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Background: Glutamine metabolism (GM) is known to play a critical role in

cancer development, including in lung adenocarcinoma (LUAD), although the

exact contribution of GM to LUAD remains incompletely understood. In this

study, we aimed to discover new targets for the treatment of LUAD patients by

using machine learning algorithms to establish prognostic models based on GM-

related genes (GMRGs).

Methods: We used the AUCell and WGCNA algorithms, along with single-cell

and bulk RNA-seq data, to identify the most prominent GMRGs associated with

LUAD. Multiple machine learning algorithms were employed to develop risk

models with optimal predictive performance. We validated our models using

multiple external datasets and investigated disparities in the tumor

microenvironment (TME), mutation landscape, enriched pathways, and

response to immunotherapy across various risk groups. Additionally, we

conducted in vitro and in vivo experiments to confirm the role of LGALS3 in

LUAD.

Results: We identified 173 GMRGs strongly associated with GM activity and

selected the Random Survival Forest (RSF) and Supervised Principal Components

(SuperPC) methods to develop a prognostic model. Our model’s performance

was validated using multiple external datasets. Our analysis revealed that the

low-risk group had higher immune cell infiltration and increased expression of

immune checkpoints, indicating that this group may be more receptive to

immunotherapy. Moreover, our experimental results confirmed that LGALS3

promoted the proliferation, invasion, and migration of LUAD cells.
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Conclusion:Our study established a prognostic model based on GMRGs that can

predict the effectiveness of immunotherapy and provide novel approaches for

the treatment of LUAD. Our findings also suggest that LGALS3 may be a potential

therapeutic target for LUAD.
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1 Introduction

Based on the latest global cancer statistics, lung cancer (LC)

remains the leading cause of cancer-related mortality worldwide,

with more than 350 deaths per day in 2022, despite the acceleration

in the decline of its morbidity and mortality (1). Non-small cell lung

cancer (NSCLC) and small cell lung cancer (SCLC) are the two

major subtypes, with NSCLC accounting for approximately 80% of

all LC cases. Among NSCLC, LUAD is the most frequently observed

histological subtype (2). Although treatment options including

surgery, chemotherapy, radiotherapy, and chemoradiotherapy

have continuously advanced, the clinical outcomes for LC

patients remain unfavorable, with a 5-year survival rate of only

approximately 21% (3). In light of the rapidly developing field of

precision medicine, novel strategies, particularly immunotherapies

and targeted therapies, have been proposed as potential means of

extending the survival of LUAD patients.

Metabolism is a fundamental process that governs cellular

functions. The Warburg effect, a well-established phenomenon,

has provided ample evidence to support the critical role of

metabolism in malignant cell proliferation. Glutamine (Gln), a

non-essential amino acid, plays a unique nutritional role in

cancer cell proliferation by contributing carbon and nitrogen to a

series of growth-promoting pathways (4). While glucose serves as

the primary energy source for tumor cell metabolism, glutamine is

also essential and is known as “glutamine addiction” (5). Glutamate

can directly contribute to the biosynthesis of proline and

glutathione, which are important intracellular antioxidant

molecules, or it can be deaminated to a-ketoglutarate, which acts

as a carbon source to replenish the tricarboxylic acid (TCA) cycle.

However, this results in the formation of a hypoxic and acidic

tumor microenvironment (TME), which is unfavorable to

antitumor immune responses (6, 7). Glutamine addiction plays a

crucial role in acquired drug resistance and metastasis of NSCLC

and targeting the glutamate dehydrogenase 1 (GLUD1) pathway

may provide a promising therapeutic strategy for NSCLC (8).

Therefore, we hypothesize that inhibiting glutamine metabolism

could limit tumor growth and facilitate the restoration of antitumor

immunity. However, the therapeutic efficacy of single-targeted

blockade of glutaminase against tumors is generally limited.

In recent years, an increasing number of researchers have

turned to combined therapies for the treatment of a variety of

cancers, including but not limited to prostate cancer, breast cancer,
02
and ovarian cancer (9–11). While several therapies have shown

initial promise, most are still in the clinical trial stage. Recent studies

have identified crucial transcription factors that regulate glutamine

metabolism (GM) in LUAD cells, such as NRF2. These

transcription factors can activate the expression of genes involved

in glutamine uptake and metabolism, thereby promoting the

development and progression of LUAD. Gaining a deeper

understanding of the mechanisms underlying GM in LUAD cells

could provide valuable insights into the development of new

therapeutic strategies (12).

Artificial intelligence (AI) comprises of a range of technologies

that aim to replicate human intelligence using computing systems.

Machine learning (ML), a subset of AI, utilizes mathematical

algorithms to identify patterns in data and is utilized to make

predictions. ML has demonstrated significant efficacy across diverse

fields, including wireless communication, speech recognition, and

search engines (13, 14). There is mounting evidence suggesting that

AI and ML have the potential to aid clinicians in improving clinical

diagnosis and treatment decisions or even supplant human

judgment (15, 16). With the increasing application of genomics in

healthcare, it is anticipated that AI and ML will become more

widespread tools in facilitating precision oncology in this

digital age.

