28).

The seventh co-cited review, published in 2018 by Guillaume

van Neil et al. in Nature Reviews Molecular Cell Biology, with the

highest impact factor (IF=113.915), describes the mechanisms

involved in the intercellular communication of extracellular

vesicles: cell classification, extracellular vesicle generation, and the

interaction of extracellular vesicles with receptor cells (29). The

eighth co-cited paper develops guidelines for minimal information

on extracellular vesicle research in 2018 (30). The ninth reviews the

physiological mechanisms of extracellular vesicles in bacteria, lower

eukaryotes, and plants and discusses the molecular content and
A

B

FIGURE 8

(A) CiteSpace visualization map of timeline viewer related to exosomes in metabolic diseases. (B) Trend topics. The X-axis represents the year, while
the Y-axis is the cumulate occurrences of the keywords.
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function of extracellular vesicles in a variety of tissues and body

fluids, from cells to organs (31). The tenth article identifies proteins

specifically enriched in small extracellular vesicles by proteomics

and demonstrates the presence of exosomal and non-exosomal

subpopulations in small extracellular vesicles (32).

The top 10 co-cited literature provide crucial insights into the

characteristics, composition, biological functions, and target

delivery of exosomes, thereby laying a strong foundation for

the field.
4.3 Hotspots and frontiers

Keywords can help us quickly capture the distribution and

evolution of hotspots in the field of exosomes in metabolic diseases.

Based on keyword clustering and trend theme analysis, we

summarize the current hotspots and future prospects of exosomes

in metabolic diseases in the following areas.

4.3.1 Exosomes-producing parent cells
Adipocyte-derived exosomes are the most studied among

metabolic diseases. Adipocytes in adipose tissue secrete exosomes

that play an important role in influencing systemic glucolipid

metabolism. In vivo, visceral adipocyte-derived exosomes in obese

individuals carry miRNAs that target the transforming growth

factor(TGF)-b and classical Wnt signaling pathways, and play a

role in fat distribution, adipocyte differentiation, end-organ

inflammation and fibrosis signaling (33); exosomes secreted by

visceral adipose tissue inhibit ATP-binding cassette transporter

A1(ABCA1) by transporting miRNAs, allowing cholesterol to

accumulate in macrophages and promotes foam cell production,

leading to lipid plaque formation (34). In vitro experiments,

injection of adipocyte-derived exosomes from obese mice induced

IR in normal mice (28); exosomes isolated from visceral adipose

tissue of obese mice induced by high-fat diet promoted macrophage

foaminess and M1 macrophage polarization by down-regulating

ABCA1 and ATP-binding cassette transporter G1-mediated

cholesterol efflux and up-regulating nuclear factor kB(NF-kB)
activity (35). Clinical studies have also shown that exocrine

secretion from circulating adipocytes reduces IR to maintain

glucose homeostasis, which may account for gastric bypass

surgery and subsequent weight loss (36).

Macrophage-derived exosomes have been a hot topic in

metabolic diseases in recent years. Macrophages belong to

the monocyte lineage and are closely associated with the

inflammatory response of tissues. Macrophages secrete exosomes

that inherit the functions of the parent cell and regulate immune

and inflammatory responses by delivering immunoregulatory-

related proteins, nucleic acids and lipids from macrophages to

downstream cells (37). In vitro, studies have found that

lipoprotein-treated macrophage exosomes activate naïve

macrophage NF-kB signaling pathways and induce the secretion

of inflammatory factors and chemokines, thereby promoting

inflammatory responses (38). When macrophages were stimulated

with high concentrations of glucose, TGF-b1 mRNA was highly
Frontiers in Endocrinology 10
expressed in exosomes from stimulated macrophages, and the

exosomes transmitted TGF-b1 mRNA to glomerular thylakoid

cells, inducing them to secrete more tumor necrosis factor a, IL-
1b and monocyte chemotactic protein 1 to promote the

