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Background: Male testicular dysfunction is a considerable complication of anti-

cancer therapies, including chemotherapy and radiotherapy, partly due to the

increased oxidative stress caused by these treatments. Melatonin is an effective

antioxidant agent that protects testicles against physical and toxic chemical stressors

in animal models. This study aims to systematically review themelatonin’s protective

effects against anti-cancer stressors on rodential testicular tissue.

Materials and Method: An extensive search was conducted in Web of Science,

Scopus, and PubMed for animal studies investigating exogenous melatonin’s

protective effects on rodent testicles exposed to anti-cancer chemicals and

radiotherapeutic agents. Using the DerSimonian and Laird random-effect model,

standardized mean differences and 95% confidence intervals were estimated from

the pooled data. The protocol was prospectively registered in the International

Prospective Register of Systematic Reviews (PROSPERO: CRD42022355293).

Results: Themeta-analysis included 38 studies from 43 studies that were eligible for

the review. Rats and mice were exposed to radiotherapy (ionizing radiations such as

gamma- and roentgen radiation and radioactive iodine) or chemotherapy

(methotrexate, paclitaxel, busulfan, cisplatin, doxorubicin, vinblastine, bleomycin,

cyclophosphamide, etoposide, Taxol, procarbazine, docetaxel, and chlorambucil).

According to our meta-analysis, all outcomes were significantly improved by

melatonin therapy, including sperm quantity and quality (count, motility, viability,
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normal morphology, number of spermatogonia, Johnsen’s testicular biopsy score,

seminiferous tubular diameter, and seminiferous epithelial height), serum level of

reproductive hormones (Follicle-Stimulating Hormone and testosterone), tissue

markers of oxidative stress (testicular tissue malondialdehyde, superoxide

dismutase, glutathione peroxidase, catalase, glutathione, caspase-3, and total

antioxidant capacity), and weight-related characteristics (absolute body,

epididymis, testis, and relative testis to body weights). Most SYRCLE domains

exhibited a high risk of bias in the included studies. Also, significant heterogeneity

and small-study effects were detected.

Conclusion: In male rodents, melatonin therapy was related to improved

testicular histopathology, reproductive hormones, testis and body weights, and

reduced levels of oxidative markers in testicular tissues of male rodents. Future

meticulous studies are recommended to provide a robust scientific backbone for

human applications.

Systematic review registration: https://www.crd.york.ac.uk/prospero/display_

record.php?ID=CRD42022355293, identifier CRD42022355293.
KEYWORDS

rodents,melatonin,male reproduction, testicular tissue, cancer, radiotherapy, chemotherapy
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frontiersin.org02

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022355293
https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022355293
https://doi.org/10.3389/fendo.2023.1184745
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Dehdari Ebrahimi et al. 10.3389/fendo.2023.1184745
1 Introduction

Cancer is the second dominant cause of death globally. In 2020,

19.3 million new patients with cancer were diagnosed, and 10 million

deaths associated with cancer were detected worldwide (1). Radio-

and chemotherapy are among the most common treatments for

malignancies. These strategies are considered double-edged swords,

which exert unwanted side effects on healthy tissues, including the

male reproductive system. Radiotherapy and chemotherapy could

cause male testicular dysfunction, partly by increasing testicular

oxidative stress and subsequently inducing lipid peroxidation, DNA

damage, mitochondrial dysfunction, and apoptosis (2, 3). These

therapeutic methods could also trigger endoplasmic reticulum (ER)

stress and inflammation in the testes, leading to cell death and

potentially impairing male fertility (2, 4, 5). Differentiating

spermatogonia cells are more sensitive than spermatocytes,

spermatids, and Leydig cells, which produce testosterone, to the

mentioned cytotoxic effects (6, 7). Radio- and chemotherapy are

known to cause several reproductive impairments in males, including

but not limited to a decrease in sperm count (oligozoospermia),

absence of sperm in the ejaculate (azoospermia), morphological

abnormalities in spermatozoa (teratozoospermia), low sperm

motility (asthenozoospermia), and reduced sperm viability. These

effects may persist for an extended period, possibly lifelong (3, 8).

Furthermore, undergoing cancer treatments can lead to reduced

testosterone levels, as well as compensatory damage to the

hypothalamic-pituitary-gonadal axis and Sertoli cells (2, 9). With

dramatically increased survival rates, especially in patients of younger

ages, reducing the side effects of anti-cancer therapies and preserving

fertility can improve their quality of life.