The objective of this study was to identify GMRGs in LUAD

and elucidate their role in the tumor immune microenvironment

and prognosis of LUAD. Our findings have the potential to enhance

the precision of glutamine-dependent therapeutic schedules,

offering new perspectives on prognostic biomarkers and

therapeutic targets for LUAD.
2 Materials and methods

2.1 Data sources

We obtained scRNA-seq data for LUAD from the Gene

Expression Omnibus (GEO) database (accession number

GSE150938), which comprised 12 LUAD samples. For the

training cohort, we obtained LUAD RNA expression patterns and

relevant clinical data from The Cancer Genome Atlas (TCGA)

database. To validate our findings, we downloaded expression

profiles from eight GEO datasets, including GSE13213 (n=117),

GSE26939 (n=115), GSE29016(n=39), GSE30219 (n=85),
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GSE31210 (n=226), GSE37745 (n=106), GSE42127 (n=133), and

GSE68465 (n=442). To ensure comparability across datasets, all

expression data was normalized to transcripts per million (TPM),

and batch effects were removed using the “sva” package (17). Prior

to analysis, all data was log2 transformed. We identified GMRGs

using the GeneCards database and selected 141 GMRGs with

correlation scores greater than 15 for further study.
2.2 Flow of scRNA-seq data analysis

The accuracy of the scRNA-seq data was verified using the

“Seurat” R package (18, 19), with the following screening criteria:

genes expressed in at least three cells, 200-7000 genes expressed in

each cell, and less than 10% mitochondrial gene expression. A total

of 46,286 suitable cells were identified. The “FindVariableFeatures”

tool was used to identify the top 3000 highly variable genes. Batch

effects that could interfere with downstream analysis were removed

using the “findintegrationanchors” function of the canonical

correlation analysis (CCA). To properly integrate and expand the

data, the “IntegrateData” and “ScaleData” functions were utilized.

Principal component analysis (PCA) was conducted to determine

anchor points, followed by t-distribution random neighborhood

embedding (t-SNE) algorithm testing on the first 20 principal

components to identify significant clusters (20). Using the

“FindNeighbors” and “FindClusters” functions (resolution = 0.8),

we obtained 20 cell clusters. The cell cycle heterogeneity along the

cell clusters was assessed using cell cycle markers included in the

“Seurat” package. Cell cycle scores were determined using the

“CellCycleScoring” tool, based on the expression of G2/M- and S-

phase markers. Differentially expressed genes (DEGs) for each

cluster were identified using the “FindAllMarkers” tool. A cut-off

threshold with modified P < 0.01 and log2 (foldchange) > 0.25

criteria were used to determine which genes were used as markers

for each cluster. Cell types were identified based on typical marker

genes for each cluster. GM activity scores were assigned to each cell

using the “AUCell” R package to analyze gene set activity status.

The cells were segregated into high- and low-GM-AUC groups

based on the median AUC score, and the “ggplot2” R package was

used for visualization.
2.3 Acquiring key genes for regulating GM
activity in bulk RNA-Seq

To calculate the absolute enrichment percentage of a particular

gene set in each sample, we used ssGSEA (21). In this study, we used

ssGSEA to determine the TCGA-LUAD GM enrichment values for

each individual. We utilized the “WGCNA” R package as a

biological methodology to construct the gene co-expression

network (22). The specific procedures were as follows: the tumor

samples were pooled, a cut-off line of 120 was established, outliers

were removed, and missing value genes were deleted using the

“goodSamplesGenes” function. The appropriate soft threshold for

adjacency calculation was then visually determined. The expression

matrix was transformed into an adjacency matrix and subsequently
Frontiers in Endocrinology 03
into a topological overlap matrix (TOM) to determine the genetic

connectivity of the network. Average linkage hierarchical clustering

was performed based on the variances in TOM. The hierarchical

clustering tree was dynamically pruned to identify related modules

and to combine modules with strong correlation values (R > 0.25).

The module eigengene (ME) was the main component of gene

modules, which could substitute for all other genes in a specific

module. The correlation between eigengene values and clinical traits

was assessed using Pearson correlation. Finally, module genes with

the most significant correlation to GM score were selected for

further analysis.
2.4 Signature produced using integrative
machine learning methods

To develop a consensus signature with excellent accuracy and

stability performance, we incorporated 10 machine learning

algorithms and 117 algorithm combinations. These integrative

methods included Lasso, elastic network (Enet), Ridge, stepwise

Cox, CoxBoost, partial least squares regression for Cox (plsRcox),

RSF, SuperPC, generalized boosted regression modeling (GBM), and

survival support vector machine (survival-SVM). The process for

creating signatures was as follows: the 173 key genes regulating GM

activity were used to fit prediction models based on the leave-one-out

cross-validation (LOOCV) framework in the TCGA-LUAD cohort

using 117 algorithm combinations (23). All models were evaluated in

eight validation datasets (GSE13213, GSE26939, GSE29016,

GSE30219, GSE31210, GSE37745, GSE42127, GSE68465).
2.5 Model evaluations and
nomogram establishment

A heatmap was generated by integrating the model gene

expression and clinical features using the R package “pheatmap”.

