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Background and Purpose: Nonproliferative diabetic retinopathy (NPDR) occurs

in the early stages of Diabetic retinopathy (DR), and the study of its metabolic

markers will help to prevent DR. Hence, we aimed to establish a risk score based

on multiple metabolites through untargeted metabolomic analysis of venous

blood from NPDR patients and diabetic non-DR patients.

Experimental Approach: Untargeted metabolomics of venous blood samples

from patients with NPDR, diabetes melitus without DR were performed using

high-performance liquid chromatography-mass spectrometry.

Results: Detailed metabolomic evaluation showed distinct clusters of metabolites in

plasma samples from patients with NPDR and diabetic non-DR patients. NPDR patients

had significantly higher levels of phenylacetylglycine, L-aspartic acid, tiglylglycine, and 3-

sulfinato-L-alaninate, and lower level of indolelactic acid, threonic acid, L-arginine (Arg),

and 4-dodecylbenzenesulfonic acid compared to control. The expression profiles of

these eight NPDR risk-related characteristic metabolites were analyzed using Cox

regression to establish a risk score model. Subsequently, univariate and multivariate

Cox regression analyses were used to determine that this risk score model was a

predictor of independent prognosis for NPDR.

Conclusions: Untargeted metabolome analysis of blood metabolites revealed

unreported metabolic alterations in NPDR patients compared with those in diabetic

non-DR patients or MH. In the venous blood, we identified depleted metabolites thA

and Arg, indicating that they might play a role in NPDR development.

KEYWORDS

nonproliferative diabetic retinopathy (NPDR), diabetic retinopathy (DR), venous blood,
untargeted metabolomics, risk score
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1 Introduction

With socioeconomic development and lifestyle changes, the

incidence of diabetes is increasing yearly. There are 462 million

people with diabetes worldwide, and more than 100 million people

in China have diabetes (1). Diabetic retinopathy (DR) is one of the

most commonmicrovascular complications of diabetes and the leading

cause of vision loss and blindness worldwide (2). Identifying the risk

factors or markers associated with DR can help identify people at risk

for DR and is essential for the early diagnosis and treatment of the

disease. Nonproliferative diabetic retinopathy (NPDR) is often

overlooked as an early stage of DR owing to a lack of significant

symptoms (3). A meta-analysis summarizing studies on the prevalence

and risk factors of DR in China from 1990 -2017 found that among

people with diabetes, the prevalence of DRwas 18.45% (4). DR not only

affects the quality of life of patients, but also a risk factor for increased

all-cause mortality, vascular mortality and non-cancer mortality (5).

Identifying markers of NPDR facilitates disease screening and the

prevention of progression to proliferative diabetic retinopathy (PDR).

The main risk factors for DR include hyperglycemia or significant

blood glucose fluctuations, hypertension, hyperlipidemia, prolonged

diabetes, diabetic kidney disease, pregnancy, and obesity (6, 7).

However, these features cannot reveal DR pathogenesis. To date,

there are no recognized biomarkers with high specificity and

diagnostic efficiency for NPDR.

Growing evidence has shown that metabolomics can reflect the

pathophysiological processes of diseases and facilitate the exploration

of their mechanisms (8). The discovery of tumormetabolites, including

l-2-hydroxyglutaric acid, cystathionine, hypotaurine, sarcosine, and

several secondary bile acids, which may induce hypermethylation,

modify key signaling proteins, prevent apoptosis, and induce

metabolic reprogramming, has renewed interest in cancer

metabolism (8). Metabolomics can be divided into non-targeted and

targeted metabolomics based on the coverage of metabolites (9, 10).

Untargeted metabolomics aims to detect all measurable metabolites

and, therefore, has a broader coverage of substances (11). DR

development is closely related to metabolic disorders, and correcting

metabolic disorders improves DR status (11). These studies support the

essential role of metabolites in the development and progression of DR.