Melatonin is secreted naturally by the pineal gland and is

known for its functions in circadian rhythms. Additionally,

research is being conducted to evaluate its effects on various

diseases, including cancer, cardiovascular disease, and metabolic

disorders (10). Also, melatonin membrane receptors (MT1 and

MT2) are detectable in several testicular cells, including Sertoli cells,

Leydig cells, and germ cells (11), which suggest fundamental roles in

the optimal reproductive function in the physiologic conditions

(11–13). Decreased serum melatonin levels and downregulation of

its receptors are reported following chemotherapy treatments (14–

16). The administration of melatonin has been suggested as a

potential protective measure against the adverse effects of

radiotherapy and chemotherapy on multiple organs, including the

brain, heart, kidney, liver, and intestine. This protective effect is

thought to be mediated by various mechanisms, such as anti-

inflammatory, antioxidant, anti-nitrosative, anti-apoptotic,

immune regulatory, and antioxidant defense system-related gene

expression regulatory properties (17, 18).

Several studies have investigated melatonin’s protective

properties against radiotherapy and chemotherapy-induced

injuries on the male reproductive system (19–23). However, no

meta-analysis study has reported the net effects and discussed the

underlying mechanism. Therefore, we aimed to assess the

impact of melatonin on radiotherapy- and chemotherapy-

induced male reproductive dysfunction and shed light on the

underlying mechanisms.
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2 Materials and methods

This systematic review and meta-analysis was designed based

on the Preferred Reporting Items for Systematic Reviews and Meta-

analyses guideline (PRISMA) (24). Prospective protocol registration

was done at the International Prospective Register of Systematic

Reviews (PROSPERO: CRD42022355293).
2.1 Data sources and search

A comprehensive search strategy was developed using

“melatonin” and “reproductive indices” and related terms. Three

online databases (Web of Science, Scopus, and PubMed) were

searched for studies published since January 1st, 1970, until

September 9th, 2022. Moreover, to include additional studies, a

manual backward and forward citation search was conducted for all

included studies. The search strategy and syntax details are

exhibited in Supplementary Material 1.
2.2 Study selection

The duplicate records were removed and uploaded to the

Rayyan web-based tool for systematic review management (25).

Three reviewers (NDE, ET, and MAS) screened the records

independently by titles and abstracts. Then, full texts were

retrieved for each study for screening by eligibility criteria.

Disagreements were resolved through discussion.

Studies were considered eligible to include if they met the

following criteria: (a) controlled animal studies, (b) included male

rodents who were exposed to anti-cancer chemo- or radiotherapy

agents, (c) in at least one intervention arm, melatonin was

administered, (d) one or more positive control arms (with or

without placebo), (e) The major characteristics of testicular tissue

have been reported (sperm analyses, biochemical, and

histopathologic). Studies were excluded if they had (a) ex-vivo

and in-vitro designs, (b) non-rodent subjects, (c) stressors other

than conventional anti-cancer chemo- and radiotherapy, and (d) a

combination of melatonin and other drugs was administered.

Furthermore, human trials, letters, and reviews were excluded

from this review. We did not apply any restrictions based on the

language or date of publication.
2.3 Data extraction and assessment of the
risk of bias

Data extraction was performed into an Excel spreadsheet by

four reviewers (NDE, NE, ZR, and MAS). The differences were

resolved by discussion. Based on the results of each study, the

following outcomes were extracted (if available): (a) study

characteristics (first author, country, and publication year), (b)

subject characteristics (sample size, age, and species), (c) chemical

or radiation agent and their dosages, route of administration, and
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duration of exposure, (d) melatonin’s dosage, duration of therapy,

administration route, and timing of administration relative to

stressor, (e) sperm-related characteristics (count, motility,

viability, normal morphology, number of spermatogonia,

seminiferous epithelial height, Johnsen’s testicular biopsy score

(JTBS), and seminiferous tubular diameter), (f) serum

reproductive hormone levels (Follicle-Stimulating Hormone

(FSH) and testosterone), (g) tissue oxidative stress markers

(glutathione (GSH), Catalase (CAT), testicular tissue Superoxide

dismutase (SOD), Malondialdehyde (MDA), glutathione

peroxidase (GPx), Caspase-3, and Total Antioxidant Capacity

(TAC)), and (h) weight-related characteristics (absolute body,

testis, epididymis, and relative testis to body weights).

Based on the Systematic Review Centre for Laboratory Animal

Experiments (SYRCLE) tool for animal intervention studies, the risk of

bias was assessed independently by two reviewers (AS and NDE) (26).
2.4 Data synthesis and statistical analysis

Data were analyzed using Stata MP Version 16 (StataCorp,

College Station, TX, USA), and a p-value <0.05 was considered

statistically significant. Based on the DerSimonian-Laird method, a

random effect model was utilized to pool the effect sizes using

Standardized Mean Difference (SMD) for meta-analyses. Also, a

95% confidence interval (CI) was reported for each effect size. The

residual heterogeneity between studies was evaluated using the

Cochran’s Q statistic, I-squared, and p-value. I-squared was

interpreted as “perhaps not important”, “moderate heterogeneity”,

“substantial heterogeneity”, and “considerable heterogeneity” when

values were 0-40%, 30-60%, 50-90%, and 75-100%, respectively

(27). Multiple intervention arms were combined using Cochrane’s

formula to avoid overcalculations in the studies with shared control

groups (27). To identify potential sources of heterogeneity,

subgroup analyses were applied only in cases of three or more

available studies per subgroup. Also, to obtain missing data,

reviewers tried to reach the authors via email and waited for at

least one month for responses. Studies were removed from the

analyses if their missing data were crucial. Also, when minimum,

median, quartiles, and maximum were the only available statistics,

mean and standard deviation were estimated using previously

published statistical methods (28, 29). Furthermore, funnel plots

were developed for outcomes with more than ten studies (27).