The proportion of clinical stages (Stage I, Stage II, and Stage III-IV)

in different risk groups was displayed using a stacked bar chart

drawn with the “ggplot2” R package. To better estimate the 1-, 3-,

and 5-year OS probability, clinical information (age and clinical

stage) and risk scores were integrated to construct a nomogram

using the “rms” R package (24). The nomogram’s prediction

accuracy was assessed by using the receiver operating

characteristic (ROC) curve (25), calibration curve, and

concordance index curves.
2.6 Assessment of immune infiltration

To further investigate the differences in TME components

between different risk groups, we performed gene set enrichment

analysis (GSEA) on the hallmark gene sets using the

“clusterProfiler” R package (26). Additionally, we compared the

mutation landscape of high- and low-risk groups using the

“maftools” R package (27) and identified the top 20 mutated

genes in each group. Finally, we explored the correlation between
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risk scores and the response to immunotherapy by analyzing the

expression of immune checkpoint genes in different risk groups

using the “limma” R package (28).
2.7 Mutation landscape

We obtained gene mutation profiles of LUAD patients from the

TCGA database and utilized the “ComplexHeatmap” R package to

visualize the mutation landscape and immune infiltration scores.

Based on the median risk score and the median tumor mutational

burden, TCGA-LUAD patients were stratified into four groups,

namely H-TMB+high-risk, H-TMB+low-risk, L-TMB+high-risk,

and L-TMB+low-risk. We then compared the survival differences

among these groups.
2.8 Immunotherapy comparisons

Immune checkpoints are a group of molecules expressed on

immune cells that regulate the level of immune activation and are

critical in limiting excessive immune activation. We compared the

expression levels of well-known immune checkpoint genes (ICGs)

between the high- and low-risk groups. We also investigated the

correlation between ICG expression and both model genes and risk

scores. Additionally, we retrieved the Immunophenoscores (IPS) for

LUAD from The Cancer Immunome Atlas (TCIA) database (29).
2.9 Enrichment analysis

To calculate the enrichment scores of infiltrating immune cells

and immunological function, we utilized the ssGSEA method (21,

30). Additionally, to identify enriched GO terms, we analyzed DEGs

between the low-risk and high-risk groups using the

“clusterProfiler” and “org.Hs.eg.db” R packages (31). GSEA was

also employed to determine the signaling pathways and biological

activities that were predominantly enriched in both the high- and

low-risk groups (32).
2.10 Protein interaction network and
Core Gene

We utilized the String database to investigate the protein-

protein interaction (PPI) network among model genes (33).

Furthermore, based on the expression levels of core genes,

patients were classified into high- and low-expression groups to

compare the differences in survival.
2.11 Tissue collection and cell lines culture

Ten paired tissue samples, including tumor tissue (T) and

adjacent non-tumor tissue (N), were collected from patients with

LUAD who underwent tumor resection after obtaining approval
Frontiers in Endocrinology 04
from the Medical Ethics Committee (2019-SR-156). The samples

were preserved at -80°C. Human LUAD cell lines A549 and H1299

and normal human lung epithelial cells (BEAS-2B) were obtained

from the Cell Resource Center of Shanghai Life Sciences Institute

and cultured in F12K or RPMI-1640 (Gibco BRL, USA)

supplemented with 10% fetal bovine serum (FBS) and 1%

penicillin-streptomycin (Gibco, Invitrogen, Waltham, MA, USA)

under 5% CO2, 95% humidity, and 37°C.
2.12 Cell transfection

To generate LGALS3 knockdown, small interfering RNAs

(siRNAs) were used (34). The siRNA sequences for LGALS3 are

listed in Supplementary Table S1. In brief, cells were seeded at 50%

confluence in a 6-well plate and transfected with negative

control (NC) or LGALS3 siRNA using Lipofectamine 3000

(Invitrogen, USA).
2.13 Extraction of RNA and real-time PCR

RNA was extracted from the tissues using TRIzol (15596018,

Thermo) according to the manufacturer ’s instructions.

Subsequently, PrimeScriptTMRT kit (R232-01, Vazyme) was used

to generate cDNA. Real-time polymerase chain reaction (RT-PCR)

was performed using SYBR Green Master Mix (Q111-02, Vazyme),

and mRNA expression levels were normalized to the level of

GAPDH mRNA. The expression levels were calculated using the

2−DDCt method. The primers used in this study were provided by

Tsingke Biotech (Beijing, China) and are listed in Supplementary

Table S1.
2.14 Cell counting kit-8 experiment

A cell suspension with a density of 3×103 cells per well was

seeded in 96-well plates. Subsequently, the plate was incubated in

the dark at 37°C for 2 hours with 10 mL of CCK-8 labeling agent

(A311-01, Vazyme) added to each well. The absorbance of the cells

at 450 nm was measured using an enzyme-labeled meter (A33978,

Thermo) at 0, 24, 48, 72, and 96 hours to determine cell viability.
2.15 Colony formation

1×103 cells were transfected into each well of a 6-well plate and

incubated for 14 days. The cells were then washed twice with PBS

and fixed with 4% paraformaldehyde for 15 minutes prior to Crystal

violet staining (Solarbio, China).
2.16 EdU

For the experiment, we seeded 2×104 treated cells in each well of

a 96-well plate after the cells had adhered to the wall. We then
frontiersin.org
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performed the 5-Ethynyl-2’-deoxyuridine (EdU) assay using the kit

purchased from Ribobio (China). Finally, the number of

proliferating cells was counted using an inverted microscope.
2.17 Wound-healing assay

