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Background: Chronic kidney disease (CKD) is the third-leading cause of

premature mortality worldwide. It is characterized by rapid deterioration due

to renal interstitial fibrosis (RIF) via excessive inflammatory infiltration. The aim of

this study was to discover key immune-related genes (IRGs) to provide valuable

insights and therapeutic targets for RIF in CKD.

Materials and methods: We screened differentially expressed genes (DEGs)

between RIF samples from CKD patients and healthy controls from a public

database. Least absolute shrinkage and selection operator regression analysis

and receiver operating characteristic curve analysis were applied to identify

significant key biomarkers. The single-sample Gene Set Enrichment Analysis

(ssGSEA) algorithm was used to analyze the infiltration of immune cells between

the RIF and control samples. The correlation between biomarkers and immune

cell composition was assessed.

Results: A total of 928 DEGs between CKD and control samples from six

microarray datasets were found, 17 overlapping immune-correlated DEGs

were identified by integration with the ImmPort database, and six IRGs were

finally identified in the model: apolipoprotein H (APOH), epidermal growth factor

(EGF), lactotransferrin (LTF), lysozyme (LYZ), phospholipid transfer protein (PLTP),

and secretory leukocyte peptidase inhibitor (SLPI). Two additional datasets and in

vivo experiments indicated that the expression levels of APOH and EGF in the

fibrosis group were significantly lower than those in the control group, while the

expression levels of LTF, LYZ, PLTP, and SLPI were higher (all P < 0.05). These

IRGs also showed a significant correlation with renal function impairment.

Moreover, four upregulated IRGs were positively associated with various T cell

populations, which were enriched in RIF tissues, whereas two downregulated

IRGs had opposite results. Several signaling pathways, such as the “T cell receptor

signaling pathway” and “positive regulation of NF-kB signaling pathway”, were

discovered to be associated not only with immune cell infiltration, but also with

the expression levels of six IRGs.
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Conclusion: In summary, six IRGs were identified as key biomarkers for RIF, and

exhibited a strong correlation with various T cells and with the NF-kB signaling

pathway. All these IRGs and their signaling pathways may evolve as valuable

therapeutic targets for RIF in CKD.
KEYWORDS

chronic kidney disease, renal interstitial fibrosis, immune cells, biomarker, NF-kB
signaling pathway
Introduction

Chronic kidney disease (CKD) is increasingly recognized as a

serious public health epidemic worldwide, with a high incidence

rate, high medical costs, and poor outcomes (1, 2). According to the

GBD 2017 estimates, approximately 697.5 million cases were

diagnosed in 2017, which was estimated to be 9.1% of the global

population (3). Importantly, CKD directly causes 1.2 million deaths

and an additional 1.4 million deaths from cardiovascular disease

resulting from impaired kidney function, making CKD the 12th

leading cause of death worldwide (3). CKD is usually caused by

many conditions that put a strain on the kidneys, including

glomerulonephritis, diabetes, high blood pressure, hereditary

nephropathy, and renal tubulointerstitial disease (4, 5). However,

renal fibrosis, particularly renal interstitial fibrosis (RIF), is the final

common pathological outcome of almost all advanced kidney

diseases, whatever the original etiology (6). Despite many

promising clinical studies and experimental data, currently

available treatment strategies can only ameliorate or delay the

progression of CKD rather than reverse the renal fibrosis (5, 6).

Therefore, there is an urgent need to conduct mechanistic research

on renal fibrosis in CKD to understand the underlying pathogenesis

of the process and to optimize treatment strategies, letting us

improve the prognosis of patients with fibrotic kidney disorders.

RIF mainly manifests as sclerosis, tubular atrophy, and

inflammatory infiltration, resulting in a dynamic, multifactorial

process, including fibroblast activation, tubular epithelial-to-

mesenchymal transition (EMT), and T-cell and monocyte/

macrophage infiltration (7). The initial step of renal fibrosis is
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uncontrolled or excessive inflammatory infiltration, which is a key

factor that cross-talks with the progression of subsequent series of

fibrosis (8). Recently, antifibrotic agents that target inflammation

have been recommended as potential alternative therapies for renal

fibrosis. As a general immunosuppressive cytokine, IL-10 delivered

by hydrogels can reduce macrophage infiltration and apoptosis to

treat renal fibrosis and chronic kidney disease (9). Similarly, IkB (an

inhibitor of NF-kB) treatment and b2 adrenergic receptor agonists

both inhibit NF-kB signaling and result in the inactivation of

macrophages, thereby inhibiting further kidney damage (10, 11).

However, these ongoing and completed clinical trials still lack

sufficient evidence for successful targeted fibrosis in CKD (12).

Now one opinion considers that the intracellular signaling

pathways associated with fibrosis interact with other signaling

transductions that affect critical cellular activation and functions.

Given that inflammation is self-sustaining and multifactorial,

identifying the key genes associated with inflammation and

describing the interaction with the enrichment of immune cells

will be significant in elaborating the potential mechanisms of RIF

in CKD.

Several evidences indicating that chronic or unresolved

inflammation plays a pivotal role in the onset and progression of

renal fibrosis (7, 8). Inflammatory cells, such as macrophages and T

lymphocytes, infiltrate the renal interstitium and continually secrete

pro-inflammatory cytokines. These substances activate fibroblasts

and contribute to maladaptive repair processes and progressive

renal fibrosis. It has been observed that T cells polarized towards a

Th2 phenotype can induce fibroblast activation and promote

alternative activation of macrophages, potentially fostering renal

fibrosis (13). Moreover, infiltrating immune cells locally produce

TGF-b, which further amplifies renal fibrosis and inflammation by

activating various signaling molecules (AKT/mTOR, Smad2/3, NF-

kB, KLF6, and Sp1) (12). Recently discovered inflammation-related

biomarkers and distinct patterns of immune infiltration in RIF can

offer additional insights into the risk associated with fibrosis in CKD

(14). However, since renal fibrosis represents a common

pathological manifestation of chronic kidney diseases with diverse

causes, studies based on isolated causal samples or limited analytical

dimensions may introduce biases.

Therefore, we downloaded six microarray datasets from renal

interstitial tissues of CKD patients with different causes to screen

coexpressed differentially expressed genes (co-DEGs) and identified

key immune-related genes (IRGs) for RIF using the least absolute
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shrinkage and selection operator (LASSO) regression analysis

between RIF and healthy control samples, which verified with in

vivo experiments. Next, correlation analysis was conducted between

the expression level of IRGs and the infiltration of immune cells

which obtained by the single-sample gene set enrichment analysis

(ssGSEA) method. Kyoto Encyclopedia of Genes and Genomes

(KEGG) analysis and GSEA were also performed to discover the

biological function and significant signaling pathways correlated

with RIF. Through a multidimensional analysis of the

interrelationship between IRGs and immune cells, as well as

potential pathway correlation analyses, our study aims to uncover

key immune-related biomarkers and provide novel insights into the

potential immune mechanisms associated with the progression

of RIF.
Materials and methods

Patient cohort and data preparation

The discovery cohorts of the study, including GSE30529,

GSE35487, GSE37455, GSE133288, GSE121211, and GSE32591

datasets, were downloaded from the Gene Expression Omnibus

(GEO) website (https://www.ncbi.nlm.nih.gov/geo) for DEG

analysis. All available datasets included renal interstitial samples

from healthy controls and patients with CKD. Those CKD patients

were mostly diagnosed with diabetic nephropathy (DN),

hypertensive nephropathy, IgA nephropathy, membranous

nephropathy (MN), minimal change disease (MCD), focal and

segmental glomerulosclerosis (FSGS), or systemic lupus

erythematosus (SLE).

