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Objective: Observational evidence reported that air pollution is a significant risk

element for numerous health problems, such as obesity and coronavirus disease

2019 (COVID-19), but their causal relationship is currently unknown. Our

objective was to probe the causal relationship between air pollution, obesity,

and COVID-19 and to explore whether obesity mediates this association.

Methods:Weobtained instrumental variables strongly correlated to air pollutants

[PM2.5, nitrogen dioxide (NO2) and nitrogen oxides (NOx)], 9 obesity-related

traits (abdominal subcutaneous adipose tissue volume, waist-to-hip ratio, body

mass index, hip circumference, waist circumference, obesity class 1-3, visceral

adipose tissue volume), and COVID-19 phenotypes (susceptibil ity,

hospitalization, severity) from public genome-wide association studies. We

used clinical and genetic data from different public biological databases and

performed analysis by two-sample and two-step Mendelian randomization.

Results: PM2.5 genetically correlated with 5 obesity-related traits, which obesity

class 1 was most affected (beta = 0.38, 95% CI = 0.11 - 0.65, p = 6.31E-3). NO2

genetically correlated with 3 obesity-related traits, which obesity class 1 was also

most affected (beta = 0.33, 95% CI = 0.055 - 0.61, p = 1.90E-2). NOx genetically

correlated with 7 obesity-related traits, which obesity class 3 was most affected

(beta = 1.16, 95% CI = 0.42-1.90, p = 2.10E-3). Almost all the obesity-related traits

genetically increased the risks for COVID-19 phenotypes. Among them, body

mass index, waist circumference, hip circumference, waist-to-hip ratio, and

obesity class 1 and 2 mediated the effects of air pollutants on COVID-19 risks

(p < 0.05). However, no direct causal relationship was observed between air

pollution and COVID-19.

Conclusion: Our study suggested that exposure to heavy air pollutants causally

increased risks for obesity. Besides, obesity causally increased the risks for

COVID-19 phenotypes. Attention needs to be paid to weight status for the

population who suffer from heavy air pollution, as they are more likely to be

susceptible and vulnerable to COVID-19.
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Introduction
First reported in late 2019, coronavirus disease 2019 (COVID-

19), caused by severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), is a pandemic affecting people’s health worldwide

(1). The latest epidemiological data from World Health

Organization shows that COVID-19 has caused nearly 757

million infections and more than 6.85 million deaths worldwide

as of Feb. 23, 2023. Over 40% of COVID-19 survivors suffered from

unresolved symptoms at four months, regardless of hospitalization

status (2). Over 10% of people survived with long-term impacts on

multiple organ systems, known as long COVID-19 (3). Although

vaccination has reduced the incidence of severe COVID-19 to some

extent, no specific treatment can target SARS-CoV-2 infection until

now other than hormonal drug therapy for oxygen-dependent

COVID-19 patients (4). Many exposures increase the

susceptibility and severity of COVID-19, such as cardiovascular

and metabolic disorders, high BMI, C-reactive protein (CRP), and

smoking (5). Numerous genome-wide association studies (GWASs)

in healthy populations of patients have allowed us to begin

identifying the genetic correlation between exposure and disease

at the genetic level. Identifying and uncovering novel factors

influencing COVID-19 is essential for understanding this

pandemic and enhancing its treatment.

With the rapid development of socioeconomic, air pollution

remains a global health threat. Air pollution contributes to many

acute and chronic diseases, such as respiratory tumors, pneumonia,

chronic obstructive pulmonary disease (COPD), stroke, and heart

and mental health disease (6, 7). Air pollution, including particulate

matter with a diameter smaller than 2.5 µm (PM2.5), nitrogen

oxides (NOx), nitrogen dioxides (NO2), and ozone (O3), are

common and highly concentrated substances in modern cities

and are relevant to people’s daily lives (8). Air pollution

molecules entering the respiratory tract can cause respiratory

tract damage through pathological mechanisms such as

inflammation and oxidative stress, thereby increasing the

susceptibility and severity of respiratory diseases (9). Recent

observational research indicates that PM2.5 and carbon monoxide

can increase the number of daily cases, cumulative cases, and

cumulative deaths of COVID-19 (10). However, the causal

relationship between these components (PM2.5, NOx, and NO2)

and COVID-19 risk (susceptibility, hospitalization, and severity)

remains largely unclear.