Visual inspection for asymmetry and Egger’s regression test for

small-study effects were done to detect publication bias (30).
3 Results

3.1 Search results

A total of 10,039 and 5 records were obtained from the systematic

database and manual citation searching, respectively. The title and

abstract of 9,028 unique documents were screened after omitting

1,016 duplicate records. 97 articles were checked for eligibility, and a

final 43 articles were included in the systematic review. Among the
Frontiers in Endocrinology 04
included studies, 5 (21, 31–34) were only included in the narrative

evidence synthesis, and 38 were used in the meta-analyses. The

PRISMA flow diagram is presented in Figure 1.
3.2 Study characteristics

Included studies were published between 2003 and 2023 in

English (n=36) (14, 19–22, 31–66) and Persian (n=2) (67, 68). The

studies were published from Iran (n=11) (20, 40, 45, 53–55, 59, 61,

65, 67, 68), Turkey (n=9) (21, 31, 36–39, 43, 47, 64), Egypt (n=9)

(33–35, 41, 42, 44, 46, 48, 60), China (n=7) (14, 19, 32, 49, 62, 63,

66), India (n=4) (22, 50, 52, 57), Thailand (n=1) (58), Nigeria (n=1)

(56), and South Korea (n=1) (51). Studies employed rats (n=25)

(20–22, 31, 34–37, 39, 41–44, 46–48, 51, 56–58, 61, 62, 64, 65, 68)

and mice (n=18) (14, 19, 32, 33, 38, 40, 45, 49, 50, 52–55, 59, 60, 63,

66, 67) as subjects. To induce stress, the included studies employed

ionizing radiations (n=9) (21, 39, 46, 48–50, 59, 60, 64) and

chemical agents (n=34) (14, 19, 20, 22, 31–38, 40–45, 47, 51–58,

61–63, 65–68). For chemical therapy, methotrexate (58, 62),

paclitaxel (63), busulfan (19, 32–34, 45, 53–55, 65, 67, 68),

cisplatin (14, 20, 22, 37, 40–44, 47), doxorubicin (51, 57, 66),

vinblastine (22), bleomycin (20, 22), cyclophosphamide (31, 47,

52, 61), etoposide (20), Taxol (35), procarbazine (36), docetaxel

(38), and chlorambucil (56) were employed. Melatonin was

administered intraperitoneal (IP, n=32) (14, 19–22, 31–41, 43,

45–47, 49, 50, 53–55, 58–61, 63–68) and oral (n=8) (42, 44, 48,

51, 52, 56, 57, 62). Detailed study characteristics, including stressor

and melatonin dosages, duration of exposure to each one, and

number and age of rodents, are provided in Table 1 and

Supplementary Material 2.
3.3 Outcomes

The pooled SMDs were statistically significant for all of the 21

outcomes. The outcomes were classified into four categories: (a)

sperm-related parameters, (b) reproductive hormones, (c) markers of

oxidative stress and apoptosis in testicular tissue, and (d) body and

testicular weights. The pooled outcomes included absolute

epididymis, testis, and body weights, testis to body relative weight,

caspase-3 activity, tissue CAT, GPX, MDA, SOD, and GSH activity,

TAC, serum FSH and testosterone levels, JTBS, normal sperm

morphology, number of spermatogonia, seminiferous epithelial

height, seminiferous tubular diameter, sperm count, motility, and

viability. The overall pooled effect sizes for each outcome are

summarized in the Figure 2. Detailed forest plots of the overall

pooled effects sizes for each outcome are presented in Figures 3–6.

3.3.1 Sperm-related parameters
The pooled SMDs for each sperm-related parameter were: JTBS

(SMD = 3.36, 95% CI: 2.21 to 4.51, p-value <0.01), normal sperm

morphology (SMD = 2.9, 95% CI: 2.04 to 3.76, p-value <0.01),

number of spermatogonia (SMD = 3.99, 95% CI: 1.83 to 6.16, p-

value <0.01), seminiferous epithelial height (SMD = 3.91, 95% CI:

2.12 to 5.7, p-value <0.01), seminiferous tubular diameter (SMD =
frontiersin.org
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2.55, 95% CI: 1.56 to 3.54, p-value <0.01), sperm count (SMD =