The GSE12682 dataset was downloaded and analyzed to

identify the key markers associated with RIF. A total of 36 renal

tubulointerstitial samples, including 23 CKD samples with evidence

of tubulointerstitial fibrosis and 13 healthy control samples, were

enrolled in the GSE12682 dataset. In addition, the GSE76882

dataset was analyzed for external validation to examine its key

gene signature. It included 99 healthy controls, 42 interstitial

fibrosis and tubular atrophy (IFTA) samples, 11 IFTA with

inflammation (IFTA-i) samples, and 29 IFTA with acute rejection

(IFTA-AR) samples. Given that we aimed to investigate the

mechanisms underlying fibrosis rather than the posttransplant

immune response, we selected healthy controls and IFTA samples

for further analysis. In addition, the GSE38117 dataset, which

studied renal fibrosis using experimental model of ureteral

unilateral obstruction (UUO) in three mice, was also used to

validate the key markers associated with RIF. Surgery was

performed by complete ligation of the left ureter, which the

control lateral right kidney served as internal control. The basic

in format ion for the inc luded da tase t s i s shown in

Supplementary Table 1.

All the gene expression profiling data were first subjected to

background correction and quartile normalization of the raw data

using the “Limma” package of R, followed by batch effect

elimination using the “sva” package, to obtain normally
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distributed expression values. The DEGs between CKD samples

and healthy control samples were those that had absolute value of

log2 fold change (|logFC|) > 1 and adjusted P value < 0.05. Then, the

robust rank aggregation (RRA) method was used to integrate and

identify overlapping DEGs (P value < 0.05) from the

discovery cohorts.
Identification of immune-related DEGs

To identify the immune-related DEGs (IRGs), we downloaded a

total of 1793 immune-related genes from the Immunology Database

and Analysis Portal (ImmPort) website (https://www.immport.org).

These immune-related genes originated from 17 immune-related

categories, including antigen processing and presentation,

antimicrobials, and the BCR signaling pathway. Then, we

integrated the co-DEGs from the discovery cohorts and immune-

related gene sets and identified the overlapping IRGs for

further analysis.
Exploration of key IRGs

To explore the key genes in IRGs associated with RIF, LASSO

algorithm was applied for all renal tubulointerstitial samples from

the GSE12682 dataset using the “glmnet” package in R. LASSO

regression is a type of linear regression that uses shrinkage to

regularize regression algorithms. Regularization can solve the

overfitting problem by adding more parameters, leaving fewer

parameters in the model, and limiting its complexity. L1

regularization was executed by adding a penalty equal to the

absolute value of the magnitude of each coefficient in the LASSO

regression model. This type of regularization contributes to

constructing sparse models with relatively few coefficients. Those

variables whose coefficients are zero are removed from the model.

Therefore, we calculated the sum of the candidate gene values

multiplied by the corresponding coefficient obtained from LASSO

regression analysis, and named it as risk score.
Validation of the risk score model

To evaluate the value of the risk score model, the GSE12682

dataset (training set) and the GSE76882 dataset (validation set)

were used to validate the accuracy and diagnostic ability of the risk

score model in CKD patients with RIF via the “pROC” package in R.

We visualized the area under the curve (AUC) of the ROC curve by

calculating the sensitivity and specificity values with the “pROC”

package. Then calibration curve was also used to visualize the

performance of the risk score model with the Hosmer-Lemeshow

test using the “ResourceSelection” package in R. The Hosmer–

Lemeshow test is used frequently to calculate the goodness of fit of

risk prediction models, in which a P value > 0.05 indicates that the

data fit by the risk prediction model are at an acceptable level and

that the scoring model works well.
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Gene set enrichment analysis

Through the DAVID tools (http://david.ncifcrf.gov/), Gene

Ontology (GO) and KEGG analyses were used to discover the

biological function and significant signaling pathways correlated

with RIF. The results were visualized via the “clusterProfiler” R

package. We applied strict cutoff values of false discovery rate (FDR)

< 0.05 and adjusted P value < 0.05 to detect statistically significant

GO terms and KEGG pathways. GSEA was used to discover the

functional terms associated with RIF with the thresholds of an

NOM P value < 0.05 and |NES| > 1. Each analysis was performed

with 1000 times of arrangements of the gene set.
Discovery of immune cell subtypes and
correlation with key biomarkers

To quantify the relative infiltration of immune cells for each

sample, the ssGSEA algorithm was performed to calculate the

normalized enrichment scores of 28 types of immune cells in the

RIF samples and control samples using the Gene Set Variation

Analysis (GSVA) R package (15). In detail, expression data of renal

interstitial samples between the RIF and healthy control groups

were used to calculate immune cell abundances according to the

GSVA algorithm and specific cell markers (Supplementary Table 2)

(16). The 28 immune cells were gamma/delta T cells, activated CD4

T cells, activated CD8 T cells, activated dendritic cells (DCs), central

memory CD8 T cells, central memory CD4 T cells, effector memory

CD4 T cells, effector memory CD8 T cells, monocytes,

macrophages, immature DCs, immature B cells, activated B cells,

memory B cells, mast cells, eosinophils, myeloid-derived suppressor

cells (MDSCs), CD56dim natural killer cells, CD56bright natural

killer cells, natural killer cells, natural killer T cells, neutrophils,

plasmacytoid DCs, regulatory T (Treg) cells, T follicular helper cells,

type 1 T helper cells, type 17 T helper cells, and type 2 T helper cells.

Violin plot was used to visualize the differences in the composition

of 28 immune cell subtypes between the RIF samples and healthy

control samples with the two-sided Wilcoxon test. We also

conducted Pearson correlation analysis between key IRGs and

immune cell markers in the human kidney, which were obtained

from the CellMarker database (http://biocc.hrbmu.edu.cn/

CellMarker/), as well as gene sets of specific signaling pathways

from the KEGG database (https://www.genome.jp/kegg/).
Clinical correlation analysis

In addition, we also used the Nephroseq V5 tool (http://

v5.nephroseq.org/) to identify the difference in risk score

calculated by the expression level of key IRGs between CKD and

control samples and explored the correlation between the risk score

and clinical indices of renal function, including glomerular filtration

rate (GFR), proteinuria, blood urea nitrogen (BUN), and serum

creatinine level (SCR), in CKD patients using Pearson correlation
Frontiers in Endocrinology 04
analysis. In the Nephroseq tool, we downloaded the clinical data of

CKD patients in the GSE104954 dataset and GSE30529 dataset.
Renal interstitial fibrosis model
establishment in vivo

To verify the key value of 6 IRGs in vivo, renal stone model was

established by adding 1% ethylene glycol (EG) (324558, Sigma-

Aldrich, USA) in drinking water for 4 weeks, as described in our

previous study (17). The animal experiment was approved by the

Ethics Committee for Animal Research of the Xiangya hospital of

Central South University (202301003).

A total of 10 male Sprague-Dawley (SD) rats (age: 6-8 weeks,

weight: 250-300 g) were purchased from the Laboratory Animal

Center of Central South University (Changsha, China), and were

housed in the controlled condition (12 h light/dark cycle, humidity

(40-60%) and steady temperature of 22 ± 0.5°C) with free access to

water and food. The rats were randomly divided into the control

group and stone model group (n = 5 per group). In the stone model

group, the rats received drinking water containing ethylene glycol

(1%) for 4 weeks, while the rats in the control group had access to

normal drinking water without ethylene glycol for 4 weeks. All rats

were sacrificed by cervical dislocation under anesthesia

[pentobarbital sodium (40 mg/kg)] after 4 weeks intervention.