Due to multiple factors (genetics, epigenetics, environment,

socioeconomic status, etc.), obesity has become another health

problem that plagues a large number of young people. It is a

medical problem that increases the risk for certain illnesses, such as

cardiovascular disease, metabolic disease, neurodegenerative disease,

and certain tumors (11, 12). Obesity generally cannot often be

prevented through just eating a healthier diet, increasing activity,

and behavioral change as evidenced by the fact that most obesity

prevention strategies geared towards healthy diets, increasing activity,

and other behavioral changes have been ineffective or at best only

minimally effective (13). Obesity often plays a very important role as a

mediator in the influence of many environmental factors on various
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diseases. In particular, BMI, an important obesity-related trait,

directly contributed to COVID-19 Susceptibility (14).

Genome-wide association study (GWAS) is a genetics research

methodology used to identify genomic variants that are statistically

associated with the risk of a disease or a specific trait. However, the

relationship between other obesity traits and COVID-19 still needs

to be further investigated, which is made possible by the increasing

availability of GWAS data related to these traits. Moreover, studies

suggest that prolonged environmental exposure is strongly

associated with obesity and/or metabolic disease. A multicenter

study found that positive association between chronic exposure to

PM2.5 during working and fasting plasma glucose among

asymptomatic adults (15). A meta-analysis approach indicated

that PM2.5 increase obesity (OR = 1.96, 95% CI = 1.21-3.18)

among adolescents in Latin American cities (16). Considering the

close connection between air pollution, obesity, and COVID-19, it is

vital to explore their causal relationship and mediating role based

on GWAS and two-step Mendelian randomization (MR).

Mendelian randomization (MR) is a novel epidemiologic method

that uses a genetic variation to infer a causal correlation between

exposure and outcome based on genetic variation closely related to

exposure as potentially unconstrained instrumental variables (IVs).

First proposed by Katan in 1986 to disclose whether low LDL

cholesterol levels increase cancer risk, MR has become increasingly

popular as genetic information on health and disease has expanded

with data from genome-wide association studies and genome

sequencing (17). The cardinal principle of MR assumes that genetic

variants are randomly allocated at conception, mimicking the

randomized controlled studies and operating independently of

potential confounding variables such as environmental and lifestyle

factors. MR also avoids the bias from reverse causality because

diseases cannot affect genotypes. It provides a way to answer

questions of causality without the typical errors that affect

conclusions prevalent in many traditional epidemiological methods

(18, 19). Based on the fact that the prevalence of obesity and long-

COVID and the threat of air pollution have not yet been fully

controlled, in order to reduce the morbidity and mortality of

COVID-19, to better detect and prevent the occurrence of related

diseases in key populations, and to advocate the importance of

environmental protection, we discussed in detail the relationship

between the three. In this paper, we applied an initial MR to explore

the causal role of air pollution on COVID-19 and then explored

whether obesity plays an intermediary role using a two-step MR. In

step one, genetic IVs robustly associated with air pollution (PM2.5,

NOx, NO2) were used to assess the causal relationship with obesity.

In step two, genetic IVs robustly associated with obesity were used to

assess the causal relationship with COVID-19 risk (susceptibility,

hospitalization, severity).
Methods

Data sources for air pollution

All data used for analysis in our paper were obtained from

publicly available GWAS datasets and therefore do not require
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ethical approval or informed consent. Summary statistics of GWAS

data for the participants exposed in different levels of air pollution

(PM2.5, NOx, NO2) were obtained from the UK Biobank (UKB)

(20). The UK Biobank is a large biomedical database and research

resource, an organization that collected in-depth genetic and health

information on approximately 500,000 UK participants between

2006 and 2010 through questionnaires, medical tests and other

methods. New data are added regularly to the database, which is

accessible to all researchers worldwide. The extents of air pollution

were estimated in different sites in the UK by a land use regression

for annual average 2010 (21). The mean PM2.5 was 9.99 ± 1.06

micro-g/m3, ranging from 8.17 - 21.31 micro-g/m3, in a GWAS

including 423,796 individuals and a total of 9,851,867 single-

nucleotide polymorphisms (SNPs) (22). The mean NO2 was 26.71

± 7.58 micro-g/m3, ranging from 12.93 - 108.49 micro-g/m3, in a

GWAS including 456,380 individuals and a total of 9,851,867 SNPs

(23). The mean NOx was 44.11 ± 15.53 micro-g/m3, ranging from

19.74 - 265.94 micro-g/m3, in a GWAS including 456,380

individuals and a total of 9,851,867 SNPs (23).
Data sources for obesity

Summary statistics of obesity were obtained from the GIANT

consortium (https://portals.broadinstitute.org/collaboration/giant/

index.php/GIANT_consortium_data_files) (24, 25) and Liu et al.