Transfected cells were seeded in 6-well plates and cultured until

they reached 95% confluency. A sterile 20-L plastic pipette tip was

used to make a single straight scratch in each well, and unattached

cells and debris were gently washed away with PBS. The width of the

scratch wounds was measured using Image J software by taking

photos at 0 and 48 hours.
2.18 Transwell assay

Transwell assays were used to investigate the migration and

invasion ability of treated A549 and H1299 cells. Specifically, the

top chamber of a 24-well plate was filled with 2×105 cells and

incubated for 48 hours. To evaluate the invasion and migration

capabilities, the top layer was either coated with matrigel solution

(BD Biosciences, USA) or left untreated. After removing the cells on

the top surface, the remaining cells on the bottom layer were fixed

with 4% paraformaldehyde and stained with 0.1% crystal violet

(Solarbio, China).
2.19 Animal models

Animal experiments were carried out in accordance with the

guidelines of the Animal Experiment Ethics Committee of Nanjing

Medical University. To establish a xenograft model, LGALS3-stably

transfected H1299 cells and control cells were implanted into the

left and right groin of 5-week-old BALB/c nude mice, respectively.

Tumor size was measured every 5 days, and the xenograft tumors

were harvested and weighed after 25 days.
2.20 Statistical analysis

Data processing, statistical analysis, and visualization were

performed using R 4.2.0 software. The optimal cut-off value was

determined using the “survminer” R package, and Kaplan-Meier

analysis was conducted using the survival program (31, 35). The

accuracy of the model was assessed using a ROC curve generated by

the “timeROC” R package (36). For normally distributed variables,

significant quantitative differences were identified using a two-tailed

t-test or a one-way ANOVA, while for non-normally distributed

data, a Wilcoxon test or a Kruskal Wallis test was used. Correlations
Frontiers in Endocrinology 05
between two continuous variables were assessed using Pearson’s

correlation coefficients. A significance level of P < 0.05 was used.
3 Results

3.1 Analysis Process of scRNA-seq

The research process was illustrated in Figure 1. After filtering

and quality control, 46,286 high-quality cells were retained for

further analysis. Supplementary Figure S1A showed the expression

patterns of each sample. The sequencing depth and total

intracellular sequences had a significant positive correlation

(R=0.94, Supplementary Figure S1B). The PCA plot revealed no

apparent cell cycle changes (Supplementary Figure S1C). The study

included 12 samples, and the cell distribution within each sample

was relatively consistent, indicating no notable batch effect across

the samples, which could be used for future studies (Supplementary

Figure S1D). Next, dimensionality reduction techniques, including

t-SNE, were used to classify all cells into 20 clusters (Figure 2A).

Bubble plots displayed the typical marker genes (21) of different cell

types and their association with various clusters (Figure 2B). We

presented a t-SNE plot to show the distribution of each cell

population (Figure 2C). We evaluated the GM activity of each

cell, and cells that expressed more glutamine metabolism-related

genes (GMRGs), mainly orange-colored myeloid cells, exhibited

higher AUC values (Figure 2D). We assigned an AUC score for the

GMRGs to all cells and classified them into high- and low-GM-

AUC groups based on the median AUC score (Figure 2E).

Subsequently, we performed differential analysis to identify DEGs

associated with glutamine metabolism in the high- and low-GM-

AUC groups. Moreover, we conducted correlation analysis to

investigate the most closely associated genes with GM activity

(Figure 2F), and the top 150 genes with the highest correlation

coefficients were included in further research. The DEGs and the

genes obtained from the correlation analysis were integrated into

single-cell analysis to identify the genes that had the most

significant impact on GM activity (a total of 449 genes).
3.2 Identification of the most relevant
genes for GM activity

To enhance data consistency, we removed the batch effect from

both the GEO-obtained data and the TCGA data. Figure 3A depicts

the distribution ratio of the nine data sets, while Figures 3B, C

shows the PCA plots before and after removing the batch effect,

respectively. We obtained the GM score of each TCGA-LUAD

sample using ssGSEA and searched for gene sets covariant with the

GM score using WGCNA. Supplementary Figure S2A indicates that

the data tends to be more consistent with the power-law

distribution when the soft domain value is set to 7. Furthermore,
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when the minimum number of modules was set to 100, deepSplit to

3, and the modules with similarity less than 0.25 were merged

(Supplementary Figure S2B), nine non-gray modules were

generated (Figure 3D). We examined the relationship between the

expression of each module and clinical features. Finally, the red and

blue modules were identified as the most relevant to GM. We

intersected the 449 genes most associated with GM activity

identified in the scRNA-seq analysis with the two module genes

most associated with GM activity identified in WGCNA, resulting

in a total of 173 overlapping genes for further analysis (Figure 3E).
Frontiers in Endocrinology 06
3.3 Building a consensus signature

We utilized a machine learning-based integrative approach to

establish a consensus GM-associated signature (GMAS) using the 173

overlapping genes. We employed the LOOCV framework to evaluate

the performance of the GMAS by fitting 117 different prediction

models to the TCGA-LUAD dataset and assessing the C-index of

each model across all validation datasets (Figure 3F). Notably, the

best model with the highest average C-index (0.639) was a

combination of RSF and superPC, and this combined model
FIGURE 1

The workflow of the present study.
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demonstrated the best C-index in all validation datasets. Using the