inflammatory response and stimulate glomerular thylakoid cell

proliferation (39); meanwhile, high glucose-stimulated

macrophage exosomes contain high concentrations of IL-1b and

inducible nitric oxide synthase, which stimulate NF-kB signaling

pathway to induce naive macrophage differentiation to release pro-

inflammatory cytokines (40). In vivo, macrophage foam cells release

large amounts of exosomes that activate the ERK and AKT

pathways in vascular smooth muscle cells (VSMCs), promoting

migration and adhesion of VSMCs (41); human monocyte

macrophage exosomes also activate the NF-kB pathway leading to

endothelial cell dysfunction and AS (42). Recently, Adipose tissue

macrophage-derived exosomes have also been shown to be

important mediators in the regulation of adipose tissue function

and insulin sensitivity. It has been reported that when exosomes

secreted by adipose macrophages from obese mice were injected

into lean mice caused poor glucose tolerance and IR; in contrast,

when exosomes obtained from lean mice were injected into obese

mice improved glucose tolerance and insulin sensitivity (27).

In addition, exosomes of different cellular origin are of interest

in AS. Exosomes of endothelial origin can modulate vascular

pathology by promoting vascular injury, inducing endothelial

dysfunction and vascular inflammatory responses, interfering

with coagulation pathways, and regulating vascular homeostasis

(43). Exosomes generated by VSMCs produce proatherogenic

effects through endothelial dysfunction and vascular calcification

(44). And exosomes produced locally by platelets in small arteries or

arterioles can promote coagulation cascades by providing and

expanding the response to acute arterial obstruction (45).

Also noteworthy are the exosomes produced by the gut

microbiota (46), which are involved not only in IR and impaired

glucose metabolism promoted by a high-fat diet (47), but also in

altering clock expression in target tissues to disrupt circadian

rhythms by inducing systemic inflammation and metabolic

disturbances (14). However, the extent to which gut microbiota

contributes to the pathogenesis of metabolic diseases through the

action of exosomes remains uncertain.

Taken together, different parent cells-derived exosomes are

involved in the processes of metabolic diseases through

multiple mechanisms.

4.3.2 Cargos in exosomes
Exosomes contain a variety of bioactive substances such as

lipids, proteins and nucleic acids. miRNAs are currently the most

studied substances in exosomes(Table 6).

T2D is closely associated with miR-155, miR-29a, miR-27a,

miR-210 and miR-375. In obese mice, miR-155 and miR-29a were

highly expressed in the exosomes secreted by macrophages in

adipose tissue, they caused poor glucose tolerance and IR in

healthy mice by interfering with cellular insulin signaling (27, 48).

Moreover, miR-29a is also transmitted by macrophage exosomes to

pancreatic b-cells to affect insulin release (49). Adipose tissue
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secreted exosomes carry miR-27a into circulating blood and

remotely regulate insulin sensitivity in skeletal muscle; miR-27a

also induces IR in skeletal muscle cells by regulating peroxisome

proliferator-activated receptor g and its downstream genes (50, 51).

In addition, high concentrations of glucose stimulate macrophages

to secrete exosomes, which transmit cellular signals by carrying

miR-210 and inhibit glucose uptake and mitochondrial function in

adipocytes (52). Exosomes in serum or plasma enriched with miR-

375 regulate actin function by inhibiting MTPN to reduce insulin

secretion (53, 54).

AS is associated with multiple miRNAs that have both AS-

promoting and AS-inhibiting effects, respectively. miR-155 levels

are significantly elevated in exosomes secreted by VSMCs, which

enter endothelial cells (ECs) and disrupt ECs tight junctions and

endothelial barrier integrity by regulating the targeting of tight

junction proteins ZO-1 and claudin 1. This leads to increased

permeability of ECs and promotes AS plaque formation (55).

Exosomes secreted by ECs also carry miR-155, and these

exosomes are transferred to human monocyte THP1 cells, shifting

the monocyte/macrophage balance from anti-inflammatory M2

macrophages to pro-inflammatory M1 macrophages to enhance

monocyte activation (56). Macrophage exosomes are enriched in

miR-146a and accelerate the development of AS by reducing

macrophage migration and promoting macrophage adhesion in

the vessel wall through the target proteins IGF2BP1 and HUR (57).