GWAS meta-analyses (26). The GIANT Alliance is an international

collaboration of researchers from different groups, institutions,

countries and research organizations. The consortium aims to

identify genetic loci that regulate human size and shape

(including obesity-related traits such as height, BMI, waist

circumference, etc.), primarily through meta-analysis of genome-

wide association data and other large-scale genetic datasets. The

GWAS of the volume of abdominal subcutaneous adipose tissue

(ASAT) and visceral adipose tissue (VAT) included 32,860

individuals and a total of 9,275,407 SNPs, respectively. The

GWAS of body mass index (BMI) included 681,275 individuals

and a total of 2,336,260 SNPs. The GWAS of hip circumference

(HC) included 213,038 individuals and a total of 2,559,739 SNPs.

The GWAS of obesity class 1 (OB1) included 98,697 individuals and

a total of 2,380,428 SNPs. The GWAS of obesity class 2 (OB2)

included 72,546 individuals and a total of 2,331,456 SNPs. The

GWAS of obesity class 3 (OB3) included 50,364 individuals and a

total of 2,250,779 SNPs. The GWAS of waist circumference (WC)

included 232,101 individuals and a total of 2,565,408 SNPs. The

GWAS of waist-to-hip ratio (WHR) included 212,244 individuals

and a total of 2,560,782 SNPs.
Data sources for COVID-19

Summary statistics of COVID-19 were obtained from the

COVID-19 host genetic websites released on April 8, 2022 (round

7, GRCh38, https://www.covid19hg.org/results/r7/) (27). The
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GWAS of COVID-19 susceptibility included 2,597,856 cases and

14,496,978 SNPs (C2_ALL_eur_leave_23andme). The GWAS of

COVID-19 hospitalization included 2,095,324 cases and 12,469,431

SNPs (B2_ALL_eur_leave_23andme). The GWAS of COVID-19

severity included 1,086,211 cases and 12,174,527 SNPs

(A2_ALL_eur_leave_23andme).
Mendelian randomization

Three principles genetic tools were followed for MR analysis: a.

genetic tools were strongly correlated with corresponding exposures

(p < 5×10-5), which could avoid the possibility of insufficient

powered instrumental variables (IVs) and has been applied on

previous studies (28, 29); b. genetic tools were independent of

outcomes and could only influence outcome through exposure; and

c. when conducting MRs between air pollutions and COVID-19

risks, the genetic tools were independent of the mediators (30). The

IVs of SNPs were conjugated using the PLINK algorithm (LD <

0.001 and < 10 MB from the index variant) to select independent

IVs. The F-statistic was calculated by the (R2/K)/[(1-R2) (N-K-1)],

where K is the number of SNP, N is the sample size, R2 is the

variance explained by SNPs calculated by 2*EAF*(1-EAF) * (Beta/

SE)2. The IVs with F < 10 were excluded to retain the reliable SNPs

which robustly represented the exposures. The random effects

inverse variance weighting (IVW) was used as the main analysis

method, which combines the Wald ratios of the causal effect of each

SNP on the outcome and provides the most accurate estimates (31).

Meanwhile, MR-Egger regression method and weighted median

method were used as supplements to IVW. Moreover, MR-Egger

intercept test, Cochran’s Q test, MR-Egger intercept test and leave-

one-out analysis were used to determine the presence of pleiotropy

and to assess the reliability of the results.
Mediated effects analysis

Three beta values would be gained through two-step MR,

namely beta0 (initial MR of exposures on outcomes), beta1 (step

one MR of exposures on mediators), and beta2 (step two MR of

mediators on outcomes). The results are interpreted as follows: 1. If

beta0, beta1 and beta2 are all significant, this indicates that there is a

causal association from exposure to outcome and that this

association may be partially mediated by the mediating variable;

2. If beta0 is not significant but both beta1 and beta2 are significant,

meanwhile the quantified indirect effects are significant, this

indicates that the causal association from exposure to outcome is

indirect and mediated by this variable; 3. If beta0 is significant, at

least one of beta1 and beta2 is insignificant, indicating that there is

no mediating effect mediated by this mediating variable in the

causal association from exposure to outcome (32).