DR is a complex metabolism-related disease for which one or a few

metabolites are insufficient to assess the risk. In contrast to PDR, NPDR

is in the early stages of DR, and the study of its metabolic markers may

be more useful for preventing DR. The true primary prevention is to

identify people at risk in the absence of NPDR and to prevent them

from developing diabetic microangiopathy through interventions. The

aim of this study was to develop a risk scoring system in conjunction

with metabolomics to characterise individuals according to their risk of

developing NPDR in the future.
2 Methods

2.1 Plasma collection from NPDR and
diabetic non-DR patients

We enrolled patients with a history of type 2 diabetes and

divided them into two groups based on the presence or absence of
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comorbid NPDR, while excluding patients with a history of

malignancy, active hepatitis, and HIV. Diabetic NPDR patients

(n = 70) and diabetic non-DR patients (n = 71) were included as a

control group. Clinical data, such as sex, age, and duration of

diabetes, were routinely collected from all participants. Blood

samples were collected in K2-ethylenediaminetetraacetic acid

tubes and centrifuged at 3000 g for 10 min (4°C). The plasma

was separated from whole blood, and the final plasma was stored

at -80°C. Ophthalmic screening was performed at Shenzhen

People’s Hospital, where NPDR was diagnosed using dilated

fundus photography and classified into three levels of mild to

moderate severity according to the International Clinical

Classification of DR. The experiments were approved by the

Institutional Review Board and the Ethics Committee of the

Shenzhen People’s Hospital (approval no. LL-KT-2018338).

Informed written consent was obtained from all participants

prior to inclusion in the study.
2.2 Sample preparation

Frozen plasma was thawed at 4°C before the metabolomic

analysis. We then added a mixture of acetonitrile and methanol

to the plasma (100 mL) in 1.5 mL tubes to precipitate the proteins.

The mixture was vortexed for 60 s and left to stand for 10 min,

followed by centrifugation of the samples at 12,000 rpm for 10 min

at 4°C. The supernatant was evaporated to dryness using a

concentrator. Finally, the residue was resuspended in 100 mL of

mobile phase before liquid chromatography-mass spectrometry

(LC-MS) analysis. Quality control (QC) samples were prepared

by mixing the same amount of plasma for each sample and using

the same procedure to extract the metabolites as the test samples.

QC samples constituted approximately 20% of the total sample.
2.3 LC-MS analysis

The target compounds were separated on a Waters ACQUITY

UPLC BEH Amide (2.1 mm × 100 mm, 1.7 mm) liquid

chromatography column using a Vanquish (Thermo Fisher

Scientific) ultra-performance liquid chromatograph. The A phase

of the liquid chromatography was aqueous, containing 25 mmol/L

ammonium acetate and 25 mmol/L ammonia, and the B phase was

acetonitrile. The separation was performed on a gradient elution: 0‒

0.5 min, 95% B; 0.5‒7 min, 95%‒65% B; 7‒8 min, 65%‒40% B; 8‒9

min, 40% B; 9‒9.1 min, 40%‒95% B; 9.1‒12 min, 95% B. The mobile

phase flow rate was 0.5 mL/min, the column temperature was 25°C,

and the sample tray temperature was 4 °C. The Thermo Q Exactive

HFX mass spectrometer is capable of primary and secondary mass

spectrometry data acquisition under the control of the control

software (Xcalibur, Thermo). The detailed parameters are as

follows: Sheath gas flow rate: 50 Arb, Aux gas flow rate:10 Arb,

Capillary temperature: 320°C, Full MS resolution: 60000, MS/MS

resolution: 7500, Collision energy: 10/30/60 in NCE mode, Spray

Voltage: 3.5 kV (positive), or -3.2 kV (negative).
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2.4 Identification of metabolites

Raw data were converted to mzXML format using the

ProteoWizard software and processed for peak identification, peak

extraction, peak alignment, and integration using the R package

(kernel XCMS). Subsequently, it was matched to the secondary mass

spectrometry database of BiotreeDB (V2.1) for substance annotation,

with the algorithm scoring cutoff value set to 0.3.
2.5 Data analysis

2.5.1 Metabolomics analysis
The ionization source of the high-resolution mass spectrometry

platform was electrospray ionization, with positive and negative

ionization modes. In this study, the data in positive ion mode were

used for analysis.