3.03, 95% CI: 2.26 to 3.79, p-value <0.01), motility (SMD = 3.44,

95% CI: 2.5 to 4.39, p-value <0.01), and viability (SMD = 2.98, 95%

CI: 1.29 to 4.68, p-value <0.01). Between-study heterogeneity was

substantial to considerable for sperm-related parameters with JTBS

(I2 = 75.88% and p-value for Q test <0.01), normal sperm

morphology (I2 = 78.48% and p-value for Q test <0.01), number

of spermatogonia (I2 = 86.16% and p-value for Q test <0.01),

seminiferous epithelial height (I2 = 90.1% and p-value for Q test

<0.01), seminiferous tubular diameter (I2 = 80.84% and p-value for

Q test <0.01), sperm count (I2 = 82.04% and p-value for Q test

<0.01), motility (I2 = 83.15% and p-value for Q test <0.01), and

viability (I2 = 88.72% and p-value for Q test <0.01).

3.3.2 Reproductive hormones
The combined SMDs for serum FSH and testosterone levels were

(SMD = -2.47, 95% CI: -4.03 to -0.9, p-value <0.01) and (SMD = 2.57,

95% CI: 1.54 to 3.6, p-value <0.01), respectively. Between-study
Frontiers in Endocrinology 05
heterogeneity was considerable for serum reproductive hormone

levels with FSH (I2 = 88.9% and p-value for Q test <0.01) and

testosterone (I2 = 89.17% and p-value for Q test <0.01).

3.3.3 Testicular tissue’s oxidative markers
For each oxidative marker, the pooled SMDs were as follows:

caspase-3 (SMD = -2.28, 95% CI: -4.25 to -0.32, p-value = 0.02),

tissue CAT (SMD = -2.28, 95% CI: -4.25 to -0.32, p-value = 0.02),

GPX (SMD = 3.62, 95% CI: 1.73 to 5.5, p-value <0.01), MDA (SMD

= -2.64, 95% CI: -3.76 to -1.52, p-value <0.01), SOD (SMD = 2.56,

95% CI: 1.46 to 3.67, p-value <0.01), and GSH (SMD = 2.03, 95%

CI: 1.15 to 2.91, p-value <0.01) activity, and TAC (SMD = 1.09, 95%

CI: 0.28 to 1.9, p-value = 0.01). Between-study heterogeneity was

considerable for oxidative markers of testicular tissue with caspase-

3 (I2 = 85.43% and p-value for Q test <0.01), tissue CAT (I2 = 87.3%

and p-value for Q test <0.01), GPX (I2 = 85.61% and p-value for Q

test <0.01), MDA (I2 = 90.79% and p-value for Q test <0.01), SOD

(I2 = 87.3% and p-value for Q test <0.01), and GSH (I2 = 80.83% and
FIGURE 1

PRISMA flow diagram illustrating the process of selection of the studies.
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TABLE 1 Basic characteristics of the included studies.

First author
[year]

Country Rodent Age of
subjects

Number of
subjects
(intervention/
control)

Model of
intervention

Type of OS SYRCLE
score

Wang [2018] (62) China Rats N/M 8/8 Preventive Chemical agent (Methotrexate) 2

Wang [2022] (63) China Mice 8 weeks 10/10 Therapeutic Chemical agent (Paclitaxel) 3

Yalcınkaya [2009]
(poster) (64)

Turkey Rats 10-12 weeks 10/10 Therapeutic Radiation (Gamma radiation) N/A

Zangoie [2019] (65) Iran Rats N/M 6/6 Therapeutic Chemical agent (Busulfan) 2

Zhang [2022] (14) China Mice 8 weeks 8/8 Therapeutic Chemical agent (Cisplatin) 4

Zi [2022] (66) China Mice 6-8 weeks 5/5 Preventive Chemical agent (Doxorubicin) 3

Hussein [2006] (46) Egypt Rats 3 months 20/20 Preventive Radiation (Roentgen radiation) 2

Khan [2015] (49) China Mice 8-9 weeks 3/3 Preventive Radiation (Gamma radiation) 2

Kushwaha [2021] (50) India Mice 8-10 weeks 6/6 Preventive Radiation (Gamma radiation) 2

Lee [2012] (51) South
Korea

Rats 8 weeks 6/6 Preventive Chemical agent (Doxorubicin) 3

Madhu [2015] (22) India Rats N/M 8/8 Preventive Chemical agent (Cisplatin +
Vinblastine + Bleomycin)

4

Manda [2003] (52) India Mice 6-8weeks 10/10 Preventive Chemical agent
(Cyclophosphamide)

3

Mirhoseini [2014] (53) Iran Mice 6-7 weeks 7/7 Therapeutic Chemical agent (Busulfan) 3

Taheri Moghadam
[2021] (54)

Iran Mice 4-6 weeks 6/6 Preventive Chemical agent (Busulfan) 3

Moradi [2021] (20) Iran Rats 13-15 weeks 5/5 Preventive Chemical agent (Bleomycin +
Etoposide + Cisplatin)