RSF algorithm, we identified 22 genes with high importance, and

based on these genes, the SuperPC algorithm calculated a risk score

for each sample.
3.4 Survival analysis and model evaluation

We categorized patients into high- and low-risk groups based on

their median risk values and observed significant differences in overall
Frontiers in Endocrinology 07
survival (OS) for TCGA-LUAD patients as well as in eight GEO

datasets, as depicted in Figure 4A. To assess the discriminative ability of

the GMAS, ROC analysis was performed, yielding AUCs of 0.846,

0.885, 0.866, 0.869, and 0.880 for TCGA-LUAD at 1-, 3-, 5-, 7-, and 10-

year time points, respectively. The AUCs for GSE13213 (lacking LUAD

patients with survival > 10 years) were 0.894, 0.705, 0.683, and 0.688,

while for GSE26939, the AUCs were 0.771, 0.673, 0.702, 0.721, and

0.739. In the case of GSE29016, the AUCs were 0.657, 0.811, 0.721,

0.667, and 0.666, and for GSE30219, the AUCs were 0.669, 0.697, 0.707,

0.699, and 0.723. For GSE31210 (lacking LUAD patients with survival
B

C

D

E

F

A

FIGURE 2

Single-cell data annotation. (A) The t-SNE plot revealed that all cells were classified into 20 distinct clusters. (B) A bubble plot was created to display
the typical marker genes for each cell cluster. (C) The t-SNE map was used to identify 8 different cell types in the TME, as represented by different
colors. (D, E) The AUCell score and groups of GM activity for each cell were visualized. (F) Correlation analysis was performed between the SM-
AUCell score and genes.
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< 1 year), the AUCs were 0.604, 0.706, 0.675, and 0.706, and for

GSE37745, the AUCs were 0.588, 0.635, 0.604, 0.589, and 0.613.

Finally, for GSE42127, the AUCs were 0.613, 0.616, 0.655, 0.562, and

0.638, while for GSE37745, the AUCs were 0.680, 0.615, 0.585, 0.585,

and 0.610, respectively, as presented in Figure 4B.
3.5 Construction and validation of
prognostic nomogram

A heatmap was generated to display the relationship between

the model genes and clinical features. Significant differences (P <

0.001) were observed between the high- and low-risk groups in

terms of clinical parameters such as T stage, N stage, clinical stage,
Frontiers in Endocrinology 08
and survival status (Figure 5A). Furthermore, we compared the

distribution of different stages among the groups and presented it as

a percentage bar plot. The high-risk group was found to have a

higher proportion of clinical stage II and III-IV patients, whereas

stage I patients dominated the low-risk group (Figure 5B). We

developed a predictive nomogram that incorporated the risk score

and clinicopathological factors (age and clinical stage) based on the

TCGA-LUAD dataset to better predict prognosis (Figure 5C).

Clinical outcomes, such as survival status at 1, 3, and 5 years,

were used as parameters. The calibration plot indicated that the

GMAS had excellent predictive performance for 1-, 3-, and 5-year

survival rates (Figure 5D). The C-index curves indicated that the

nomogram predicted prognosis better than the risk score and any

other clinical parameter (Figure 5E). We also performed ROC
B C

D

E

F

A

FIGURE 3

Construction of the GMAS. (A) The sources of samples and the proportion of sample size in 10 datasets were analyzed. (B, C) PCA plots before and
after removal of batch effects for 10 datasets. (D) WGCNA analysis searched for the modules most associated with GM activity. (E) Venn plots
identified the genes most associated with GM activity. (F) A total of 117 kinds of prediction models via LOOCV framework and further calculated the
C-index of each model across all validation datasets.
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analysis to evaluate the predictive performance of the nomogram

score, risk score, and other clinical features. The AUC values of the

nomogram score at 1, 3, and 5 years were 0.855, 0.890, and 0.885,

respectively, which were higher than those of the risk scores and

other clinical parameters (Figure 5F).
3.6 Differences in the immune
microenvironment and
immunotherapy response

Seven different algorithms were employed to demonstrate that

high-risk tumors had more infiltration of immune cells such as T
Frontiers in Endocrinology 09
cells, B cells, NK cells, and activated mast cells, as depicted in

Figure 6A. We utilized the ESTIMATE method to assess the level of

immune infiltration in different risk groups. Spearman correlation

analysis was conducted to explore the association between the risk

score and immune infiltration score. The risk scores were found to

be significantly and negatively correlated with stromal (R = -0.26,

FDR < 0.001), immune (R = -0.29, FDR < 0.001), and ESTIMATE

scores (R = -0.30, FDR < 0.001), while positively correlated with

tumor purity (R = 0.30, FDR < 0.001, Figure 6B). Likewise,

Figures 6C–F confirmed the earlier findings, with the low-risk

group displaying higher stromal, immune, and ESTIMATE scores

(combined stromal and immune score). According to the results,

the risk score was associated with the level of immune cell
B

A

FIGURE 4

Assessment of risk models. (A) Kaplan-Meier survival analysis of signatures in the TCGA and eight GEO datasets. (B) The ROC curve was used to
evaluate the performance of the model in the TCGA and eight GEO datasets.
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infiltration and the amount of each component in the tumor