Kidney t i s sues were co l l ec ted at -80°C or fixed in

paraformaldehyde or formalin solution for histological study.

Hematoxylin and eosin (HE) and Sirius Red staining were used to

visualize the RIF in the rat with renal stone model. Finally, the

stained area was observed and photographed with a bright-field

microscope. Two experienced pathologists examined the extent of

kidney injury. Kidney injury scores were evaluated using a scale

ranging from 0 to 4 (0 indicating normal; 1 representing less than

25%; 2 indicating 25-50%; 3 representing 50-75%; and 4 indicating

greater than or equal to 75%). Sirius Red positive area was

quantified using Image J software (NIH Image, Bethesda, MD).
Quantitative real-time PCR

Total RNA was extracted from renal tissue using a Total RNA

Kit II (R6934-01; Omega Bio-tek, Norcross, GA, USA) following the

manufacturer’s instructions. Then, cDNA was synthesized using an

RT Reagent Kit with gDNA Eraser (No. RR047A; Takara, Tokyo,

Japan). The mRNA levels of 6 IRGs were detected using All-in-

OneTM qPCR Mix (No: QP001; GeneCopoeia, Germantown, MD,

USA). The primer sequences are listed in Supplementary Table 3.

Each sample was repeated three times.
Statistical analysis

The present study performed all statistical analyses using R

software (Version 4.1.1; R Foundation for Statistical Computing,
frontiersin.org
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Vienna, Austria). The Wilcoxon test was run on expression data,

with visualization by two groups of boxplots. Correlations among

the expression levels of different genes were evaluated by Pearson

correlation coefficients and were visualized using the “corrplot”

package. A two-sided P value < 0.05 was accepted as

statistically significant.
Results

Screening of differentially expressed genes

The overall flow chart of the study design is presented in

Figure 1. Given that RIF mostly results from the progression of

CKD, we downloaded and analyzed six microarray expression

datasets from individuals with CKD and healthy controls,

including the GSE30529, GSE32591, GSE35487, GSE37455,

GSE121211, and GSE133288 datasets. Of the DEGs between the

CKD and control samples, 416 DEGs were identified from the

GSE30529 dataset, including 298 upregulated and 118

downregulated genes (Supplementary Figure 1A). A total of 125

DEGs (including 97 upregulated and 28 downregulated genes) were

screened from the GSE32591 dataset (Supplementary Figure 1B), 36

DEGs (including 0 upregulated and 36 downregulated genes) from

the GSE35487 dataset (Supplementary Figure 1C), 27 DEGs

(including 10 upregulated and 17 downregulated genes) from the

GSE37455 dataset (Supplementary Figure 1D), 78 DEGs (including

49 upregulated and 29 downregulated genes) from the GSE121211

dataset (Supplementary Figure 1E), and 246 DEGs (including 48

upregulated and 198 downregulated genes) from the GSE133288

dataset (Supplementary Figure 1F).
Frontiers in Endocrinology 05
Identification of immune-correlated
key markers

After screening the DEGs from the six datasets, we integrated

those DEG sets using the RRA method, and 45 overlapping DEGs

(including 28 upregulated and 17 downregulated genes) were

ident ified . The top 15 over lapping upregulated and

downregulated DEGs in the six datasets are shown in Figure 2A.

Then, we matched these 45 DEGs with immune-related gene sets

from the ImmPort database and found 17 overlapping IRGs

(Figure 2B). To identify the key markers associated with RIF, we

performed LASSO regression analysis with those 17 IRGs for the

GSE12682 dataset, which contained 23 CKD samples with evidence

of tubulointerstitial fibrosis and 13 healthy control samples, and

finally identified six IRGs in the model: apolipoprotein H (APOH),

epidermal growth factor (EGF), lactotransferrin (LTF), lysozyme

(LYZ), phospholipid transfer protein (PLTP), and secretory

leukocyte peptidase inhibitor (SLPI) (Figures 2C, D).

Next, we analyzed the different expression levels of the six key

IRGs between the RIF and control samples in the GSE12682 dataset

and GSE76882 dataset (Figure 2E). The results from both indicated

that the expression levels of APOH and EGF in the fibrosis group

were significantly lower than those in the control group, while the

expression levels of LTF, LYZ, PLTP, and SLPI were higher (all P <

0.05), which was consistent with the six sets of DEGs in CKD

samples of six microarray datasets and the renal fibrosis samples in

the GSE38117 dataset of UUO mice model (Supplementary

Figure 2). Importantly, we collected the renal samples from the

stones model group in vivo, which verified kidney injury and RIF in

the stones model group by HE staining and Sirius Red staining

(Figures 3A, B), and found same pattern of six gene expression
FIGURE 1

Flowchart describing the process used to identify and validate the key biomarkers of renal interstitial fibrosis. DEGs, differentially expressed genes;
ROC, receiver operating characteristic.
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A B C

FIGURE 3

Verification of DEGs in vivo. (A) Representative images of HE and Sirius red staining of RIF in the control group and renal fibrosis group with renal stone
model (200×). (B) Quantitative analysis of HE and Sirius red staining in kidneys of RIF in the control group and renal fibrosis group (n = 5 per group). (C)
RT-qPCR showed the different expression levels of the six key IRGs between the control samples and RIF samples with renal stone model (n = 5 per
group). *, P < 0.05; **, P < 0.01; ***, P < 0.001; DEGs, differentially expressed genes; HE, hematoxylin and eosin; IRGs, immune-related DEGs.
A B D

E
F

C

FIGURE 2

Identification of DEGs for RIF. (A) Heatmap of each expression microarray. The heat map of the top 15 upregulated (red) and downregulated (green)
DEGs identified by the robust rank aggregation method applied to the six microarray datasets. The value in each column is the LogFC. (B) Venn
diagram of overlapping DEGs and a set of immune-related genes from the Immunology Database. (C, D) LASSO deviance profiles and LASSO
coefficient profiles. (E) The expression levels of the six key IRGs identified by LASSO regression analysis between the RIF and control samples in the
GSE12682 and GSE76882 datasets. (F) Heatmap of correlations for the six key IRGs in the GSE12682 dataset (left) and GSE76882 dataset (right). The
size of the colored squares and circles represents the strength of the correlation. Darker color implies a stronger association. *, P < 0.05; **, P <
0.01; ***, P < 0.001; ****, P < 0.0001. RIF, renal interstitial fibrosis; DEGs, differentially expressed genes; IRGs, immune-related DEGs.
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changes using RT-qPCR (Figure 3C). In addition, the correlation

analysis suggested a significantly strong or moderate correlation

among the six key markers (all P < 0.05) (Figure 2F,

Supplementary Table 4).
Validation of immune-correlated
key biomarkers

Based on the LASSO regression model, the risk score was

calculated for each sample with the expression value of genes and

corresponding coefficients: Risk score = [(-0.05627) × Expression value

of APOH] + [(-0.00264× Expression value of EGF] + [(0.03986) ×

Expression value of LTF] + [(0.02047) × Expression value of LYZ] +

[(0.02807) × Expression value of PLTP] + [(-0.06040) × Expression

value of SLPI]. Subsequently, ROC analysis and C-index analysis were

applied to evaluate the diagnostic value of the six-gene risk scores. A

favorable diagnostic efficacy of the six-gene risk scores in

discriminating RIF from control samples, with an AUC of 0.926, was

found in the GSE12682 dataset, and the C-index of the risk score was

0.933 (Figures 4A, B). Moreover, the risk score showed a powerful

diagnostic ability in the GSE76882 dataset, with an AUC of 0.776 and

C-index of 0.776 (Figures 4D, E). The fibrosis samples obtained

significantly higher risk scores than the control samples in both the

GSE12682 and GSE76882 datasets (all P < 0.0001) (Figures 4C, F).
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Given that RIF is often accompanied by renal dysfunction, we