3

Cebi Sen [2018] (39) Turkey Rats N/M 12/12 Preventive Radiation (Radioactive iodine) 3

Patil [2009] (57) India Rats N/M 6/6 Preventive Chemical agent (Doxorubicin) 2

Aboelwafa [2022] (35) Egypt Rats 16-18 weeks 5/5 Therapeutic Chemical agent (Taxol) 4

Alp [2014] (36) Turkey Rats N/M 6/8 Preventive Chemical agent
(Procarbazine)

2

Atessahin [2006] (37) Turkey Rats 8 weeks 6/6 Preventive Chemical agent (Cisplatin) 3

Baş [2019] (38) Turkey Mice 6-8 weeks 8/8 Therapeutic Chemical agent (Docetaxel) 3

Chabra [2014] (40) Iran Mice N/M 5/5 Preventive Chemical agent (Cisplatin) 2

Cui [2017] (19) China Mice 8 weeks 3/3 Therapeutic Chemical agent (Busulfan) 3

Edrees [2012] (41) Egypt Rats N/M 5/5 Preventive Chemical agent (Cisplatin) 2

Kamal El-Dein [2020]
(48)

Egypt Rats N/M 6/6 Therapeutic Radiation (Gamma radiation) 3

El-Shafaei [2018] (42) Egypt Rats N/M 10/10 Therapeutic Chemical agent (Cisplatin) 3

Yilmaz [2019] (43) Turkey Rats 3-5 months 8/8 Preventive Chemical agent (Cisplatin) 3

Filobbos [2020] (44) Egypt Rats 12 weeks 10/10 Preventive Chemical agent (Cisplatin) 3

Mohamad Ghasemi
[2010] (i) (45)

Iran Mice N/M 6/6 Therapeutic Chemical agent (Busulfan) 3

(Continued)
F
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p-value for Q test <0.01) activity, and TAC (I2 = 55.14% and p-value

for Q test 0.06).

3.3.4 Body and testicular weights
The pooled SMDs were absolute epididymis (SMD = 0.74, 95%

CI: 0.15 to 1.33, p-value = 0.01), testis (SMD = 1.25, 95% CI: 0.69 to

1.81, p-value <0.01), and body weights (SMD = 1.06, 95% CI: 0.36 to

1.76, p-value <0.01), and testis to body relative weight (SMD = 1.41,

95% CI: 0.55 to 2.26, p-value <0.01). Body and testicular weights

showed moderate to substantial heterogeneity between studies with

absolute epididymis (I2 = 49.45% and p-value for Q test 0.06), testis

(I2 = 78.68% and p-value for Q test <0.01), and body weights

(I2 = 79.33% and p-value for Q test <0.01), and testis to body relative

weight (I2 = 74.82% and p-value for Q test <0.01).
3.4 Subgroup analyses

The subgroup analyses were conducted on rodent species

(mice versus rats), timing of intervention (preventive versus

therapeutic, respectively, indicating melatonin therapy was

started before and after the induction of stress), route of

administration of melatonin, and type of stressor (chemical
TABLE 1 Continued

First author
[year]

Country Rodent Age of
subjects

Number of
subjects
(intervention/
control)

Model of
intervention

Type of OS SYRCLE
score

Ilbey [2008] (47) Turkey Rats 6 weeks 6/6 Preventive Chemical agent (Cisplatin and
Cyclophosphamide)

3

Mohamad Ghasemi
[2010] (ii) (55)

Iran Mice 6-8weeks 8/8 Therapeutic Chemical agent (Busulfan) 2

Ferdosi Khosroshahi
[2013] (Farsi) (68)

Iran Rats N/M 10/10 Therapeutic Chemical agent (Busulfan) 2

Mohammd Ghasemi
[2009] (Farsi) (67)

Iran Mice 6-8 weeks 8/8 Therapeutic Chemical agent (Busulfan) 2

Olayaki [2019] (56) Nigeria Rats N/M 10/10 Therapeutic Chemical agent (Chlorambucil) 2

Tawfik [2006] (60) Egypt Mice 7-9 weeks 6/6 Preventive Radiation (Gamma radiation) 3

Sukhorum [2020] (58) Thailand Rats N/M 8/8 Preventive Chemical agent (Methotrexate) 2

Tajabadi [2020] (59) Iran Mice 6-8 weeks 5/5 Therapeutic Radiation (Gamma radiation) 2

Torabi [2017] (61) Iran Rats 6-8 weeks 7/7 Preventive Chemical agent
(Cyclophosphamide)

3

Take [2009] (21) Turkey Rats 6-7 weeks 32/32 Preventive Ionizing irradiation 2

Zhang [2019] (32) China Mice 3 weeks 20/20 Preventive Chemical agent (Busulfan) 3