2.5.2 Raw data processing
Individual peaks were filtered to eliminate noise. The filtering of

deviations was based on relative standard deviation. Regarding the

filtering of individual peaks, only peak area data with no more than

50% null values in a single group or nomore than 50% null values in all

groups were retained. Regarding the simulation of missing values in the

raw data, numerical simulation methods were used for a minimum

value of one-half. Data were normalized using internal standards.

2.5.3 Principal component analysis
PCA is a statistical method for transforming a set of observed

potentially correlated variables into linearly uncorrelated variables

(i.e., principal components) through an orthogonal transformation

(12). PCA can reveal the internal structure of the data and, thus,

better explain the data variables. Metabolomic data can be considered

a multivariate data set that can be visualized in a high-dimensional

data space coordinate system. Subsequently, PCA can provide a

relatively low-dimensional image (two or three-dimensional),

presented as a ‘projection’ of the original object at the point

containing the most information, effectively using a small number

of principal components to reduce the dimensionality of the data

using a small number of principal components. Using the SIMCA

software (V15.0.2, Sartorius Stedim Data Analytics AB, Umea,

Sweden), the data were log-transformed, centrally formatted, and

analyzed by automated modeling.

2.5.4 Orthogonal projections to latent structures-
discriminant analysis

Metabolomics data based on high-resolution mass spectrometry

platforms are high-dimensional (detects many metabolite species)

and small-sample (detects small sample size) in nature. In addition,

they contain categorical variables and a large number of non-

differential variables that may be correlated with each other.

Therefore, when we use the PCA model for analysis, the different

variables are spread over more principal components owing to the

influence of the correlated variables, preventing better visualization

and subsequent analysis. Therefore, we used the OPLS-DA
Frontiers in Endocrinology 03
statistical method to analyze the results. The OPLS-DA analysis

allows us to filter out orthogonal variables in metabolites that are

not correlated with categorical variables and to analyze non-

orthogonal and orthogonal variables separately, thus obtaining

more reliable information on the degree of correlation between-

group differences in metabolites and experimental groups. The data

were log-transformed plus UV-formatted using the SIMCA

software (V15.0.2, Sartorius Stedim Data Analytics AB, Umea,

Sweden). First, OPLS-DA modeling analysis was performed on

the first principal component, and the quality of the model was

tested with 7-fold cross-validation. Subsequently, the cross-

validated R Y (interpretability of the model for the categorical

variable Y) and Q (predictability of the model), and the validity of

the model was further tested by a permutation test in which the

order of the categorical variable Y was randomly changed several

times to obtain different random Q values.

2.5.5 OPLS-DA permutation test
The permutation test builds the corresponding OPLS-DA

model by randomly changing the order of the categorical variable

Y several times (n = 200) to obtain the R and Q values of the

random model, which is essential to avoid overfitting and assess the

statistical significance of the model.

2.5.6 Analysis of variance
The R software (version 4.1.0, http://r-project.org/) was applied

for data analysis and plotting. The “limma” package was used to

screen for differential metabolites, followed by the “ggplot2” package

to plot the heat and volcano maps of differential metabolites (13).

2.5.7 Signaling pathway analysis
In this study, we evaluated different chemical metabolites for

pathway analysis and visualization using the Metabolic Analysis

website (http://www.metaboanalyst.ca/) (14).

2.5.8 Metabolite screening
The Least Absolute Shrinkage and Selection Operator (LASSO)

method is suitable for reducing high-dimensional data. It was used to

select the best predictive features for NPDR patients (15). LASSO is

performed via the “glmnet” package (16). The subject operating

characteristic (ROC) curve is useful for evaluating diagnostic

performance. The area under the curve (AUC) for single or multiple

factors was calculated using the “pROC” software package (17).

2.5.9 Correlation between metabolites
Spearman’s correlation analysis between metabolites was

performed using the “ggstatsplot” package, and the results were

subsequently visualized using the “ggplot2” package (18).

2.5.10 Prognostic analysis of metabolites
Kaplan‒Meier (KM) curves were constructed to illustrate the

probability of NPDR occurring at a given period, and log-rank tests

were used to determine differences between groups. The prognostic

value of the diagnostic markers was assessed using univariate and

multivariate Cox proportional hazards models. KM curves were
frontiersin.org
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calculated and plotted using the ‘survival’ and ‘survminer’ software

packages (19, 20).