On the other hand, exosomes also release miRNAs with protective

effects. Under high shear stress, ECs release miR-143- and miR-145-

rich exosomes that downregulate KLF4/5, ELK1, and CAMK2D via
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miR-143/145, thereby regulating the conversion of synthetic

VSMCs to contractile ones in AS plaques. VSMCs can also

release miR-143/145-rich exosomes on their own, which play a

key role in the differentiation of VSMCs (58). miR-25-3p in platelet

exosomes downregulates IL-6, IL-1b and TNF-ɑ levels and inhibits

oxidized low-density lipoprotein induced inflammation and lipid

deposition in ECs; it also inhibits NF-kB signaling pathway and

inflammation in ECs by targeting Adam10 (59). In addition,

thrombin-activated platelets can carry miR-223 into ECs via

exosomes and downregulate ICAM-1 expression, and may inhibit

endothelial inflammation by regulating NF-kB and MAPK

pathways as well (60).

Exosome-carrying miRNAs have been less studied in NAFLD.

Currently, it has been found that hepatocytes synthesize miR-122,

which is transported via exosomes and binds to sterol regulatory

element binding protein 2, and is involved in free cholesterol

transport and high-density lipoprotein anabolism (61). Exosomes

secreted by hepatocytes were also enriched in miR-143, which

reduced the expression of oxygen sterol-binding protein-related

protein 8, thereby inducing the inactivation of the insulin-induced

AKT pathway in the liver (62). Visceral adipocyte-derived

exosomes from obese individuals carry miR-23b, miR-148b, miR-

4269, and miR-4429 into hepatocytes and upregulate the expression

of TIMP-1, TIMP-4, Smad-3, and MMP-9, thereby inducing

abnormal regulation of the TGF-b signaling pathway and leading

to the progression of NAFLD to hepatic fibrosis (63). It was also

found that hepatic stellate cells can effectively internalize miR-128-

3p in hepatocyte exosomes, thereby promoting the development of
TABLE 6 Important functional microRNAs in exosomes in metabolic diseases.

miRNA diseases source function

miR-155 (24, 45) T2D macrophages in adipose
tissue

causes poor glucose tolerance and insulin resistance

miR;-29a (46) macrophages in adipose
tissue

causes poor glucose tolerance, insulin resistance and affects insulin release

miR-27a (47, 48). adipose tissue regulates insulin sensitivity in skeletal muscle

miR-210 (49) macrophages inhibits glucose uptake and mitochondrial function

miR-375 (50, 51) serum and plasma reduce insulin secretion

miR-155 (52). AS VSMCs increases permeability of ECs and promotes AS plaque formation

miR-155 (53) ECs enhance monocyte activation

miR-146a (54) macrophages reduces macrophage migration and promotes macrophage adhesion in the
vessel wall

miR-143, miR-145 (55) ECs regulates the conversion of synthetic VSMCs to contractile ones in AS
plaques

miR-25-3p (56) platelets inhibits inflammation and lipid deposition in ECs

miR-223 (57) platelets inhibits endothelial inflammation

miR-122 (58) NAFLD hepatocytes involves in free cholesterol transport and high-density lipoprotein anabolism

miR-143 (59) hepatocytes induces the inactivation of the insulin-induced AKT pathway in the liver

miR-23b, miR-148b, miR-4269, miR-4429
(60)

visceral adipocytes leads to the progression of NAFLD to hepatic fibrosis

miR-128 (61) hepatocytes
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hepatic fibrosis by inhibiting peroxisome proliferators-activated

receptor (PPAR)-g expression (64).

The role of proteins in exosomes in metabolic diseases has not

been extensively studied. Chen et al. reported that macrophage-

derived exosomes carrying high mobility group protein 1, a nuclear

non-histone DNA binding protein, directly impair insulin signaling in

adipocytes cultured in vitro (65). Ibrahim et al. found that

lysophosphatidylcholine induced hepatocytes to secrete exosomes

containing c-x-c motif chemokine 10, which is chemo-attractive to

macrophages in vitro (66). Kakazu et al. reported that stimulation of

hepatocytes with palmitic acid releases C16:0 ceramide-rich exosomes

that are chemotactic to macrophages (67). Additionally, Poverod et al.

discovered that lipotoxicity-induced hepatocytes release exosomes rich

in vascular non-inflammatory molecule-1, a surface cargo protein,

which induces pro-angiogenesis in endothelial cells (68).