The indirect effects were recognized as the effects of exposures

on outcomes mediated through the causal mediators, which was

quantified by the product of coefficients method (32, 33).
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Statistical analysis

Results of Mendelian analysis were presented using beta, 95%

confidence interval (95%CI) and p values. P < 0.05 was considered as

statistical significance. R (version 4.0.5) packages (TwoSampleMR,

version 0.5.6) was applied to perform statistical analysis.
Results

We used graphical figures to demonstrate the entire analytical

process of Mendelian randomization (Figure 1). In summary, 251,

295 and 254 index SNPs were obtained to demonstrate the genetic

characteristics of PM2.5, NO2, and NOx, respectively

(Supplementary Tables S2–4); 155, 837, 178, 96, 77, 38, 152, 165,

136 index SNPs were obtained to demonstrate the genetic

characteristics of ASAT, BMI, HC, OB1, OB2, OB3, VAT, WC,

and WHR, respectively (Supplementary Tables S5-13). First, we

performed two sample MR to calculated the casual relationship

between air pollution and obesity traits (Figure 2A and Table 1).

IVW analysis indicated a positive causal relationship between

PM2.5 exposure and ASAT (p = 1.49E-02), BMI (p = 5.73E-03),

OB1 (p = 6.31E-03), VAT (p = 4.38E-02), WC (p = 2.85E-02); a

positive causal relationship between NO2 exposure and HC (p =

3.77E-02), OB1 (p = 1.90E-02), WC (p = 2.90E-02); a positive causal

relationship between NOx exposure and BMI (p = 4.84E-02), HC

(p = 1.74E-03), OB1 (p = 3.60E-02), OB2 (p = 1.85E-03), OB3 (p =

2.10E-03), WC (p = 1.61E-03), WHR (p = 6.37E-03).

Second, we performed two sample MR to calculated the casual

relationship between air pollution and COVID-19 (Figure 2B and

Table 2). IVW analysis suggested that there is no direct causal

relationship between them.

Third, we performed two sample MR to calculated the casual

correlation between obesity traits and COVID-19 (Figure 2C and

Table 3). IVW analysis indicated a positive causal relationship

between ASAT and COVID-19 susceptibility (p = 7.35E-03),

COVID-19 hospitalization (p = 5.88E-03). IVW analysis indicated

a positive causal relationship between BMI and COVID-19

susceptibility (p = 1.74E-27), COVID-19 hospitalization (p =

2.46E-40), COVID-19 severity (p = 1.44E-40). IVW analysis

indicated a positive causal relationship between HC and COVID-

19 susceptibility (p = 1.95E-07), COVID-19 hospitalization (p =

1.09E-09), COVID-19 severity (p = 1.64E-09). We also found a

positive causal relationship between OB1 and COVID-19

susceptibility (p = 1.20E-05), COVID-19 hospitalization (p =

7.97E-08), COVID-19 severity (p = 1.75E-07). There was a

positive causal relationship between OB2 and COVID-19

susceptibility (p = 1.51E-04), COVID-19 hospitalization (p =

5.77E-10), COVID-19 severity (p = 1.20E-07).

Meanwhile, our paper revealed a positive causal relationship

between VAT and COVID-19 susceptibility (p = 3.33E-03),

COVID-19 hospitalization (p = 1.23E-04), COVID-19 severity (p

= 2.24E-2). WC was positively related to the risks of COVID-19
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susceptibility (p = 1.44E-08), COVID-19 hospitalization (p = 3.23E-

16), COVID-19 severity (p = 5.99E-13). WHR was positively related

to the risks of COVID-19 susceptibility (p = 3.03E-04), COVID-19

hospitalization (p = 4.37E-05), COVID-19 severity (p = 3.32E-03).

In addition, MR Egger and Weighted median were used as

supplementary analysis methods for IVW, and detailed results are

presented in Supplementary Table S14. The above results suggested

that air pollution may indirectly increase the risk of COVID-19 by

affecting obesity, with obesity traits playing a mediating role.