2.5.11 Risk score
In this study, patients’ risk score was calculated based on the

normalized expression levels of each metabolite and their

corresponding regression coefficients. The risk score was calculated as

follows: risk score = coefficient 1 × metabolite 1 expression + coefficient

2 × metabolite 2 expression + coefficient 3 × metabolite 3 expression +

coefficient N×metabolite N expression. Patients were divided into high-

and low-risk groups according to the median risk score.
3 Result

3.1 Metabolomic profile of NPDR and
diabetes melitus without DR

The scatter plot of OPLS-DA scores showed that the NPDR and

diabetic non-DR patient (DM without DR) groups were more

significantly differentiated, with samples largely within the 95%
Frontiers in Endocrinology 04
confidence interval (CI) (Figure 1A; Table 1). The R2Y of the

original model was greater than 0.5, indicating that the model

established is more consistent with the real situation of the sample

data; the Q2 values of the random model of the replacement test were

all smaller than the Q2 values of the original model; and the intercept

between the regression line of Q2 and the vertical axis was less than

zero. At the same time, as the replacement retention gradually

decreases, the proportion of the replaced Y variables increases, and

the Q2 of the random model gradually decreases, indicating that the

original model is robust with no overfitting(Figure 1B). The heat map

demonstrated the 38 plasma metabolites that were differentially

expressed in NPDR patients (P<0.05) (Figure 1C and EXCEL EV1).

We demonstrated the enrichment of these metabolites in signaling

pathways, with the top five ranked according to P value being: urea

cycle, aspartate metabolism, malate-aspartate shuttle, ammonia

recycling, and glutamate metabolism (Figure 1D).

The LASSO method was used to reduce the dimensionality of the

data and select metabolite characteristics of NPRD patients

(Figures 2A, B). Nine screened metabolites were distributed in the

volcano plot, with four being downregulated and five upregulated

(Figure 2C). Among all metabolite categories that could be identified,

the top five were lipids and lipid-like molecules, organic acids and
B

C D

A

FIGURE 1

Metabolite characteristics of NPDR and DM patients without DR. (A) horizontal coordinates indicate the predicted principal component scores of the first
principal component, vertical coordinates indicate the orthogonal principal component scores, and the color of the scatter indicates the different
groupings. (B) horizontal coordinates indicate the permutation retention of the permutation test (the proportion of the Y variables in the same order as
the original model, the points where the permutation retention equals 1 are the R2Y and Q2 values of the original model), the vertical coordinates
indicate the values of R2Y or Q2, the green dots indicate the R2Y values from the permutation test, the blue squares indicate the Q2 values from the
permutation test, and the two dashed lines indicate the regression lines for R2Y and Q2 respectively. (C) Heat map showing the 38 metabolites
differentially expressed in the NPDR (P<0.05 by Benjamini & Hochberg). Only urea cycles had a P-value <0.05 by Benjamini & Hochberg. (D) Enrichment
of differential metabolites in the signaling pathway in NPDR, where only the urea cycle had a P-value less than 0.05 by Hypergeometric Text.
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derivatives, organoheterocyclic compounds, organic oxygen

compounds, and benzenoids (Figure 2D).
3.2 KM analysis of the characteristic
metabolites

The KM method was used to analyze the probability of NPDR

occurrence in the corresponding period, and the variables included

were nine characteristic metabolites screened by LASSO regression.

Metabolites significantly associated with a negative prognosis using

NPDR as the endpoint event included phenylacetylglycine,

tiglylglycine, L-aspartic acid, and 3-sulfinato-L-alaninate, while

indolelactic acid, threonic acid, 4-dodecylbenzenesulfonic acid, and
Frontiers in Endocrinology 05
L-arginine were elevated, suggesting a good prognosis (Figure 3).

However, adenylsuccinic acid was not associated with NPDR risk.
3.3 Temporal diagnostic validity of
characteristic metabolites associated
with NPDR risk

The eight characteristic metabolites associated with NPDR

prognosis were plotted as time-to-subject ROC curves. Consistent

with the KM curves, phenylacetylglycine, tiglylglycine, L-aspartic

acid, and 3-sulfinato-L-alaninate positively predicted NPDR, whereas

indolelactic acid, threonic acid, 4- dodecylbenzenesulfonic acid and L-

arginine inversely predicted NPDR. However, of these metabolites,
TABLE 1 Clinical characteristics of NPDR and DM without DR in blood samples.