In summary, exosomes carrying cargos are released from

parental cells and target recipient cells, enabling intercellular

crosstalk in metabolic diseases.

4.3.3 Target cells and effects
Exosomes, protected by their lipid bilayer, are stable in

circulation and can target specific sites to mediate biological

processes and participate in the effector mechanisms of disease.

Adipose tissue, liver, and muscle are insulin target organs that

play a crucial role in promoting glucose uptake and inhibiting lipid

hydrolysis. When IR occurs in the body, insulin signaling (AKT-GSK

signaling pathway, etc.) will be inhibited, which in turn will hinder a

series of biological processes such as downstream glycogen synthesis,

protein synthesis, glucose transport and anti-lipolysis, leading to the

development of metabolic diseases such as obesity, T2D and NAFLD.

Exosomes and the cargos they carry are secreted from parental cells

and act on target cells such as adipocytes, hepatocytes and skeletal

muscle cells to participate in the IR process. In obese mice,

adipocytes, hepatocytes and muscle cells are regulated by exosomes

secreted by adipose tissue macrophages. miR-155 within exosomes

downregulates the phosphorylated AKT signaling pathway and

inhibits the expression of intracellular lipogenic transcription

factors PPAR-g and CCAAT/enhancer binding protein b, thereby
exacerbating IR (69). Adipocytes are also stimulated by exosomes

released from hypoxic adipocytes, which reduce the uptake of 2-

deoxyglucose and impair insulin sensitivity (70). Hepatocytes are also

stimulated by exosomes derived from human subcutaneous or

visceral adipocytes, which inhibit AKT phosphorylation and

downregulate the expression of insulin receptor substrate 1 and

hormone-sensitive adiponectin in adipocytes, promoting IR (50,

71). In addition, as the producer of insulin, pancreatic b-cells are

important target cells as well. b-cells are regulated by miR-29a in

macrophage exosomes and miR-375 in their own exosomes, which in

turn affects cellular insulin release (49, 72). In a mouse model of IR

induced by a high-fat diet, b cells proliferate following regulation by

skeletal muscle cell-derived exosomes, which explains the adaptation

of b-cell mass during IR (73).

Metabolic diseases are often accompanied by chronic

inflammation, which is a significant contributing factor to their

pathogenesis, such as AS, which is a chronic inflammatory disease
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caused by intravascular lipid accumulation. In the inflammatory

response, monocyte-macrophages play an essential role in both

pro-inflammatory and anti-inflammatory processes. In AS,

monocyte-macrophages, stimulated by adipocyte-derived exosomes,

polarize toward the M1 type and release the inflammatory cytokines

TNF-a, IL-6, TLR4/TRIF, etc. (72). Macrophages, stimulated by

hepatocyte-secreted exosomes, are recruited in large numbers and

activated as M1 type macrophages, producing large amounts of pro-

inflammatory cytokines to promote nonalcoholic steatohepatitis (74).

It has also been shown that the activation of M1 macrophages in

obese mice is mediated by the exosome-associated protein, sonic

hedgehog activates the Ptch/PI3K signaling pathway (28). In contrast,

monocyte-macrophages are stimulated by exosomes secreted by

Adipose-derived stem cells to polarize toward the M2 type,

triggering white adipose tissue browning and reducing

inflammation (75). Neutrophils also play an important role in the

pro-inflammatory response. Neutrophils are induced to secrete large

amounts of inflammatory cytokines such as IL-1b, TNF-a, and IL-6

by exosomes secreted by oxidized low density lipoprotein-stimulated

macrophages, while upregulating intracellular reactive oxygen species

production, exacerbating the inflammatory response in AS (72).

The NAFLD disease process includes simple steatohepatitis, non-

alcoholic steatohepatitis, liver fibrosis and cirrhosis, and the

progression of NAFLD is characterized by liver inflammation and

fibrosis following repeated and persistent injury. We have already

mentioned the inflammatory response above, below we will focus on

the main target cells of liver fibrosis - hepatocytes and hepatic stellate

cells. Stimulation of hepatocytes by adipose tissue-derived exosomes

leads to dysregulation of the TGF-b pathway (63), whereas stimulation

of hepatic stellate cells by adipose tissue-derived exosomes upregulates

the hepatic extracellular matrix (ECM) expression of fibrinogen

activator inhibitor-1, matrix metalloproteinase (MMP)-7 and tissue

inhibitor of metalloproteinases-1 and inhibits PPAR -g expression to

promote liver fibrosis (76, 77).