explored the correlation between the risk score and clinical

characteristics in the GSE104954 dataset and GSE30529 dataset,

which included CKD samples with different etiologies that caused

RIF, such as DN, MCD, HT, IgA nephropathy, TMD, FSGS, MGN,

RPGN, and SLE (Supplementary Table 5) (6, 12). Similar to the

results in the GSE12682 dataset, the risk scores in the CKD samples

were significantly higher than those in the control samples (all P <

0.0001) (Figures 5A, I). Moreover, the risk score was strongly

negatively correlated with GFR (GSE104954: r = -0.59, P <

0.0001; GSE30529: r = -0.84, P < 0.0001) (Figures 5B, J) and

positively correlated with serum creatine level (r = 0.51, P <

0.0001) (Figure 5C), BUN level (r = 0.29, P < 0.0001)

(Figure 5D), and proteinuria (r = 0.47, P < 0.001) (Figure 5E). No

significant correlation was found with age (Figure 5F), body mass

index (Figure 5G), or mean blood pressure (Figure 5H) (all P

> 0.05).
Functional enrichment analysis of the
fibrosis samples

To better understand the biological information associated with

RIF, we obtained the DEGs between the RIF and control samples in the

GSE12682 dataset. A total of 43 upregulated DEGs and 21
A B

D E F

C

FIGURE 4

Validation of key biomarkers for RIF. (A, D) ROC analysis revealed good diagnostic performance of the risk score for RIF among the GSE12682 datasets and
GSE76882 dataset. (B, E) Calibration plot of the risk score for predicting the probability of RIF among the GSE12682 datasets and GSE76882 dataset. (C, F)
Violin plots of risk scores between the RIF and control groups among the GSE12682 datasets and GSE76882 dataset. ****, P < 0.0001.
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downregulated DEGs were identified, and their different expression

patterns were visualized using volcano plots and heatmaps (Figures 6A,

B). Then, GO enrichment analysis and KEGG analysis were performed

using the online DAVID tool. The results indicated a strong association

with the adaptive innate immune response, innate immune response,
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and positive regulation of NF-kB transcription factor activity

(Figure 6C, Supplementary Table 6). Moreover, GSEA was

performed between the fibrosis and control samples in the

GSE12682 dataset. Several immune pathways involved in fibrosis,

such as the “T cell receptor signaling pathway” (NES, 1.688, NOM
A B D E

F G IH J

C

FIGURE 5

Correlation analysis between the risk score and clinical features in CKD patients. (A) Violin plots of risk scores between the CKD and control groups
from the GSE104954 dataset. (B–E) Significantly correlation between the risk score and GFR (B), serum creatinine level (C), BUN (D), and proteinuria
(E) in CKD patients from the GSE104954 dataset. (F–H) The correlation between risk score and age (F), body mass index (G), and mean blood
pressure (H) in CKD patients from the GSE104954 dataset. (I) Violin plots of the risk score between the CKD and control groups from the GSE30529
dataset. (J) Significantly negative correlation between the risk score and GFR in CKD patients from the GSE30529 dataset. ****, P < 0.0001. GFR,
glomerular filtration rate; BUN, blood urea nitrogen; CKD, chronic kidney disease.
A B

D E F
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FIGURE 6

Significant pathways associated with the DEGs between the RIF and control samples in the GSE12682 dataset. (A) Volcano plot of the GSE12682 dataset.
A total of 43 upregulated DEGs and 21 downregulated DEGs were identified between the RIF and control samples. (B) Heatmap of DEGs between the
RIF and control samples in the GSE12682 dataset. (C) DEGs with their top 5 enriched GO terms and KEGG terms. (D–F) GSEA for the GSE12682 dataset.
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p-value < 0.001), “T cell homeostasis” (NES, 1.624, NOM p-value =

0.008), and “positive regulation of NF-kB signaling pathway” (NES,

1.756, NOM p-value < 0.001) were identified (Figures 6D–F,

Supplementary Table 7).
Enrichment of immune cells in the fibrosis
and control samples

To explore the difference in the abundances of immune cell

subtypes between the fibrosis and control groups, 28 available

immune cell subtypes were assessed in the GSE12682 dataset

using the ssGSVA method. The results indicated that 8 types of

immune cells (including T follicular helper cells, Treg cells, MDSCs,

gamma delta T cells, CD56bright natural killer cells, activated CD4

T cells, activated CD8 T cells, and activated dendritic cells) were

significantly enriched in a higher proportion as in the control group
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(all P < 0.05) (Figure 7A). Moreover, the GSE76882 dataset showed

similar phenotypes of change (all P < 0.05) (Figure 7B). The

interrelation among the various immune cell subtypes in the

GSE12682 dataset varied from weak to moderate (Figure 7C).

Next, we conducted correlation analyses to explore the

relationship between the six key IRGs and different immune cell

types (Supplementary Figure 3). As shown in Figure 7D, all six key

markers showed a significantly strong correlation with six types of

immune cells (all P < 0.05), except for gamma delta T cells and

CD56bright natural killer cells. Because the NF-kB signaling

pathway was associated with the progression of fibrosis, we also

performed correlation analyses between eight immune cells and the

genes in the NF-kB signaling pathway from the KEGG database. As

shown in Figure 7E and Supplementary Figure 4, most immune

cells were significantly associated with genes in the NF-kB signaling

pathway, especially genes that activate the T-cell signaling pathway

and noncanonical pathway (Supplementary Table 8).
A B

D

EC

FIGURE 7

The distribution of 28 types of immune cells between the RIF and control samples. (A, B) Violin plots of 28 types of immune cells that were
differentially enriched in the (A) GSE12682 dataset and (B) GSE76882 dataset. (C) Heatmap of the correlation of 28 types of immune cells in the
GSE12682 dataset. The size of the colored squares represents the strength of the correlation. Darker color implies a stronger association. (D)
Heatmap of correlations among 8 types of immune cells and the six key IRGs in the GSE12682 dataset and GSE76882 dataset. (E) Heatmap of
correlations among the genes from the NF-kB signaling pathway and 8 types of immune cells in the GSE12682 dataset and GSE76882 dataset.
*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; X, P > 0.05.
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Involvement of key markers in DC cells
and T cells

To further analyze the correlation between key markers and DC

cells or T cells, we obtained gene sets related to CD8+ T-cell

markers, T helper cell, and DC cell markers in human kidney

from CellMarker and applied Pearson correlation analysis among

the six IRGs and three gene sets in the GSE12682 dataset

(Figures 8A–C, Supplementary Table 9). The results suggested

that six IRGs were strongly correlated with most genes related to

three immune cell markers (all P < 0.05), except for DLEC1 as a DC

cell marker and CCR6 as a T helper cell marker (all P > 0.05). We

also explored the correlation of six IRGs with the genes in the T-cell

receptor signaling pathway (Supplementary Table 9). As shown in

Figures 8D, E, all key markers were highly associated with the genes

in the cell adhesion molecules (PTPRC, CD8A, CD3D, all P < 0.05),

PI3K-Akt signaling pathway (IKBKB and CHUK, all P < 0.05), and

NF-kB signaling pathway (NFKBIE and NFKBIB, all P < 0.05).