microenvironment. Different levels of immune infiltration can

lead to varying disease progression and effectiveness of

immunotherapy. Based on the above findings, we investigated

whether the prognostic model could predict the response of

LUAD patients to immune checkpoint inhibitors (ICIs). We first

analyzed the relationship between the risk score and well-

established immunotherapy biomarkers in the TCGA-LUAD

cohort. The analysis revealed that almost all ICGs, such as

CD40LG, TIGIT, and CTLA4, were highly expressed in the high-
Frontiers in Endocrinology 10
risk group (Figure 7A). Subsequently, the correlations between

modeling genes, risk scores, and ICGs were examined and shown

in the bubble plot (Figure 7B), with blue and orange representing

negative and positive correlations, respectively, with larger bubbles

and darker colors indicating a higher degree of association. The IPS

has been utilized to identify individuals who may be highly

responsive to immunotherapy. Based on this score, tumor

samples were evaluated to determine if they would exhibit a

favorable immune response to either PD-1/PD-L1 or CTLA4

inhibitors, or both (as illustrated in Figures 7C–F). Notably,
B

C
D

E

F

A

FIGURE 5

Developing an accurate nomogram. (A) A heatmap was generated to integrate clinical data with the expression of model genes. (B) The proportion
of clinical stage was visualized in different risk groups. (C) The nomogram was constructed by combining clinical features with risk score.
(D) Calibration plots were used to assess the consistency between actual OS rates and predicted survival rates. The 45° line represents the best
possible prediction. (E) C-index curves were utilized to evaluate the predictive performance of different clinical characteristics, nomogram scores,
and risk scores. (F) ROC curves were generated for 1, 3, and 5 years to illustrate AUC values for various clinical factors, risk scores, and nomogram
scores. *P < 0.05, ***P < 0.001.
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patients classified in the low-risk group demonstrated significantly

higher IPS scores, indicating that they may derive the greatest

benefit from this type of immunotherapy. These findings hold

important clinical implications and suggest that the IPS score

could serve as a useful tool in the identification and stratification

of patients who are most likely to benefit from immunotherapy.
3.7 Mutational landscape

Genetic mutations are crucial in personalized cancer treatment.

Therefore, we analyzed somatic mutation profiles of different risk
Frontiers in Endocrinology 11
groups. The top 20 frequently mutated genes, such as TP53, TTN,

and CSMD3, had a higher mutation frequency in the high-risk

group, as shown in Figure 8A. In addition, there was a significant

difference in tumor mutation burden (TMB) between high- and

low-risk groups, with higher TMB in the high-risk group

(Figure 8B). Spearman correlation analysis revealed a positive

correlation between risk score and TMB (R = 0.12, P < 0.001,

Figure 8C). We further divided patients into four groups based on

the median TMB and median risk values. LUAD patients in the H-

TMB+low-risk group had the best prognosis, while those in the L-

TMB+high-risk group had the worst prognosis, as shown

in Figure 8D.
B

C

D

E

F

A

FIGURE 6

Analysis of immune infiltration. (A) Seven algorithms assess differences in immune infiltration status between different risk groups. (B) The
correlations in Stromal Score, Immune Score, ESTIMATE Score, and tumor purity calculated using the ESTIMATE algorithm between the two risk
subgroups. (C-F) The violin plot demonstrated the difference in Stromal Score, Immune Score, ESTIMATE Score, and tumor purity calculated using
the ESTIMATE algorithm between the two risk subgroups.
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3.8 Functional enrichment analysis

To investigate immune status variations across different risk

groups, we used the ssGSEA algorithm. Low-risk LUAD patients

showed increased infiltration of various immune cells, including

aDCs, B cells, CD8+ T cells, DCs, iDCs, Mast cells, neutrophils,

pDCs, Th1/Th2 cells, TILs, and Tregs. Moreover, the low-risk

group exhibited significantly higher levels of Checkpoints,

Cytolytic activity, HLA, Inflammation promoting, T cell co-

inhibition, T cell co-stimulation, and Type II IFN response

compared to the high-risk group (Figures 9A, B). Differential

expression analysis revealed genes that were differentially

expressed in both high- and low-risk groups (P < 0.05 and log2
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(FC) > 1). Subsequently, the DEGs were subjected to GO

enrichment analysis (Figure 9C), which showed that the top

three enriched pathways in Biological Processes (BP) were

signaling receptor activator activity, receptor-ligand activity, and

endopeptidase activity; Cellular Component (CC) included

collagen-containing extracellular matrix, external side of the

plasma membrane, and apical part of the cell; and Molecular

Function (MF) involved humoral immune response, defense

response to the bacterium, and epidermis development.

Additionally, GSEA enrichment analysis revealed that DNA

Repair (NES = 1.39, p = 0.04), Glycolysis (NES = 1.75, p =

0.000), and Hypoxia (NES = 1.71, p = 0.000) were primarily

enriched in the high-risk group (Figure 9D).
B

C D E F

A

FIGURE 7

Immune checkpoint and TCIA analysis. (A) A box plot showed that differences in immune checkpoint gene expression between high- and low-risk
groups. (B) Correlation between model genes and immune checkpoint. (C-F) The low-risk group has significantly greater IPS, IPS-CTLA4-neg-PD-1-
neg, IPS-CTLA4-pos-PD-1-neg, IPS-CTLA4-neg-PD-1-pos, and IPS-CTLA4-pos-PD-1-pos. *P < 0.05, **P < 0.01, ***P < 0.001.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1196372
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2023.1196372
3.9 Experimental verification

Using the String database (37), we constructed a protein

interaction network plot (Supplementary Figure S3A), which

showed that LGALS3 was highly connected to other model

genes, indicating its importance as a core gene in the network.