Abou-El-Naga [2021]
(33)

Egypt Mice N/M 5/5 Therapeutic Chemical agent (Busulfan) 3

Abd-El-Aziz [2012]
(34)

Egypt Rats N/M 10/7 Therapeutic Chemical agent (Busulfan) 3

Simsec [2008] (31) Turkey Rats 5-6 weeks 5/5 Preventive Chemical agent
(Cyclophosphamide)

2

fr
OS, oxidative stress; N/M, not mentioned; N/A, not applicable; SYRCLE, Systematic Review Centre for Laboratory Animal Experimentation.
FIGURE 2

Summary of overall pooled effect sizes for each outcome. Sperm-
related parameters are indicated in purple, reproductive hormones
in green, oxidative markers of testicular tissue in cyan, and body and
testicular weights in red.
ontiersin.org

https://doi.org/10.3389/fendo.2023.1184745
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Dehdari Ebrahimi et al. 10.3389/fendo.2023.1184745
versus radiation). Subgroup analyses failed to indicate the source

of heterogeneity. However, significant between-group differences

were observed between the relative timing of intervention for

serum FSH level and rodent species for JTBS and normal sperm

morphology and count. The forest plots for subgroup analyses are

provided in the Supplementary Material 3.
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3.5 Sensitivity analyses and risk of
bias assessment

The results’ robustness was assessed using the leave-one-out

method. After removing each study from the analyses, the pooled

effect sizes did not significantly change. The forest plots for
A B

D

E

F

G

H

C

FIGURE 3

Forest plots for the overall pooled effects sizes of sperm-related parameters including (A) JTBS, (B) normal sperm morphology, (C) number of
spermatogonia, (D) seminiferous epithelial height, (E) seminiferous tubular diameter, (F) sperm count, (G) sperm motility, and (H) sperm viability.
JTBS, Johnsen’s testicular biopsy score.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1184745
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Dehdari Ebrahimi et al. 10.3389/fendo.2023.1184745
sensitivity analyses for each outcome are provided in the

Supplementary Material 4.

A risk of bias assessment was conducted using the SYRCLE tool

for evaluating included studies. A study would receive a score of 1 if

regarded as low risk in each domain. Based on the included studies,

the scores ranged from 2 to 4. According to the evaluations of the

studies, the results regarding sequence generation, random housing,

allocation concealment, random outcome assessment, and blinding

were all deemed unclear. No other sources of bias were detected for

studies. The risk of bias assessment was impossible for one of the

included studies since it was a poster (64). Detailed quality

assessment results are presented in Supplementary Materials 5

and Figure 7.
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3.6 Publication bias

Funnel plots were created for the following outcomes: absolute

testis weight, body weight, normal spermmorphology, seminiferous

tubular diameter, serum testosterone level, sperm count, sperm

motility, tissue GSH, MDA, and SOD. Evaluations for publication

bias showed a significant small-study effect across the outcomes.

Nevertheless, it is essential to interpret the results of the small-study

effects tests with caution since they may be affected by other factors.

For example, in the presence of between-study heterogeneity (the

case of this study), the symmetry of funnel plots can be affected (30,

69). The funnel plots and Egger’s test results for small-effect studies

are provided in the Supplementary Material 6.
A

B

FIGURE 4

Forest plots for the overall pooled effects sizes of reproductive hormones, including (A) serum FSH and (B) testosterone level. FSH, Follicle-
Stimulating Hormone.
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4 Discussion

We demonstrated that melatonin could have beneficial effects

against testicular abnormalities induced by radiotherapy and

chemotherapy. Furthermore, we found that melatonin had a

significantly greater impact on seminiferous tubular diameter,

GPx, and FSH levels in preventive models rather than in

therapeutic models. The strength of the melatonin’s effects on

JTBS, sperm counts, and morphology also depended on the

animal type. We also detected the model of intervention and

rodent species as the sources of heterogeneity in different analyses.
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4.1 Sperm quantity and quality

In the current meta-analysis, melatonin restored testicular

injuries caused by radiotherapy and chemotherapy, which was

indicated by increased spermatogonia and sperm count, normal

morphology, motility, and viability, testis and epididymal weight,

and seminiferous tubular height and diameter. These results agree

with our previous meta-analyses, which revealed the beneficial

impact of melatonin on testicular injuries induced by metabolic

disorders, physical and toxic chemical triggers in animal models

(70–72). Radio- and chemotherapy can cause disturbances in
A B

D

E

F

G

C

FIGURE 5

Forest plots for the overall pooled effects sizes of testicular tissue’s oxidative markers, including (A) caspase-3, (B) tissue catalase, (C) glutathione
peroxidase, (D) malondialdehyde, (E) superoxide dismutase activity, (F) total antioxidant capacity, and (G) glutathione activity.
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Risk of bias graph on judgements about each risk of bias item presented as proportions across all the included studies.
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spermatogenesis through different mechanisms. These treatments