Parameters DM without DR patients (n=71) NPDR patients (n=70) P value

Sex Male : Female=47:24 Male : Female=46:24 NS

Age 59.9 ± 9.6 60.7 ± 10.4 NS

Duration of diabetes (y) 11.7 ± 6.8 12.4 ± 7.5 NS
fron
Data are calculated by unpaired Student’s t test and presented as mean ± SD. The number of patients in each group was as indicated. NS, not significant.
B

C

D

A

FIGURE 2

Screening of characteristic metabolites and distribution of metabolites. (A, B) LASSO coefficient curves for 38 features. The coefficient curve plots
were produced for the log(l) sequence. A vertical line was drawn at the value selected using the five-fold cross-validation method, where the best l
resulted in coefficients for nine features that were not 0. The best parameter (l) selection for the LASSO model was cross-validated five-fold by the
minimum criterion. Partial likelihood deviation (binomial deviation) curves were plotted against log(l). Dashed vertical lines were drawn at the
optimal values by using the minimum criterion and the 1SE of the minimum criterion (1-SE criterion). (C) volcano plot of the distribution of the nine
characteristic metabolites in the NPDR blood samples. (D) percentage of all metabolite classes that could be identified in the NPDR.
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only tiglylglycine showed good diagnostic validity in predicting the risk

of NPDR over 20 years (AUC = 0.82) (Figure 4).
3.4 Differential expression and correlation
analysis of characteristic metabolites
associated with NPDR risk

Phenylacetylglycine, tiglylglycine, L-aspartic acid, and 3-sulfinato-L-

alaninate were significantly highly expressed in the plasma of

NPDR patients, whereas indolelactic acid, threonic acid, 4-

dodecylbenzenesulfonic acid, and L-arginine were significantly less

expressed in the plasma of NPDR patients (Figure 5A). Interestingly,

there was a strong positive correlation among the four elevated

expression signature metabolites (Figure 5B).
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3.5 Risk score modeling and
prognostic analysis

The expression profiles of the eight NPDR risk-related

characteristic metabolites were analyzed using Cox regression to

establish a risk score model. Patients were stratified into high-risk

(n = 70) and low-risk groups (n = 71) based on the median cutoff

values (Figure 6A). KM curves showed that the odds of developing

NPDR were higher in the high-risk group than in the low-risk group,

and that the risk of developing NPDR accelerated with a longer

history of diabetes (Figure 6B). The predictive performance of the risk

score for NPDR was assessed using a time-dependent ROC curve,

with the AUC reaching 0.803 at 10 years, 0.858 at 20 years, and 0.862

at 30 years (Figure 6C).
FIGURE 3

KM curves for characteristic metabolites. KM curves are based on nine metabolites. Hazard ratio (HR) and 95% confidence intervals (CI) for
metabolites determined by univariate Cox regression. Time units are years.
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3.6 Independent prognostic value of eight
characteristic metabolites

Univariate and multivariate Cox regression analyses were

performed among the available variables to determine whether

the risk score was a predictor of an independent prognosis for

NPDR. In the univariate Cox regression analysis, the risk score was

significantly associated with NPDR (hazard ratio [HR]=3.106, 95%

CI=2.237‒4.314, P<0.001) (Figure 7A). After correcting for other

confounders, risk score still proved to be an independent predictor

of NPDR in the multivariate Cox regression analysis (HR=2.841,

95% CI=1.893‒4.264, P<0.001) (Figure 7B).
Frontiers in Endocrinology 07
4 Discussion

In this study, we developed a risk-score model that can

independently predict NPDR using plasma untargeted metabolomics.

The risk score was composed of eight metabolites, of which indolelactic

acid, thA, 4-dodecylbenzenesulfonic acid, and Arg were protective

factors for NPDR, whereas phenylacetylglycine, tiglylglycine, L-aspartic

acid, and 3-sulfinato-L-alaninate were risk factors.