LGALS3 was found to be highly expressed in tumors (Figures 10A,

B), and its overexpression was associated with worse prognosis in

LUAD patients in the TCGA database. The prognostic

significance of LGALS3 was also confirmed using the GSE31210

dataset (Supplementary Figure S4A). Further GSVA enrichment

analysis revealed that patients with high LGALS3 expression were

significantly enriched in P53 pathway, interferon alpha response

and apoptosis pathway (Supplementary Figure S5). To further

validate these findings, we conducted functional experiments both

in vitro and in vivo. Firstly, we verified the expression levels of

LGALS3 in LUAD and adjacent non-tumor samples and found
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that LGALS3 was highly expressed in LUAD samples

(Figure 10C). Next, we assessed the efficiency of siRNA

knockdown of LGALS3 in A549 and H1299 cell lines using

qRT-PCR (Figure 10D). CCK-8 and EdU assays showed that

knockdown of LGALS3 led to decreased proliferation of A549

and H1299 cells compared to the control group (Figures 10E–G),

suggesting that LGALS3 plays a role in promoting the

prol i ferat ion of LUAD cel l l ines . Clonogenic assays

demonstrated that knockdown of LGALS3 reduced the ability of

LUAD cells to form colonies (Figure 11A), while wound healing

and transwell assays showed that LGALS3 knockdown

significantly inhibited the migration and invasion of LUAD cells

(Figures 11B, C). Finally, in vivo experiments showed that

LGALS3 knockdown suppressed tumor growth, with smaller

tumor volume and weight compared to the control group

(Figure 11D), suggesting that LGALS3 functions as a pro-

oncogenic regulator in LUAD tumorigenesis and progression.
B C D

A

FIGURE 8

Landscape of LUAD sample mutation profiles. (A) Mutation landscape of the top 20 genes with mutation frequency in differential risk subgroups.
(B) Comparison of tumor mutation burden (TMB) between different risk groups. (C) Correlation analysis between risk score and TMB. (D) Survival
differences for four different subgroups (H-TMB+high-risk, H-TMB+low-risk, L-TMB+high-risk, and L-TMB+low-risk).
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4 Discussion

Despite advancements in diagnostic methods and treatment

protocols, lung cancer (LC) still accounts for the highest cancer-

related morbidity and mortality globally (38). In the case of early-

stage LUAD patients, surgery is commonly recommended.

However, for those with advanced LUAD, a combination of

chemotherapy, radiotherapy, immunotherapy, targeted therapy,

or a combination of these treatments may be more effective (39).

Studies have shown that immunotherapy is prone to immune

tolerance and is not always successful, hence, there is an urgent

need to explore new immune targets.

Glutamine, a non-essential amino acid, plays a crucial role in

tumorigenesis and the tumor microenvironment (TME). Various

therapeutic targets and specific blockers targeting metabolic

dysregulation have been reported (40). However, inhibiting a
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single metabolic target is often inadequate to restrain cancer

growth in preclinical trials. Therefore, novel targets and

synergistic therapies are promising. In this study, we investigated

a novel diagnostic signature of GMRGs and immunotherapy

targets, which provides prospects for reversing immune resistance

and improving the prognosis of patients.

In this study, single-cell RNA sequencing was utilized to

evaluate 12 LUAD samples, which allowed identification of eight

distinct cell types. By using the AUCell method and GM gene set

retrieved from GeneCards, we discovered that myeloid cells

exhibited the highest levels of GM activity, which implies that

GM may have a crucial role in regulating carcinogenesis and

development through the modulation of myeloid cells. Key genes

that regulate GM activity were identified, and an integrative

workflow was developed to create a consensus GMAS using the

expression profiles of 173 such genes. To generate the GMAS, 117
B

C D

A

FIGURE 9

Enrichment analysis. (A, B) The ssGSEA algorithm was employed to quantify the immune cell infiltration and immune function between the high-risk
and low-risk groups. *P < 0.05, **P < 0.01, ***P < 0.001; ns, not significant, p value > 0.05. (C) A bar plot showed GO enrichment analysis. (D) GSEA
showed pathway differences between high- and low-risk groups.
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different models were fit to the training dataset using the LOOCV

framework. The RSF and SuperPC algorithms were found to

produce the best results. Our prognostic analysis indicated that

the high-risk group had a worse prognosis. Additionally, ROC

analysis showed that the GMAS had high accuracy and consistent

performance across eight public GEO datasets. To enhance the

predictive power of our analysis, we incorporated clinical

information and created a nomogram. Our findings demonstrated

that the nomogram scores had a better predictive performance for

survival compared to risk scores and other clinical characteristics.
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The tumor microenvironment (TME) comprises diverse

components, including the extracellular matrix, cancer-associated

fibroblasts, new blood vessels, endothelial cells, and tumor-

infiltrating immune cells. These components can have either

positive or negative impacts on tumor prognosis, depending on

their roles in promoting tumor destruction, increasing tumor

invasiveness, or enhancing anti-therapeutic response (41). In this

study, we evaluated immune cell infiltration in high- and low-risk

LUAD patients to understand how the TME influences tumor

prognosis. Seven different algorithms were used to measure
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FIGURE 10