may exert their effect by damaging DNA (DNA cross-link,

breakage, alkylation, and intercalation) and induction of

apoptosis, lipid peroxidation, increased oxidative stress,

inflammation, hormonal imbalance, and mitochondrial damage,

which result in abnormal sperm characteristics (6). Melatonin, as a

potent antioxidant with anti-inflammatory and anti-apoptotic

properties, can cross the cell membrane and penetrate the nucleus
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(73). As a direct free radical scavenger, melatonin can protect DNA

against the destructive effects of Reactive oxygen species (ROS)

induced by chemotherapy and radiotherapy (74). Melatonin’s

ability to counteract the harmful effects of anti-cancer treatments

can improve sperm morphology, motility, count, and viability.

Zhang et al. reported that melatonin alleviates the cytotoxicity

and anti-mitotic effects of busulfan, an alkylating chemotherapy

agent, in the cultured spermatogonial progenitor cells. They found
A B

D

C

FIGURE 6

Forest plots for the overall pooled effects sizes of body and testicular weights, including (A) absolute epididymis weight, (B) absolute testis weight,
(C) body weight, and (D) testis to body relative weight.
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that the blockage of MT1 and MT2 in these cells antagonizes the

observed effects of melatonin (32). In another in-vitro study,

melatonin reversed the morphological changes caused by busulfan

in the type A spermatogonial stem cells (19).
4.2 Reproductive hormone levels

Testosterone is produced by the Leydig cells located in the testis’s

interstitial space, and the luteinizing hormone induces its secretion.

Testosterone is required for normal spermatogenesis, and its serum

concentration is positively associated with normal spermmorphology

and higher live birth rates (75). Sertoli cells, located in the

seminiferous tubules with critical roles in spermatogenesis and

androgen synthesis, are also targeted by FSH (76). Melatonin

administration elevated animal testosterone and reduced FSH levels

in this meta-analysis. According to our recent meta-analysis,

melatonin increases testosterone levels but does not affect FSH in

rodents with toxin-induced testicular injuries (70). The existing body

of research suggests that melatonin can inhibit the biosynthesis of

FSH by decreasing the secretion of gonadotropin-releasing hormone

(GnRH). Since melatonin administration has been observed to

diminish the number of pituitary GnRH receptors, it is plausible

that the observed reductions in plasma FSH concentrations may stem

from inhibiting the pubertal increase in GnRH secretion (77).

Previous studies have yielded inconsistent findings regarding

the impact of melatonin on testosterone levels (70–72). In

this regard, da Costa et al. have reported that melatonin

supplementation in pubescent rats may lead to a decline in

testosterone levels in adulthood, potentially due to its influence

on the estrogenic capacity of Leydig cells. Nonetheless, they also

demonstrated that melatonin could exert a protective effect against

the decrease in testosterone levels caused by the deleterious effects

of diabetes, suggesting this protective effect may stem from

melatonin’s ability to upregulate androgen receptor genes (78).

Our results suggest melatonin’s protective effects against

decreased testosterone levels induced by anti-cancer treatments.

The blockages of MT1 and MT2 in the Leydig cell membrane

downregulated steroidogenic genes (79). Melatonin can increase the

expression of steroidogenic genes by binding to its nuclear

receptors, including retinoic acid receptor-related orphan receptor

a (RORa) (13). Furthermore, elevated melatonin levels improve

testosterone synthesis by decreasing Leydig cells’ apoptosis (13),

which may explain melatonin’s protective effect in our study.

Nonetheless, there is contradictory evidence. Melatonin did not

affect testosterone levels in animals with physical damage to the

testes (71) and healthy human males (80, 81). Therefore, there is a

need for more studies to determine melatonin’s effects on

reproductive hormones and male infertility induced by

oxidative stress.
4.3 Oxidative stress

Oxidative stress is among the causative factors for male

infertility (82). In this regard, our results demonstrated
Frontiers in Endocrinology 12
melatonin’s beneficial effects on testicular enzymatic and non-

enzymatic antioxidants in this study. By stimulating the activities

of key antioxidant enzymes such as CAT, GSH-Px, SOD, and

GSH while concurrently reducing the activity of MDA, a marker

of lipid peroxidation, melatonin protects the testicular tissue

against oxidative damage-induced radiation and chemotherapy.

Previously, we detected similar efficacy of melatonin in metabolic

disorders, physical- and chemical-induced testicular injuries (70–

72). Furthermore, melatonin decreased microwave and

radiofrequency electromagnetic radiation-induced oxidative

stress (83). Literature suggests that melatonin increases

antioxidant enzyme expression and activity during physiological

and pathological conditions. These enzymes play a crucial role in

mitigating the deleterious effects of free radicals by converting

them into less reactive or non-toxic molecules, thus serving as a

vital defense mechanism against oxidative stress. These enzymes

can be recursively altered by free radicals, compromising their

efficacy. In this context, melatonin acts as a potent scavenger of

free radicals and can directly neutralize their destructive effects.