DR is divided into two stages: NPDR and PDR. NPDR is divided

into three stages according to the severity of the disease (21). The

common clinical manifestations of NPDR include microaneurysms,

venous beading, and intraretinal microvascular abnormalities. As the
FIGURE 4

Temporal diagnostic potency of the characteristic metabolites associated with NPDR. The horizontal coordinate represents: 1-specificity, and the
vertical coordinate represents: sensitivity. When the AUC was > 0.5, higher values were associated with greater diagnostic potency. When AUC was <
0.5, the lower the value, the stronger the diagnostic potency, and when AUC = 0.5, there was no diagnostic potency.
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disease progresses, NPDR can develop into PDR (22). An untargeted

metabolic study in China found that pyruvate, aspartate, glycerol, and

cholesterol were differentially expressed in the plasma of PDR and

NPDR patients (23). Another untargeted metabolomics analysis found

that fumaric acid, uridine, acetic acid, and cytidine can differentiate

between NPDR and PDR (24). In addition, a US study found that

arginine- and citrulline-related metabolic pathways were abnormal in
Frontiers in Endocrinology 08
DR and that fatty acid metabolism is altered in patients with PDR

compared with those with NPDR (25).The metabolites screened in this

study differed significantly from those reported in other studies, which

may be related to the following reasons. First, different experimental

and control groups were used. In the current study, NPDR was the

experimental group, and DM (without DR) was the control group.

Most other studies used NPDR as the control group and PDR as the
B

C

A

FIGURE 6

Risk score modeling and prognostic analysis. (A) Patients were divided into high- and low-risk groups, using the median risk score as the cutoff value (the
upper and middle panel). Heat map consisting of eight characteristic metabolites associated with risk of NPDR (the bottom panel). (B) KM curves for patients
in the high- and low-risk groups for NPDR. (C) AUC of time-dependent ROC curves validating the prognostic performance of the risk score for NPDR.
BA

FIGURE 5

Differential expression and correlation analysis of characteristic metabolites associated with NPDR risk. (A) Differential expression of metabolites
(NPDR vs. DM without DR). (B) Spearman correlation analysis between metabolites. (Red represents positive correlation, blue represents negative
correlation). **p<0.01, ***p<0.001 by Wilcox Text.
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experimental group. Second, the samples were different. In this study,

plasma samples were chosen. Third, different analytical methods were

used. The present study used untargeted metabolomics analysis, while

some other studies used targeted metabolomics analysis.

Indolelactic acid is a tryptophan metabolite found in human

plasma, plasma, and urine. Tryptophan is metabolized by two major

pathways in humans, either through kynurenine or via a series of

indoles, and some of its metabolites are known to be biologically

active (26). Indolelactic acid is also a microbial metabolite; urinary

indole-3-lactate is produced by clostridium sporogenes (27).
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Tetracosahexaenoic acid, also known as C24:6N-3 or C24:6omega-

3, belongs to the class of organic compounds known as very long-

chain fatty acids. 4-dodecylbenzenesulfonic acid is a major

component of laundry detergent. Arginine belongs to the class of

organic compounds known as l-alpha-amino acids. These are alpha

amino acids which have the L-configuration of the alpha-carbon

atom. L-Arginine hydrochloride is a drug. Coronary artery

endothelial cells from spontaneously diabetic rats were found to

have impaired arginine metabolism, which may be associated with

diabetic cardiovascular pathology (28). Above all, indolelactic acid,
B

A

FIGURE 7

Forest plot. (A) Univariate Cox regression analysis of NPDR risk score and clinical characteristics. (B) Multivariate Cox regression analysis of NPDR risk
scores and clinical characteristics.
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thA and Arg but not 4-dodecylbenzenesulfonic acid,were considered