Cell experiment. (A) Survival analysis showed the effect of LGALS3 expression on prognosis. (B) The difference in LGALS3 expression between normal
samples and tumor samples was found in the TCGA database. (C) Relative expression of LGALS3 in tumor and paracancerous tissues in LUAD and
LGALS3 was highly expressed in tumor tissues compared with adjacent tissues (D) qRT-PCR to evaluate the level of LGALS3 expression 5 days after
transfection and siRNA sequences could result in a significant decrease in LGALS3 expression (P < 0.001). (E, F) CCK8 assay showed that, after
LGALS3 knockdown, the cells showed a significant reduction in viability. (G) EdU staining assay indicated that downregulation of LGALS3 expression
repressed cell proliferation in LUAD cell lines. *P < 0.05, ***P < 0.001.
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immune cell infiltration in different risk groups, and the results

showed that tumors in the low-risk group had higher levels of

immune cell infiltration. Using the ESTIMATE method, we also

found that low-risk samples had higher immune cell infiltration,

and the risk score was negatively correlated with stromal, immune,

and ESTIMATE scores (FDR < 0.001). Furthermore, we observed

that most of the known immune checkpoint genes were highly

expressed in the low-risk group, and correlation analysis indicated

that risk scores were significantly negatively correlated with most of

the immune checkpoint genes. To assess the variances in

immunotherapy efficacy in different risk groups, we explored the
Frontiers in Endocrinology 16
effects of PD-1 and CTLA-4 treatment using TCIA. The findings

suggested that LUAD patients in the low-risk group were likely to

benefit more from immunotherapy since their IPS score was

significantly higher than that of the high-risk group.

Recent studies have highlighted the connection between genetic

alterations, neoantigen production, and immunotherapeutic

response (42). Surprisingly, our findings showed that patients in

the low-risk group had lower TMB levels, while those in the high-

risk group had a greater frequency of mutations in high-risk genes.

Based on the median TMB values and median risk values, we

divided the patients into four categories: H-TMB+high-risk, H-
B C

D

A

FIGURE 11

Xenograft tumor in Nude Mice. (A) Colony formation assay displayed that cell with reduced LGALS3 expression exhibited a significant reduction in
the numbers of colonies, compared with the NC group. (B) Scratch-wound healing assay depicted that a significantly slower wound healing rate was
observed in cells with a decreased expression of LGALS3. (C) Transwell assay showed that downregulation of LGALS3 expression inhibited the
migration and invasion capacity of LUAD cells. (D) Nude mice experiments. LGALS3 knockdown inhibited tumor growth, and tumor volume and
weight were smaller than those in the control group. To demonstrate the accuracy and reproducibility of the results, all experiments were repeated
in two LUAD (A549, H1299) cell lines and all data were presented as the means ± SD of three independent experiments. *P < 0.05, **P < 0.01, ***P <
0.001.
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TMB+low-risk, L-TMB+high-risk, and L-TMB+low-risk. The H-

TMB+low-risk group exhibited the most favorable prognosis, which

may provide new recommendations for the clinical assessment of

patient outcomes.

Various pathway enrichment analyses were conducted to

unravel the underlying mechanisms responsible for survival

disparities between the two risk groups. GSEA analysis revealed

that pathways involved in DNA repair, glycolysis, and hypoxia were

predominantly enriched in the high-risk group. The DNA repair

pathway is essential in maintaining genomic stability, and its defects

may contribute to tumorigenesis (43). Glycolysis is a unique

metabolic pathway that takes place mainly in the cytoplasm and

does not require oxygen molecules. It produces ATP, which has

become the primary source of energy for the growth and

metabolism of cancer cells. However, oxygen is a crucial energy

metabolite that drives cellular biological functions. The rapid and

uncontrolled proliferation of tumors results in a limited availability

of oxygen, leading to hypoxia, a common microenvironmental

feature in almost all solid tumors. Hypoxia has been considered a

promising therapeutic target (44).

By analyzing the String database through protein-protein

interaction analysis, LGALS3 was found to be a core gene in the

gene network. In the TCGA database, LGALS3 was highly

expressed in tumor groups, and high expression of LGALS3 was

associated with poor prognosis in LUAD patients. To further

investigate the underlying mechanism, we conducted several

experiments and found that knockdown of LGALS3 significantly

reduced the invasion, migration, and proliferation of LUAD cell

lines. However, it should be noted that further research is necessary

to validate these findings and explore the potential therapeutic

implications of targeting LGALS3 in LUAD.

It is important to note some limitations of this study. Firstly, the

prognostic signature was developed based on existing datasets and

requires validation in larger prospective clinical trials. Furthermore,

although our results indicate that the signature could potentially

serve as a prognostic biomarker and predictor of immunotherapy

response, additional research is needed to verify these results.

Nevertheless, our integrated analysis utilizing machine learning

provides valuable insight into the prognostic significance and

potential therapeutic implications of GMRGs in LUAD.
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