To sum up, the secretion of cargo-carrying exosomes from

parental cells acting on target cells exerts effects in metabolic

diseases, making an important addition to the pathogenesis of

metabolic diseases.

4.3.4 Biomarkers
In recent years, the development of isolation and purification

techniques has enabled the isolation of exosomes from almost all

body fluids, including serum, plasma, urine, milk, and saliva,

opening up a new era in disease diagnosis. Many miRNAs have

been identified as potential biomarkers for the diagnosis and

prognosis of metabolic diseases. In contrast, it was found that

exosome-encapsulated miRNAs may be biologically more active

and relevant than vesicle-free miRNAs.

In an experiment, Lakhter et al. found that b-cells released miR-

21-5p-rich exosomes in response to cytokine stimulation and

detected a threefold increase in miR-21-5p levels in exosomes in

the sera of children with new-onset T1DM compared to healthy

children (78). It was also found that exosomes from urine of patients

with diabetic nephropathy (DN) were detected to contain high

amounts of miR-130a and miR-145, and these miRNAs have been
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shown to be exosomes derived from glomerular thylakoid cells.

Furthermore, in cellular experiments, there was a positive

correlation between glucose concentration and the number of

exosomes as well as miR-145 expression (79). Another investigator

found that miR-362-3p, miR-877-3p and miR-150-5p were

upregulated and miR-15a-5p was downregulated in urinary

exosomes from diabetic patients. These miRNAs may regulate DN

through p53, mTOR and AMPK pathways and are potential

noninvasive markers of early DN (80). Rossi et al. reported that

water channel protein (AQP) 5 and AQP2 were detected significantly

increased in urinary exosomes of DN patients as well as 35 diabetic

patients, they were expressed on epithelial renal tubular cell

membranes and correlated with the histological grading of DN

(81). A meta-analysis also reported significantly higher levels of

exosomes of platelet, endothelial and monocyte origin in T2D

patients from 48 independent studies, and their numbers were

positively correlated with BMI, Homeostasis model assessment

(HMA)-IR and HOMA-b, which was used to evaluate beta-cell

function (82, 83). Furthermore, in studies of gestational diabetes

mellitus, plasma concentrations of exosomes were found to increase

progressively with increasing duration of gestation and more

markedly in gestational diabetes mellitus (2.2-fold, 1.5-fold and 1.8-

fold greater than normal gestation at three-time points, respectively),

which may make exosomes an effective diagnostic tool for screening

susceptible individuals in the future (84). In summary, exosomes

isolated from body fluids and their cargos are expected to be effective

biomarkers for diabetes and its complications.

Wang et al. found elevated levels of miR-30e and miR-92a in

plasma exosomes of AS patients compared to healthy individuals,

which regulate cholesterol metabolism by targeting ABCA1 and

thus are expected to be new biomarkers of AS (85). Povero et al.

isolated exosomes from a high-fat diet NAFLD mouse model and

found that exosomes carried different proteins than controls and

had increased levels of miR-122 and miR-192 in the blood and

decreased proteins in the liver. In addition, bruno et al. found a

positive correlation between miR-192 levels in exosomes of patients’

blood and NAFLD liver inflammatory activity scores and disease

progression in a clinical trial (74). These experimental results

suggest that these miRNAs may be a prospective marker

reflecting the development of fatty liver disease (86). Moreover,

miR-122 also plays an important role in the study of liver fibrosis,

and reducing its expression may induce downregulation of some

liver reconstitution regulators such as mitogen-activated protein

kinase 3, which could reflect the extent of liver regeneration under

pathological conditions (87). In a study by Chen et al., miR-122a

was found to fluctuate with BAT activity in mice, suggesting that it,

along with miR-92a associated with exosomes, may serve as a

serological marker reflecting BAT activity in humans (88).