Next, we to calculate the indirect effect played by obesity traits

in air pollution affecting COVID-19 (Figure 3 and Supplementary

Table S16). Our results found that PM2.5 indirectly increased the

risk of COVID-19 susceptibility by affecting BMI (OR = 1.01, 95%

CI = 1.00-1.02, p = 7.41E-03), OB1 (OR = 1.01, 95% CI = 1.00-1.02,

p = 2.05E-02), and WC (OR = 1.01, 95% CI = 1.00-1.02, p = 4.10E-

02). PM2.5 also indirectly increased the risk of COVID-19

hospitalization by affecting BMI (OR = 1.03, 95% CI = 1.01-1.06,

p = 6.82E-03), OB1 (OR = 1.04, 95% CI = 1.01-1.08, p = 1.49E-02),

and WC (OR = 1.04, 95% CI = 1.00-1.07, p = 3.44E-02). Moreover,

PM2.5 indirectly increased the risk of COVID-19 severity by

affecting BMI (OR = 1.05, 95% CI = 1.01-1.09, p = 6.82E-03),

OB1 (OR = 1.06, 95% CI = 1.01-1.10, p = 1.55E-02), and WC (OR =

1.05, 95% CI = 1.00-1.09, p = 3.61E-02) (Figure 3A and Table 4).

Moreover, NO2 indirectly increased the risk of COVID-19

susceptibility by affecting OB1 (OR = 1.01, 95% CI = 1.00-1.02,

p = 3.87E-02) and WC (OR = 1.01, 95% CI = 1.00-1.02, p = 4.16E-

02). Our data also indicated that NO2 indirectly increased the risk of

COVID-19 hospitalization by affecting HC (OR = 1.03, 95% CI =

1.00-1.05, p = 4.92E-02), OB1 (OR = 1.04, 95% CI = 1.00-1.07, p =

3.16E-02), and WC (OR = 1.04, 95% CI = 1.00-1.07, p = 3.49E-02)

(Figure 3B and Table 4).

Furthermore, NOx indirectly increased the risk of COVID-19

susceptibility by affecting HC (OR = 1.02, 95% CI = 1.00-1.03, p =

7.29E-03), OB2 (OR = 1.02, 95% CI = 1.00-1.03, p = 1.62E-03), WC

(OR = 1.02, 95% CI = 1.01-1.03, p = 5.85E-03), and WHR (OR =

1.01, 95% CI = 1.00-1.02, p = 2.95E-02). NOx indirectly increased

the risk of COVID-19 hospitalization by affecting HC (OR = 1.04,

95% CI = 1.01-1.07, p = 5.35E-03), OB2 (OR = 1.05, 95% CI = 1.02-

1.09, p = 5.41E-03), WC (OR = 1.06, 95% CI = 1.02-1.10, p = 3.26E-

03), and WHR (OR = 1.03, 95% CI = 1.00-1.06, p = 2.33E-02). NOx

indirectly increased the risk of COVID-19 severity by affecting HC

(OR = 1.06, 95% CI = 1.02-1.10, p = 5.45E-03), OB2 (OR = 1.07,

95% CI = 1.02-1.12, p = 7.30E-03), WC (OR = 1.07, 95% CI = 1.02-

1.13, p = 3.86E-03), and WHR (OR = 1.03, 95% CI = 1.00-1.07, p =

4.56E-02) (Figure 3C and Table 4).

Finally, to enhance the reliability of our results, we used MR-

Egger-intercept test, Cochran’s Q test, and leave-one-out analysis to

perform sensitivity analysis on our results (Supplementary Figures S1–

3 and Supplementary Table S15). The results of Cochran’s Q test in

IVW showed that there is basically no heterogeneity, and the MR-

Egger-intercept test and leave-one-out analysis showed that our results

are quite reliable. The F-statistic for the instrumental variables were all

greater than 10, also indicating the reliability of the results.
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A
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C

FIGURE 1

Study design overview. (A) Explore the causal relationship between air pollution and obesity. (B) Explore the causal relationship between obesity and
COVID-19. (C) Explore the intermediary role of obesity between air pollution and COVID-19. Figure built by the Biorender.
A B C

FIGURE 2

IVW results of the causal relationship between air pollution, obesity, and COVID-19 risk. (A) IVW results of the causal relationship between air
pollution and obesity. (B) IVW results of the causal relationship between air pollution and COVID-19. (C) IVW results of the causal relationship
between obesity and COVID-19. The red color means the p-value is less than 0.05.
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Discussion