Therefore, melatonin exerts a dual influence on the antioxidant

system, both directly and indirectly, by regulating the activity of

antioxidant enzymes and mitigating their damage by free radicals

(84–86). In a recent study, Zhang et al. observed that the

administration of cisplatin to mice results in apoptosis of Leydig

cells by the downregulation of the SIRT1/Nrf2 signaling pathway,

which plays a crucial role in anti-inflammatory response, anti-

oxidative stress, and cell protection. However, the authors also

suggest that melatonin can counteract the harmful effects of

cisplatin by stimulating the SIRT1/Nrf2 pathway through its

interaction with MT1/MT2 receptors (14, 87). Furthermore,

melatonin, as a potent scavenger of reactive oxygen and

nitrogen species, could also alleviate free radical formation by

improving the electron transport chain efficiency of the inner

mitochondrial membrane; by doing so, melatonin can reduce

electron leakage, which is a significant source of free radical

formation (88).
4.4 ER stress and apoptosis

In this study, we observed melatonin’s beneficial effects on

reducing caspase-3 activity, which is a crucial mediator of apoptosis.

This result aligns with our previous studies indicating melatonin

protection against the apoptotic effects of metabolic disorders,

physical injuries, environmental pollutants, and heavy metals on

testes (70–72). Melatonin could alleviate testicular B-cell

lymphoma-2 (Bcl-2)-associated X pro-apoptotic protein (BAX)

and upregulate Bcl-2 anti-apoptotic protein following

chemotherapy (20, 89). Radio- and chemotherapy could also

trigger ER stress through different signaling pathways (including

inositol-dependent protein 1 a (IRE1a), PRKR-like ER kinase

(PERK)-eukaryotic translation initiating factor 2a (eIF2a), and
MAPK), leading to cell death and potentially impairing male

fertility (90).

Melatonin has been demonstrated to mitigate ER stress and

inhibit intrinsic apoptotic pathways in anti-cancer treatment-
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induced ER stress (17, 19). In this regard, melatonin counteracted

busulfan-induced ER stress and its downstream apoptotic proteins,

including P53, caspases, and CCAAT enhancer binding protein (C/

EBP) homologous protein (CHOP), in mouse testes and

spermatogonial stem cells (19). Melatonin may reverse

radiotherapy and chemotherapy-induced ER stress by suppressing

the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)

pathway (17). Eliminating ER stress by melatonin could improve

blood-testis barrier impairment and, thereby, spermatogenesis

abnormalities following busulfan treatment (91).
4.5 Inflammation

Pro-inflammatory cytokines play a key role in maintaining the

normal physiological functions of testicular cells by acting as

growth and differentiation factors (92). However, their increased

levels during acute and chronic genitourinary tract inflammation

are linked to oxidative stress and male infertility (93). Melatonin

supplementation is reported to reduce testicular inflammation in

infertile men (94). It may also reverse the radiotherapy- and

chemotherapy-induced male reproductive toxicities by attenuating

the testicular levels of inflammatory cytokines, including

interleukin-1b (IL-1b), tumor necrosis factor-a (TNF-a), and
interleukin-6 (IL-6) (2, 5, 17, 20, 62, 95). These effects may be

attributed to melatonin’s inhibition of the p38 mitogen-activated

protein kinase (MAPK) signaling pathway and, subsequently, toll-

like receptor 4 (TLR-4) and nuclear factor kappa B (NF-kB) in the

testes (96). The activated TLRs are associated with low sperm

motility, sperm apoptosis, and male infertility (97). Yet, more

studies should be performed to evaluate other affected cytokines

and cascades by exogenous melatonin.
4.6 Limitations

Our study had several limitations. First, our data was extracted

from animal studies, and it is unclear whether such effects could

be translated to humans. Furthermore, most available animal

studies evaluating the effects of melatonin therapy on

male infertility used rodent models, making the conclusions

hard to generalize to other animals. Second, there was high

methodological and statistical heterogeneity between the

included studies. Third, our meta-analysis is also limited by the

low quality of the eligible studies and a high level of publication

bias. Also, a dose-response meta-analysis was not feasible due to

insufficient data and differences in the route of administration.

Finally, none of the included studies have reported and evaluated

possible adverse outcomes.
5 Conclusion

In the current meta-analysis of animal studies, we conclude

melatonin’s protective influence on the side effects of radiotherapy
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and chemotherapy on testicular tissue. Improving testicular

function and morphology, ameliorating hormone levels, and

alleviating oxidative stress and apoptosis are some proposed

mechanisms for the observed effects of melatonin. However, more

meticulous animal studies should be performed to clarify other

potential underlying mechanisms. Future studies are recommended

to evaluate melatonin dose responses to provide doses with anti-

infertility effects.
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