as protective factors for NPDR. A Chinese plasma metabolomics

study reported that aspartate was a risk factor for PDR (29). Similarly,

we found that aspartate was a risk factor for NPDR, suggesting

aspartate plays an essential role in the early and progressive stages of

DR. Phenylacetylglycine and tiglylglycine are two kinds of different

acyl glycines. Acyl glycines are normally minor metabolites of fatty

acids. However, the excretion of certain acyl glycines is increased in

several inborn errors of metabolism (30, 31). In certain cases the

measurement of these metabolites in body fluids can be used to

diagnose disorders associated with mitochondrial fatty acid beta-

oxidation. 3-sulfinato-L-alaninate is the organosulfinic acid arising

from oxidation of the sulfhydryl group of L-cysteine. It has a role as a

metabotropic glutamate receptor agonist, a human metabolite, an

Escherichia coli metabolite and a mouse metabolite. It is an

organosulfinic acid and a S-substituted L-cysteine. Hence,

phenylacetylglycine, tiglylglycine, L-aspartic acid, and 3-sulfinato-L-

alaninate were availably identified as risk factors for NPDR.

These metabolites may be affected by certain drugs. Drugs that

affect the metabolism of L-aspartic acid may include those that inhibit

or induce L-asparagine synthetase or L-asparaginase. For example,

methotrexate can inhibit L-asparagine synthetase and reduce the

synthesis of L-asparagine from L-aspartic acid2 (26, 27). Tiglylglycine

is a metabolite of isoleucine and valine. Tiglylglycine can be elevated in

urine of patients with beta-ketothiolase deficiency or with disorders of

propionate metabolism (28). Drugs that affect the metabolism of

tiglylglycine may include those that interfere with the enzymes

involved in the catabolism of isoleucine and valine, such as beta-

ketothiolase, propionyl-CoA carboxylase, and methylmalonyl-CoA

mutase (29). Indolelactic acid is a metabolite of tryptophan. Drugs

that affect the metabolism of indolelactic acid may include those that

interfere with the enzymes involved in the biosynthesis and

degradation of tryptophan and its metabolites, such as tryptophan

hydroxylase, indoleamine 2,3-dioxygenase, kynurenine

aminotransferase, and kynureninase. Drugs that induce or inhibit

these enzymes may alter the level of indolelactic acid in the body.

For example, fluoxetine can inhibit tryptophan hydroxylase and reduce

the synthesis of serotonin from tryptophan. On the other hand,

interferon-gamma can induce indoleamine 2,3-dioxygenase and

increase the catabolism of tryptophan to kynurenine and its

derivatives (30, 31). Threonic acid is a sugar acid derived from

threose. Threonic acid can also be produced from the metabolism of

ascorbic acid (vitamin C) by L-threonate 3-dehydrogenase2. Threonic

acid can be further metabolized to glyceraldehyde 3-phosphate and

acetyl-CoA by threonate 4-dehydrogenase and threonate aldolase.

Drugs that affect the metabolism of threonic acid may include those

that interfere with the enzymes involved in the biosynthesis and

degradation of ascorbic acid and threonic acid, such as L-threonate

3-dehydrogenase, threonate 4-dehydrogenase, and threonate aldolase.

Drugs that alter the level of ascorbic acid or threonic acid may also

affect the level of other metabolites in the same pathway. For example,

acetaminophen can deplete ascorbic acid and increase the oxidative

stress in the body (29, 32–34). Drugs that affect the metabolism of L-

arginine may include those that interfere with the enzymes involved in
Frontiers in Endocrinology 10
the biosynthesis and degradation of L-arginine and its metabolites,

such as arginase, nitric oxide synthase, arginine decarboxylase,

argininosuccinate synthase, and argininosuccinate lyase2. Drugs that

alter the level of L-arginine or nitric oxide may also affect the level of

other metabolites in the same pathway. For example, sildenafil can

enhance the effect of nitric oxide by inhibiting its breakdown by

phosphodiesterase type 5. On the other hand, methotrexate can

inhibit argininosuccinate synthase and reduce the synthesis of L-

arginine from L-citrulline (35).

Our study has a few limitations. First, we have not yet validated

these plasma metabolites diagnostic efficacy in a cohort. Second,

this study included only the yellow race, and the results should be

validated in more races.

In conclusion, we identified previously unreported metabolic

alterations in patients with NPDR based on untargeted metabolome

analysis of venous plasma. We constructed a risk score model for

NPDR from seven effective plasma metabolites, including

indolelactic acid, thA, Arg, Phenylacetylglycine, Tiglylglycine, L-

Aspartic acid, and 3-Sulfinato-L-alaninate.
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