These results indicate that T cells and DCs play an important role in

regulating the process of RIF.
Discussion

As the third-leading cause of premature mortality, CKD has

been a major worldwide public disease burden (18). At the

histological level, renal fibrosis, particularly renal interstitial

fibrosis (RIF), is the ultimate common pathway of progressive

kidney disease, no matter what the initial injury is (12).

Importantly, immune-related genes play critical roles in the

initiation and progression of renal fibrosis (19). Therefore, it is of
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great clinical significance to identify immune-related biomarkers

and potential immune cell infiltration changes for the intervention

against RIF to ultimately improve the prognosis of CKD.

In the present study, we screened a total of 928 DEGs between

CKD and control renal interstitial samples from the six microarray

datasets and identified 17 overlapping immune-correlated DEGs

after integration with the ImmPort database. Then, 6 IRGs,

including 2 downregulated genes (APOH and EGF) and 4

upregulated genes (LTF, LYZ, PLTP, and SLPI) in CKD, were

selected by LASSO regression analysis, validated as key biomarkers

of RIF through ROC analysis in the GSE12682 dataset and

GSE76882 dataset, and found to be significantly associated with

renal function damage. GO enrichment analysis and GSEA

indicated a strong association with the inflammatory response

and T-cell receptor signaling pathway, as well as positive

regulation of the NF-kB signaling pathway, for the DEGs between

RIF and control samples in the GSE12682 dataset. Next, we found

that various immune cells, especially T cells (including activated

CD4 T cells, activated CD8 T cells, Treg cells, and T follicular helper

cells), were significantly enriched in the RIF samples, which is

similar to the change noted for the four upregulated IRGs and

contrary to that noted for the two downregulated IRGs.

Importantly, the 6 IRGs were not only strongly correlated with

those immune cell markers but also might interact with genes in the

T-cell signaling pathway, including the NF-kB signaling pathway

and PI3K-Akt signaling pathway. Furthermore, the enriched

immune cells were correlated with genes in the NF-kB signaling

pathway. All of the above evidence indicated that the biological

function of the 6 IRGs might involve the immune response

mediated by the NF-kB signaling pathway and promote the

progression of RIF.
A B
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FIGURE 8

Association between six key IRGs and immune cell markers. (A) Correlation between the expression levels of the six IRGs and CD8+ T-cell markers.
(B) Correlation between the expression levels of the six IRGs and T helper cell markers. (C) Correlation between the expression levels of the six IRGs
and DC markers. (D) Correlation between the expression levels of the six IRGs and the genes in the T-cell receptor signaling pathway. (E) Regulatory
network of the T-cell receptor signaling pathway as obtained from the KEGG database. The red square indicates that the gene was positively
correlated with the IRGs, while the purple square indicates that the gene was negatively correlated with the IRGs. *, P < 0.05; **, P < 0.01;
***, P < 0.001; ****, P < 0.0001.
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RIF is considered to be a failed wound healing process that

develops after chronic kidney damage from various insults (20).

Initially, peritubular infiltration of numerous types of immune cells,

pa r t i cu l a r l y macrophage s and T ce l l s , i s an ea r l y

microenvironmental change that induces an inflammatory

response and establishes a fibrogenic stage (21). Subsequently,

myofibroblast activation and expansion, followed by EMT and

cell apoptosis, result in tubular atrophy, impairment of renal

function, and finally end-stage renal disease. Therefore,

inflammation has an important role in the initiation and

progression of renal fibrogenesis after injury (18, 22).

Considerable evidence has shown that CD4+ T cells, Th17 cells

and gamma delta T cells exert a profibrotic effect on damaged

kidneys, whereas Tregs prevent kidney injury and fibrosis (23–25).

Our results indicated that the infiltration of many immune cells,

especially T cells with various functions (including activated CD4 T

cells, activated CD8 T cells, T helper cells, and regulatory T cells)

and activated DCs, was significantly increased in the RIF samples,

probably contributing to RIF occurrence and progression. Although

Treg cells function as anti-fibrotic immune cells, a previous study

indicated that Treg cells are an important population that

preferentially accumulates in fibrotic mouse kidneys (24), which

is consistent with our results. Moreover, prophylactic Treg

expansion confers protection against kidney injury and fibrosis

development (24). Notably, CD8+ T cells have opposite roles in

renal inflammation and fibrosis. A previous study found that CD8+

T cells accumulated early in the renal interstitium, reaching a peak

at Day 5 in a unilateral ureter obstruction (UUO) model of renal

fibrosis (26). CD8+ T cells induce M1/M2 macrophage polarization

to promote a stronger inflammatory response and facilitate the

proliferation and activation of resident myofibroblasts (27, 28).

However, recent studies indicated that increased infiltration of CD8

+ T cells restrains renal fibrosis, and CD8+ T-cell deficiency

aggravates renal fibrosis in UUO-treated mice (26, 29). Therefore,

immune cells play an important role in the process of renal fibrosis,

but how the various immune cells induce inflammatory responses

and the specific mechanisms involved in the progression of fibrosis

remain to be verified.

As the initial stage of renal fibrosis, uncontrolled or excessive

inflammation is bound to cause progressive renal injury in the

context of CKD. We screened 6 sets of DEGs from multiple CDK

renal interstitial tissues, selected immune-related DEGs, and

identified 6 IRGs related to RIF. Our results demonstrated that

several signaling pathways, such as the “T cell receptor signaling

pathway” and “positive regulation of NF-kB signaling pathway”,

were involved in the process of RIF, and the 6 IRG expression levels

were significantly correlated with the genes in these signaling

pathways. Activation of the NF‐kB pathway stimulates a

proinflammatory response and promotes renal fibrosis, and

treatment with an NF-kB inhibitor attenuates renal injury and

inflammation in CKD tissues (30–32). In a UUO model of

progressive kidney disease for mice that express the human CRP

gene (CRPtg), severe renal inflammation and fibrosis with a

significant increase in tubulointerstitial T cells and macrophages

have been found, accompanied by increased activation of both the

NF-kB/p65 and TGF-b/Smad2/3 signaling pathways (33). In
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addition, a previous study found that CXCL16 plays a role in

angiotensin II-induced renal inflammation and RIF in tubular

epithelial cells in an NF-kB-dependent manner, while CXCL16

deficiency inhibited the infiltration of F4/80+ macrophages and

CD3+ T cells in the kidney (34). These data indicate that activation

of NF-kB signaling and infiltration of T cells might co-occur during

fibrosis. However, it has not been determined how this coexpression

phenotype is induced. We provide correlation analysis evidence that

the 6 IRGs were strongly correlated with the genes in the NK-kB
signaling pathway, which positively regulates the T-cell signaling

pathway. Moreover, the four upregulated IRGs (LTF, LYZ, PLTP,

SLPI) were positively associated with various T cell populations,

which were enriched in RIF tissues, whereas the two downregulated

IRGs (APOH and EGF) had opposite results. Therefore, one

reasonable hypothesis is that these IRGs induce inflammatory

responses and promote RIF by mediating the NF-kB signaling

pathway in T cells, ultimately impairing renal function.