To date, several epidemiological studies have found that certain

airborne pollutants are risk factors for obesity and COVID-19 (34),

but the limitations of traditional observational study methods make

it difficult to establish a causal relationship between them. In this

paper, we conducted two-sample and two-step MR to assess the role

of air pollution exposure on obesity traits and COVID-19 based on

large-scale GWAS datasets. We found that prolonged exposure to

three air pollutant molecules (PM2.5, NO2, and NOx) increased the

risk of obesity, suggesting a causal relationship between them. There

is also a causal relationship between obesity traits and COVID-19

susceptibility, hospitalization and severity. Chronic exposure to
Frontiers in Endocrinology 06
three air pollution molecules (PM2.5, NO2, and NOx) did not

directly contribute to COVID-19 risk, but rather increased COVID-

19 susceptibility, hospitalization and severity by affecting obesity.

Given these findings, we believe that among those living in areas

with heavy air pollution, maintaining a healthy weight may help

prevent COVID-19 infections.

In recent years, numerous epidemiological studies have

explored the relationship between long-term exposure to air

pollution and obesity in different regions and populations.

However, the findings of these observational studies are

controversial. To date, most of the current evidence supports that

air pollution can contribute to the development of obesity in

children and adults, but there is also a small amount of evidence
TABLE 1 MR results of air pollution effects on obesity traits by IVW.

Exposure Outcome nSNP Beta LCI UCI p

PM2.5

ASAT 240 0.12 0.023 0.21 1.49E-02

BMI 99 0.082 0.024 0.14 5.73E-03

HC 119 0.058 -0.043 0.16 2.63E-01

OB1 113 0.38 0.11 0.65 6.31E-03

OB2 113 0.37 -0.048 0.79 8.27E-02

OB3 113 0.54 -0.21 1.30 1.59E-01

VAT 240 0.093 0.0026 0.18 4.38E-02

WC 118 0.094 0.0099 0.18 2.85E-02

WHR 119 0.074 -0.010 0.16 8.44E-02

NO2

ASAT 283 0.013 -0.083 0.11 7.87E-01

BMI 110 0.013 -0.047 0.074 6.69E-01

HC 133 0.10 0.0057 0.19 3.77E-02

OB1 127 0.33 0.055 0.61 1.90E-02

OB2 127 0.35 -0.10 0.80 1.27E-01

OB3 123 0.59 -0.13 1.31 1.10E-01

VAT 283 -0.0042 -0.090 0.081 9.23E-01

WC 131 0.090 0.0092 0.17 2.90E-02

WHR 132 0.077 -0.0093 0.16 8.04E-02

NOx

ASAT 240 0.070 -0.034 0.17 1.87E-01

BMI 99 0.062 0.00044 0.12 4.84E-02

HC 119 0.16 0.060 0.26 1.74E-03

OB1 113 0.28 0.019 0.55 3.60E-02

OB2 113 0.66 0.24 1.07 1.85E-03

OB3 113 1.16 0.42 1.90 2.10E-03

VAT 240 0.048 -0.047 0.14 3.20E-01

WC 118 0.15 0.057 0.24 1.61E-03

WHR 119 0.13 0.036 0.22 6.37E-03
Beta = log (OR). P < 0.05 were bolded.
PM2.5, Particulate matter air pollution; NO2, Nitrogen dioxide; NOX, Nitrogen oxides; ASAT, abdominal subcutaneous adipose tissue; BMI, body mass index; HC, hip circumference; OB1,
obesity class 1; OB2, obesity class 2; OB3, obesity class 3; VAT, visceral adipose tissue; WC, waist circumference; WHR, waist-to-hip ratio; UCI, Upper confidence interval; LCI, Lower confidence
interval.
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suggesting no relationship or a negative association between the

two. For example, Qian Guo et al. (35) found that the risk of

childhood obesity elevated by 10.0% (95% CI = 3.0-16.0%) for each

10 mg/m3 increment in PM2.5 exposure. Meanwhile, the risk
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associated with PM2.5 was significantly higher in groups that

were older or lived in urban areas. Another prospective cohort

study suggested a negative correlation between decreasing PM2.5

concentrations and the prevalence of obesity in children and
TABLE 3 MR results of obesity trait effects on COVID-19 by IVW.