4.3.5 Treatment
Exosomes have a natural lipid bilayer, low immunogenicity and

circulating stability, and also contain surface proteins recognized by

target gene cells, so that exosomes can be used as vehicles for drug

delivery and thus can fuse with the plasma membrane and transport

specific substances to act on target cells (89).
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Adipose stem cell-derived exosomes were found to carry active

signaling and STAT3 proteins that induce the conversion of obese

mouse macrophages to anti-inflammatory M2 phenotype, thus

alleviating IR and metabolic disorders in obese mice (75).

Additionally, Tsukita et al. reported that exosomes secreted from

mouse bone marrow cells containing miR-106b-5p and miR-222-3p

promoted pancreatic b-cell proliferation by downregulating the cell

cycle blocking proteins pathway, ultimately improving hyperglycemia

in diabetic mice following bone marrow transplantation (90).

Mesenchymal stem cells(MSCs) are pluripotent cells that possess

the potential to repair damaged tissues, modulate immune

responses, and induce angiogenesis; MSCs regulate the biological

functions of various tissue cells by secreting exosomes that transduce

a variety of signaling molecules and have therapeutic effects on a

variety of metabolic diseases, including AS (91). Exosomes derived

from MSCs contain high levels of a variety of miRNAs that inhibit

AS plaque formation and a variety of proteins that inhibit

inflammation and promote extracellular matrix synthesis (92).

Specifically, MSCs-derived exosomes promote macrophage M2

polarization in AS plaques and inhibit macrophage infiltration,

thereby reducing plaque volume (93). Adipose-derived MSCs

secreted exosomes to inhibit miR-342-5p through protein

phosphatase 1 regulatory subunit 12B, which effectively protected

endothelial cells from AS (94). miRNA-221 carried by MSC-secreted

exosomes reduced lipid deposition in mouse aortic tissue by

downregulating NAT1 and inhibited IGF2/IGF2R signaling

pathway activation (95), thereby inhibiting the differentiation of

MSCs and SMCs toward osteogenesis and apoptosis of vascular

smooth muscle cells, ultimately resulting in the inhibition of AS

plaque formation (96). Moreover, exosomes secreted from rat bone

marrow (BM)-MSCs can repair damaged neurons and astrocytes

and reverse dysfunction, making them promising therapeutic tools

for treating diabetic nerve injury, as found by Nakano et al. (97).

In conclusion, exosomes not only play a role in the occurrence

and development of many metabolic diseases, but also serve as

biomarkers in their diagnosis and as therapeutic carriers in their

treatment (Figure 9). Therefore, exploring the production,

properties, roles, and mechanisms of exosomes holds great

potential in the field of metabolic diseases.
5 Limitations

This study extracted the relevant literature on exosomes in

metabolic diseases from the WoSCC database and used three

bibliometric tools simultaneously for the analysis, but there are

still some limitations to this study. Firstly, the data were obtained

from a single database because we are unable to undertake relevant

analysis (such as co-citation analysis) on PubMed or other

databases (lack of information on references) due to software

limitations. As a result, this study may have some bias and less

comprehensive and accurate findings. Secondly, VOSviewer,

CiteSpace, and bibliometrix cannot completely replace systematic

searching, so a more accurate literature analysis should be based on

software analysis and combined with specific literature to construct
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a knowledge graph. Nonetheless, visualization-based literature

analysis can still provide effective help for researchers to

understand hotspots and potential problems in exosomes in

metabolic diseases.
6 Conclusion
Exosomes are of increasing significance in metabolic diseases in

terms of both research and application potential. This area of

research is developing steadily, with active international

collaboration, particularly between China and the United States.

Khalyfa, Abdelnaby has made significant contributions to many

relevant publications and Thery C has the most co-citations in the

study. The current research is mainly focused on basic research on

cells and miRNAs, so attention should also be given to translating

research findings into clinical applications for the diagnosis and

treatment of metabolic diseases using exosomes. In conclusion, this

study provides the first systematically bibliometric analysis of

publications related to exosomes in metabolic diseases, offering an

objective and comprehensive overview of the field and a valuable

reference for researchers in the field.
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Function of exosomes in metabolic diseases in diagnosis and treatment.
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