Six key IRGs, including APOH, EGF, LTF, LYZ, PLTP, and

SLPI, were identified to be associated with RIF. APOH, also known

as b2-glycoprotein 1 (b2GPI), is the most common protein for

antiphospholipid antibodies in chronic disorders related to

endothelial cell dysfunction (35). APOH was identified as a

complement regulator and mediates innate immune regulation

(36). Oxidized APOH causes DCs to mature and primes naive T

lymphocytes, thus inducing T helper 1 (Th1) polarization, which

involves NF-kB activation and interleukin-1 receptor associated

kinase (IRAK) phosphorylation (35, 37). In a model of STZ-DN

mice, exogenously administered purified b2GPI decreased the

expression levels of TGF-b1 and collagen IV, with concomitant

inhibition of p38 MAPK, and thus exerted renoprotective and

antifibrotic effects (38). EGF, as a protein that stimulates cell

growth and differentiation, was found to be expressed at low

levels in the urine of end-stage kidney disease cases and strongly

correlated with eGFR and urine albumin-to-creatinine ratio (39). A

previous study indicated that diminished EGF levels lead to the

development of kidney fibrosis associated with renal b-catenin/
mTOR hyperactivation and predispose kidneys to progressive renal

disease (40). Considerable evidence has shown that LTF and LYZ

have important ant iox idant , ant i - inflammatory and

nephroprotective activities (41–43). LTF inhibits TGF-b1-induced
renal fibrosis by restraining the expression of the profibrogenic

genes CTGF, PAI-1 and collagen I (44). PLTP not only influences

lipid transfer and lipoprotein metabolism, which is associated with

cardio-metabolic diseases (45), but also plays a key role in the

modulation of adaptive immune functions through alternation of T

cell helper polarization (46). Similarly, the urinary levels of PLTP

and SLPI are both increased in CKD patients with renal fibrosis (47,

48). SLPI is a critical mediator that controls anabolic parathyroid

hormone-induced bone formation (49). As an inhibiting proteolytic

enzyme, SLPI involves in immune functions of MSC to control T-

cell proliferation and the regulation of damaged tissue healing, and

was also identified as an ideal biomarker for kidney injury (50, 51).

Unfortunately, several limitations in the present study cannot

be ignored. First, our results indicated that 6 IRGs were significantly

correlated with renal function damage in CKD populations, but

clinical information was not available for the RIF samples in the
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GSE12682 and GSE76882 datasets. Importantly, the multiple

datasets included in the analysis did not provide detailed data on

the extent of fibrosis in the RIF samples. Therefore, whether the 6

IRGs play an initiating or continuing role in the fibrosis process

remains unclear. Second, due to the limited research conditions, this

retrospective study was performed based on microarray datasets

and in vivo experiments. Therefore, direct evidence, such as clinical

information and human RIF patient samples, is needed to uncover

the potential pathophysiological mechanisms of these IRGs in the

progression of RIF. Third, the immune cell infiltration in RIF

samples was inferred by the ssGSEA method. These findings may

deviate from the heterotypic interactions of cells, disease-induced

disorders, or phenotypic plasticity, a shortcoming that needs to be

addressed by further studies. A recent study demonstrated an

increase in the number of infiltrating CD45+ cells and CD45+/

CD3+ T cells in renal specimens from UUO mice with RIF. These

research findings support our bioinformatics analyses regarding

changes in immune cell infiltration (52). Undoubtedly, we will spare

no effort to further explore the mechanisms of RIF in

CKD populations.
Conclusion

In summary, six IRGs (APOH, EGF, LTF, LYZ, PLTP, and

SLPI) were identified as key biomarkers for RIF. These IRGs

exhibited a strong correlation with various T cells, activated DCs,

and with the NF-kB signaling pathway. All these IRGs and their

signaling pathways may evolve as valuable therapeutic targets for

RIF in CKD.
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SUPPLEMENTARY FIGURE 1

Identification of DEGs associated with CKD. (A) Volcano plot (left) and

heatmap (right) of the GSE30529 dataset. In total, 416 DEGs were identified

from the GSE30529 dataset in the CKD samples vs. the control, including 298
upregulated and 118 downregulated genes. (B) Volcano plot (left) and

heatmap (right) of the GSE32591 dataset. In total, 125 DEGs were identified
from the GSE32591 dataset, including 97 upregulated and 28 downregulated

genes. (C) Volcano plot (left) and heatmap (right) of the GSE35487 dataset. In
total, 36 DEGs were identified from the GSE35487 dataset, including 36

downregulated and 0 upregulated genes. (D) Volcano plot (left) and
heatmap (right) of the GSE37455 dataset. In total, 27 DEGs were identified

from the GSE37455 dataset, including 10 upregulated and 17 downregulated

genes. (E) Volcano plot (left) and heatmap (right) of the GSE121211 dataset. In
total, 78 DEGs were identified from the GSE121211 dataset, including 49

upregulated and 29 downregulated genes. (F) Volcano plot (left) and heatmap
(right) of the GSE133288 dataset. In total, 246 DEGs were identified from the

GSE133288 dataset, including 198 downregulated and 48 upregulated genes.
DEGs, differentially expressed genes; CKD, chronic kidney disease.

SUPPLEMENTARY FIGURE 2

The expression levels of the six key IRGs in the GSE38117 dataset. Violin plot

illustrating the gene expression profile of three fibrotic kidneys with three
undamaged contralateral kidneys in mice using the UUO model. *, P < 0.05,

the paired Student’s t-test.

SUPPLEMENTARY FIGURE 3

Correlation between the expression levels of six key IRGs and immune cell
enrichment. (A-F) Correlation between the expression levels of APOH (A), EGF

(B), LTF (C), LYZ (D), PLTP (E), and SLPI (F) and 28 enriched types of immune
cells in the GSE12682 dataset. The size of each dot represents the strength of

the correlation between the IRG and the immune cell. The color of the dot
represents the P value; the greener the color, the higher the P value, and the

redder the color, the lower the P value. P < 0.05 was considered

statistically significant.

SUPPLEMENTARY FIGURE 4

Correlation between the infiltration of immune cells and genes in the NK-kB
signaling pathway.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fendo.2023.1207444/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2023.1207444/full#supplementary-material
https://doi.org/10.3389/fendo.2023.1207444
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Dong et al. 10.3389/fendo.2023.1207444
References
1. Jager KJ, Fraser S. The ascending rank of chronic kidney disease in the global burden of
disease study. Nephrol Dial Transpl (2017) 32:i121–8. doi: 10.1093/ndt/gfw330

2. Mills KT, Xu Y, Zhang W, Bundy JD, Chen CS, Kelly TN, et al. A systematic
analysis of worldwide population-based data on the global burden of chronic kidney
disease in 2010. Kidney Int (2015) 88:950–7. doi: 10.1038/ki.2015.230

3. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of
chronic kidney disease, 1990-2017: a systematic analysis for the global burden of disease
study 2017. Lancet (2020) 395:709–33. doi: 10.1016/S0140-6736(20)30045-3

4. Barutta F, Bruno G, Mastrocola R, Bellini S, Gruden G. The role of cannabinoid
signaling in acute and chronic kidney diseases. Kidney Int (2018) 94:252–8.
doi: 10.1016/j.kint.2018.01.024

5. Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet
(2017) 389:1238–52. doi: 10.1016/S0140-6736(16)32064-5

6. Nastase MV, Zeng-Brouwers J, Wygrecka M, Schaefer L. Targeting renal fibrosis:
mechanisms and drug delivery systems. Adv Drug Delivery Rev (2018) 129:295–307.
doi: 10.1016/j.addr.2017.12.019

7. Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney
Int (2006) 69:213–7. doi: 10.1038/sj.ki.5000054

8. Yan H, Xu J, Xu Z, Yang B, Luo P, He Q. Defining therapeutic targets for renal
fibrosis: exploiting the biology of pathogenesis. BioMed Pharmacother (2021)
143:112115. doi: 10.1016/j.biopha.2021.112115