Exposure Outcome nSNP Beta LCI UCI p

ASAT

Susceptibility

146 0.036 0.0098 0.063 7.35E-03

BMI 812 0.16 0.13 0.19 1.74E-27

HC 174 0.096 0.060 0.13 1.95E-07

OB1 88 0.035 0.020 0.051 1.20E-05

OB2 75 0.024 0.011 0.036 1.51E-04

OB3 37 0.0035 -0.0060 0.013 4.75E-01

VAT 140 0.046 0.015 0.076 3.33E-03

WC 160 0.12 0.079 0.16 1.44E-08

WHR 130 0.093 0.043 0.14 3.03E-04

ASAT

Hospitalization

140 0.083 0.024 0.14 5.88E-03

BMI 806 0.41 0.35 0.48 2.46E-40

HC 174 0.26 0.18 0.35 1.09E-09

OB1 88 0.11 0.069 0.15 7.97E-08

OB2 74 0.078 0.053 0.10 5.77E-10

OB3 37 0.014 -0.0073 0.036 1.95E-01

VAT 134 0.11 0.056 0.17 1.23E-04

WC 160 0.38 0.29 0.48 3.23E-16

WHR 130 0.23 0.12 0.34 4.37E-05

ASAT

Severity

141 0.077 -0.0058 0.16 6.84E-02

BMI 811 0.59 0.50 0.67 1.44E-40

HC 174 0.36 0.25 0.48 1.64E-09

(Continued)
TABLE 2 MR results of air pollution effects on COVID-19 by IVW.

Exposure Outcome nSNP Beta LCI UCI p

PM2.5

Susceptibility

249 0.040 -0.022 0.10 2.06E-01

NO2 289 0.054 -0.0072 0.12 8.35E-02

NOx 247 0.013 -0.052 0.079 6.92E-01

PM2.5

Hospitalization

247 0.10 -0.041 0.25 1.59E-01

NO2 287 0.084 -0.052 0.22 2.24E-01

NOx 247 0.039 -0.10 0.18 5.90E-01

PM2.5

Severity

247 0.044 -0.18 0.27 6.97E-01

NO2 288 0.15 -0.046 0.35 1.31E-01

NOx 247 0.12 -0.093 0.33 2.70E-01
Beta = log (OR).
PM2.5, Particulate matter air pollution; NO2, Nitrogen dioxide; NOX, Nitrogen oxides; UCI, Upper confidence interval; LCI, Lower confidence interval.
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adolescents, suggesting that cleaning up airborne pollutants could

prevent the development of obesity in these populations (36). Sara

Fioravanti et al. (37) found no association between exposure to

vehicle traffic-related air pollutants and obesity-related indicators

such as BMI and abdominal fat during childhood. Jian V Huang

et al. (38) found that high air pollutants in childhood were related to

a lower BMI at age 13 to 15 years.

Limited reports suggested that air pollution may contribute to

obesity by affecting adipocyte function through mechanisms such as

cellular inflammation or oxidative stress. For example, animal

experiments have shown that PM2.5 exposure may cause

metabolic disorders of lipid synthases and fatty acid transporter

proteins in adipose tissue and liver through the Nrf2/PPAR

pathway, leading to adipose tissue overgrowth (39). Cellular

experiments have shown that acute or chronic exposure to PM2.5

can lead to the overproduction of cytoplasmic reactive oxygen

species (ROS), induce oxidative damage and activate the oxygen-

sensitive NRF2 and NF-kB signaling pathways (40). In current

study, we confirmed, using Mendelian randomization analysis,

PM2.5 as a direct cause of various obesity-related parameters
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such as ASAT, BMI, OB1, VAT and WC. In addition, NO2 is a

direct cause of elevated risk for HC, OB1 and WC; and NOx is a

direct cause of elevated risk for BMI, HC, OB1, OB2, OB3, WC

and WHR.

The prevalence of overweight/obesity has continued to increase

worldwide over the past half century, currently affecting 2 billion

adults, with 770 million having obesity (41). Obesity is a major

health challenge because it greatly increases the risk of many

chronic diseases, which leads to reduced quality of life and life

expectancy (42). In particular, with the focus on COVID-19 from

2019, more and more people are focusing on the correlation

between obesity and COVID-19. Studies have shown that obesity

may influence the response and prognosis of COVID-19 through a

variety of mechanisms such as immune response, metabolic

abnormalities and the gut-lung axis (43). An observational study

that included 5,279 participants showed that COVID-19 patients

with a BMI ≥40 kg/m2 had a more than 2-fold increased risk of

hospitalization compared with patients of normal weight (OR = 2.