9. Soranno DE, Lu HD, Weber HM, Rai R, Burdick JA. Immunotherapy with
injectable hydrogels to treat obstructive nephropathy. J BioMed Mater Res (2014)
102:2173–80. doi: 10.1002/jbm.a.34902

10. Noh H, Yu MR, Kim HJ, Lee JH, Park BW, Wu IH, et al. Beta 2-adrenergic receptor
agonists are novel regulators of macrophage activation in diabetic renal and cardiovascular
complications. Kidney Int (2017) 92:101–13. doi: 10.1016/j.kint.2017.02.013

11. Wilson HM, Chettibi S, Jobin C, Walbaum D, Rees AJ, Kluth DC. Inhibition of
macrophage nuclear factor-kappab leads to a dominant anti-inflammatory phenotype
that attenuates glomerular inflammation in vivo. Am J Pathol (2005) 167:27–37.
doi: 10.1016/s0002-9440(10)62950-1

12. Lv W, Booz GW, Wang Y, Fan F, Roman RJ. Inflammation and renal fibrosis:
recent developments on key signaling molecules as potential therapeutic targets. Eur J
Pharmacol (2018) 820:65–76. doi: 10.1016/j.ejphar.2017.12.016

13. Tang PM, Nikolic-Paterson DJ, Lan HY. Macrophages: versatile players in renal
inflammation and fibrosis. Nat Rev Nephrol (2019) 15:144–58. doi: 10.1038/s41581-
019-0110-2

14. Hu Z, Liu Y, Zhu Y, Cui H, Pan J. Identification of key biomarkers and immune
infiltration in renal interstitial fibrosis. Ann Transl Med (2022) 10:190. doi: 10.21037/
atm-22-366

15. Hanzelmann S, Castelo R, Guinney J. Gsva: gene set variation analysis for
microarray and rna-seq data. BMC Bioinf (2013) 14:7. doi: 10.1186/1471-2105-14-7

16. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al.
Pan-cancer immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade. Cell Rep (2017)
18:248–62. doi: 10.1016/j.celrep.2016.12.019

17. Cao Y, Duan B, Gao X, Wang E, Dong Z. Itraq-based comparative proteomics
analysis of urolithiasis rats induced by ethylene glycol. BioMed Res Int (2020)
2020:6137947. doi: 10.1155/2020/6137947

18. Decleves AE, Sharma K. Novel targets of antifibrotic and anti-inflammatory
treatment in ckd. Nat Rev Nephrol (2014) 10:257–67. doi: 10.1038/nrneph.2014.31

19. Black LM, Lever JM, Agarwal A. Renal inflammation and fibrosis: a double-edged
sword. J Histochem Cytochem (2019) 67:663–81. doi: 10.1369/0022155419852932

20. Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol
(2011) 7:684–96. doi: 10.1038/nrneph.2011.149

21. Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. J Am Soc
Nephrol (2010) 21:1819–34. doi: 10.1681/ASN.2010080793

22. Wang Y, Harris DC. Macrophages in renal disease. J Am Soc Nephrol (2011)
22:21–7. doi: 10.1681/ASN.2010030269

23. Liu L, Kou P, Zeng Q, Pei G, Li Y, Liang H, et al. Cd4+ t lymphocytes, especially
th2 cells, contribute to the progress of renal fibrosis. Am J Nephrol (2012) 36:386–96.
doi: 10.1159/000343283

24. Do VDF, Lafont A, Beibel M, Martin K, Darribat K, Cuttat R, et al. Immune cell
landscaping reveals a protective role for regulatory t cells during kidney injury and
fibrosis. JCI Insight (2020) 5(3):e130651. doi: 10.1172/jci.insight.130651

25. Gao M, Wang J, Zang J, An Y, Dong Y. The mechanism of cd8(+) t cells for
reducing myofibroblasts accumulation during renal fibrosis. Biomolecules (2021) 11
(7):990. doi: 10.3390/biom11070990

26. Wang H, Wang J, Bai Y, Li J, Li L, Dong Y. Cd11c(+) cd8(+) t cells reduce renal
fibrosis following ureteric obstruction by inducing fibroblast apoptosis. Int J Mol Sci
(2016) 18(1):1. doi: 10.3390/ijms18010001

27. Ricardo SD, van Goor H, Eddy AA. Macrophage diversity in renal injury and
repair. J Clin Invest (2008) 118:3522–30. doi: 10.1172/JCI36150
Frontiers in Endocrinology 13
28. Floege J, Eitner F, Alpers CE. A new look at platelet-derived growth factor in
renal disease. J Am Soc Nephrol (2008) 19:12–23. doi: 10.1681/ASN.2007050532

29. Dong Y, Yang M, Zhang J, Peng X, Cheng J, Cui T, et al. Depletion of cd8+ t cells
exacerbates cd4+ t cell-induced monocyte-to-fibroblast transition in renal fibrosis. J
Immunol (2016) 196:1874–81. doi: 10.4049/jimmunol.1501232

30. Grande MT, Perez-Barriocanal F, Lopez-Novoa JM. Role of inflammation in
tubulo-interstitial damage associated to obstructive nephropathy. J Inflammation
(Lond) (2010) 7:19. doi: 10.1186/1476-9255-7-19

31. Li R, Guo Y, Zhang Y, Zhang X, Zhu L, Yan T. Salidroside ameliorates renal
interstitial fibrosis by inhibiting the tlr4/nf-kappab and mapk signaling pathways. Int J
Mol Sci (2019) 20(5):1103. doi: 10.3390/ijms20051103

32. Li Q, Liu BC, Lv LL, Ma KL, Zhang XL, Phillips AO. Monocytes induce proximal
tubular epithelial-mesenchymal transition through nf-kappa b dependent upregulation
of icam-1. J Cell Biochem (2011) 112:1585–92. doi: 10.1002/jcb.23074

33. Li ZI, Chung AC, Zhou L, Huang XR, Liu F, Fu P, et al. C-reactive protein
promotes acute renal inflammation and fibrosis in unilateral ureteral obstructive
nephropathy in mice. Lab Invest (2011) 91:837–51. doi: 10.1038/labinvest.2011.42

34. Xia Y, EntmanML, Wang Y. Critical role of cxcl16 in hypertensive kidney injury and
fibrosis. Hypertension (2013) 62:1129–37. doi: 10.1161/HYPERTENSIONAHA.113.01837

35. Buttari B, Profumo E, Mattei V, Siracusano A, Ortona E, Margutti P, et al.
Oxidized beta2-glycoprotein i induces human dendritic cell maturation and promotes a
t helper type 1 response. Blood (2005) 106:3880–7. doi: 10.1182/blood-2005-03-1201

36. Gropp K, Weber N, Reuter M, Micklisch S, Kopka I, Hallstrom T, et al. Beta(2)-
glycoprotein i, the major target in antiphospholipid syndrome, is a special human
complement regulator. Blood (2011) 118:2774–83. doi: 10.1182/blood-2011-02-339564

37. Zandman-Goddard G, Pierangeli SS, Gertel S, Blank M. Tolerogenic dendritic cells
specific for beta2-glycoprotein-i domain-i, attenuate experimental antiphospholipid
syndrome. J Autoimmun (2014) 54:72–80. doi: 10.1016/j.jaut.2014.06.001

38. Wang T, Chen SS, Chen R, Yu DM, Yu P. Reduced beta 2 glycoprotein i
improves diabetic nephropathy via inhibiting tgf-beta1-p38 mapk pathway. Int J Clin
Exp Pathol (2015) 8:2321–33.

39. Amatruda JG, Katz R, Sarnak MJ, Gutierrez OM, Greenberg JH, Cushman M, et al.
Biomarkers of kidney tubule disease and risk of end-stage kidney disease in persons with
diabetes and ckd. Kidney Int Rep (2022) 7:1514–23. doi: 10.1016/j.ekir.2022.03.033

40. Zeid AM, Lamontagne JO, Zhang H,Marneros AG. Epidermal growth factor deficiency
predisposes to progressive renal disease. FASEB J (2022) 36:e22286. doi: 10.1096/fj.202101837R

41. Aslam SM, Hirawat R, Godugu C. Lactoferrin-decorated cerium oxide
nanoparticles prevent renal injury and fibrosis. Biol Trace Elem Res (2022) 201
(4):1837–45. doi: 10.1007/s12011-022-03284-6

42. Hegazy R, Salama A, Mansour D, Hassan A. Renoprotective effect of lactoferrin
against chromium-induced acute kidney injury in rats: involvement of il-18 and igf-1
inhibition. PloS One (2016) 11:e151486. doi: 10.1371/journal.pone.0151486

43. Gallo D, Cocchietto M, Masat E, Agostinis C, Harei E, Veronesi P, et al. Human
recombinant lysozyme downregulates advanced glycation endproduct-induced interleukin-6
production and release in an in-vitromodel of human proximal tubular epithelial cells. Exp
Biol Med (Maywood) (2014) 239:337–46. doi: 10.1177/1535370213518281

44. Hsu YH, Chiu IJ, Lin YF, Chen YJ, Lee YH, Chiu HW. Lactoferrin contributes a
renoprotective effect in acute kidney injury and early renal fibrosis. Pharmaceutics
(2020) 12(5):434. doi: 10.3390/pharmaceutics12050434

45. Jiang XC, Yu Y. The role of phospholipid transfer protein in the development of
atherosclerosis. Curr Atheroscler Rep (2021) 23:9. doi: 10.1007/s11883-021-00907-6

46. Desrumaux C, Lemaire-Ewing S, Ogier N, Yessoufou A, Hammann A, Sequeira-
Le GA, et al. Plasma phospholipid transfer protein (pltp) modulates adaptive immune
functions through alternation of t helper cell polarization. Cell Mol Immunol (2016)
13:795–804. doi: 10.1038/cmi.2015.75

47. Bergenfeldt M, Bjork P, Ohlsson K. The elimination of secretory leukocyte
protease inhibitor (slpi) after intravenous injection in dog and man. Scand J Clin Lab
Invest (1990) 50:729–37. doi: 10.1080/00365519009091066

48. Yang B, Sylvius N, Luo J, Yang C, Da Z, Crotty C, et al. Identifying biomarkers
from transcriptomic signatures in renal allograft biopsies using deceased and living
donors. Front Immunol (2021) 12:657860. doi: 10.3389/fimmu.2021.657860

49. Morimoto A, Kikuta J, Nishikawa K, Sudo T, Uenaka M, Furuya M, et al. Slpi is a
critical mediator that controls pth-induced bone formation. Nat Commun (2021)
12:2136. doi: 10.1038/s41467-021-22402-x

50. Vigo T, La Rocca C, Faicchia D, Procaccini C, Ruggieri M, Salvetti M, et al.
Ifnbeta enhances mesenchymal stromal (stem) cells immunomodulatory function
through stat1-3 activation and mtor-associated promotion of glucose metabolism.
Cell Death Dis (2019) 10:85. doi: 10.1038/s41419-019-1336-4
51. Ohlsson S, Ljungkrantz I, Ohlsson K, Segelmark M, Wieslander J. Novel

distribution of the secretory leucocyte proteinase inhibitor in kidney. Mediators
Inflamm (2001) 10:347–50. doi: 10.1080/09629350120102389

52. Lindquist JA, Bernhardt A, Reichardt C, Sauter E, Brandt S, Rana R, et al. Cold shock
domain protein dbpa orchestrates tubular cell damage and interstitial fibrosis in inflammatory
kidney disease. Cells-Basel (2023) 12(10):1426. doi: 10.3390/cells12101426
frontiersin.org

https://doi.org/10.1093/ndt/gfw330
https://doi.org/10.1038/ki.2015.230
https://doi.org/10.1016/S0140-6736(20)30045-3
https://doi.org/10.1016/j.kint.2018.01.024
https://doi.org/10.1016/S0140-6736(16)32064-5
https://doi.org/10.1016/j.addr.2017.12.019
https://doi.org/10.1038/sj.ki.5000054
https://doi.org/10.1016/j.biopha.2021.112115
https://doi.org/10.1002/jbm.a.34902
https://doi.org/10.1016/j.kint.2017.02.013
https://doi.org/10.1016/s0002-9440(10)62950-1
https://doi.org/10.1016/j.ejphar.2017.12.016
https://doi.org/10.1038/s41581-019-0110-2
https://doi.org/10.1038/s41581-019-0110-2
https://doi.org/10.21037/atm-22-366
https://doi.org/10.21037/atm-22-366
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1155/2020/6137947
https://doi.org/10.1038/nrneph.2014.31
https://doi.org/10.1369/0022155419852932
https://doi.org/10.1038/nrneph.2011.149
https://doi.org/10.1681/ASN.2010080793
https://doi.org/10.1681/ASN.2010030269
https://doi.org/10.1159/000343283
https://doi.org/10.1172/jci.insight.130651
https://doi.org/10.3390/biom11070990
https://doi.org/10.3390/ijms18010001
https://doi.org/10.1172/JCI36150
https://doi.org/10.1681/ASN.2007050532
https://doi.org/10.4049/jimmunol.1501232
https://doi.org/10.1186/1476-9255-7-19
https://doi.org/10.3390/ijms20051103
https://doi.org/10.1002/jcb.23074
https://doi.org/10.1038/labinvest.2011.42
https://doi.org/10.1161/HYPERTENSIONAHA.113.01837
https://doi.org/10.1182/blood-2005-03-1201
https://doi.org/10.1182/blood-2011-02-339564
https://doi.org/10.1016/j.jaut.2014.06.001
https://doi.org/10.1016/j.ekir.2022.03.033
https://doi.org/10.1096/fj.202101837R
https://doi.org/10.1007/s12011-022-03284-6
https://doi.org/10.1371/journal.pone.0151486
https://doi.org/10.1177/1535370213518281
https://doi.org/10.3390/pharmaceutics12050434
https://doi.org/10.1007/s11883-021-00907-6
https://doi.org/10.1038/cmi.2015.75
https://doi.org/10.1080/00365519009091066
https://doi.org/10.3389/fimmu.2021.657860
https://doi.org/10.1038/s41467-021-22402-x
https://doi.org/10.1038/s41419-019-1336-4
https://doi.org/10.1080/09629350120102389
https://doi.org/10.3390/cells12101426
https://doi.org/10.3389/fendo.2023.1207444
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Identification of the key immune-related genes and immune cell infiltration changes in renal interstitial fibrosis
	Introduction
	Materials and methods
	Patient cohort and data preparation
	Identification of immune-related DEGs
	Exploration of key IRGs
	Validation of the risk score model
	Gene set enrichment analysis
	Discovery of immune cell subtypes and correlation with key biomarkers
	Clinical correlation analysis
	Renal interstitial fibrosis model establishment in vivo
	Quantitative real-time PCR
	Statistical analysis

	Results
	Screening of differentially expressed genes
	Identification of immune-correlated key markers
	Validation of immune-correlated key biomarkers
	Functional enrichment analysis of the fibrosis samples
	Enrichment of immune cells in the fibrosis and control samples
	Involvement of key markers in DC cells and T cells

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References