5; 95% CI = 1.8-3.4), after excluding the effects of age, gender, and

race (44). Similarly, in another study conducted by Norbert Stefan
TABLE 3 Continued

Exposure Outcome nSNP Beta LCI UCI p

OB1 89 0.14 0.089 0.20 1.75E-07

OB2 75 0.10 0.065 0.14 1.20E-07

OB3 37 0.031 -0.0046 0.066 8.87E-02

VAT 134 0.11 0.015 0.20 2.24E-02

WC 160 0.48 0.35 0.61 5.99E-13

WHR 131 0.26 0.087 0.44 3.32E-03
Beta = log (OR). P < 0.05 were bolded.
Abdominal subcutaneous adipose tissue, ASAT; Body mass index, BMI; Hip circumference, HC; OB1, obesity class 1; OB2, obesity class 2; OB3, obesity class 3; Visceral adipose tissue, VAT;
Waist circumference, WC; Waist-to-hip ratio, WHR; Upper confidence interval, UCI, Lower confidence interval, LCI.
A B C

FIGURE 3

The mediating role of obesity between air pollution and COVID-19. (A) The mediating role of obesity between PM2.5 and COVID-19. (B) The
mediating role of obesity between NO2 and COVID-19. (C) The mediating role of obesity between NOX and COVID-19. Figure built by the
Biorender.
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et al. (45), the adjusted OR for admission of COVID-19 inpatients

with currently states obesity or BMI >= 30 kg/m2 in the past 12

months was 1.43. Meanwhile, many evidence support that obesity is

a key indicator for the severity of COVID-19 inpatients (46, 47).

These studies generally concluded that obesity prolongs the time to

intensive care unit admission, intubation, and mechanical

ventilation in COVID-19 patients (48).

Another observational study including more than 140,000

COVID-19 patients showed that the adjusted risk ratio for

patients with BMI >=45 kg/m2 admitted to intensive care unit
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(ICU) was 1.16 (95% CI = 1.11-1.20). And, the adjusted risk ratio

for patients on mechanical ventilation increased from 1.12 (25-29.9

kg/m2) to 2.08 (BMI >= 45 kg/m2) (49). Further studies suggested

that obesity may increase the susceptibility and severity of COVID-

19 by upregulating the expression of angiotensin-converting

enzyme 2 receptors that bind to SARS-CoV-2 (50). Recent studies

suggested that obesity may potentially reduce the long-term efficacy

of COVID-19 vaccine by affecting the collective immune system,

suggesting that we should closely monitor the efficacy of COVID-19

vaccination in this vulnerable group of obesity (51). It has been
TABLE 4 Significant indirect effects of air pollution on COVID-19 mediated by obesity traits.

Exposure Mediate Outcome OR LCI UCI p

PM2.5

BMI

Susceptibility

1.01 1.00 1.02 7.41E-03

OB1 1.01 1.00 1.02 2.05E-02

WC 1.01 1.00 1.02 4.10E-02

BMI

Hospitalization

1.03 1.01 1.06 6.82E-03

OB1 1.04 1.01 1.08 1.49E-02

WC 1.04 1.00 1.07 3.44E-02

BMI

Severity

1.05 1.01 1.09 6.82E-03

OB1 1.06 1.01 1.10 1.55E-02

WC 1.05 1.00 1.09 3.61E-02

NO2

OB1
Susceptibility

1.01 1.00 1.02 3.87E-02

WC 1.01 1.00 1.02 4.16E-02

HC

Hospitalization

1.03 1.00 1.05 4.92E-02

OB1 1.04 1.00 1.07 3.16E-02

WC 1.04 1.00 1.07 3.49E-02

HC

Severity

1.04 1.00 1.08 4.95E-02

OB1 1.05 1.00 1.09 3.24E-02

WC 1.04 1.00 1.09 3.67E-02

NOx

HC

Susceptibility

1.02 1.00 1.03 7.29E-03

OB2 1.02 1.00 1.03 1.62E-02

WC 1.02 1.01 1.03 5.85E-03

WHR 1.01 1.00 1.02 2.95E-02

HC

Hospitalization

1.04 1.01 1.07 5.35E-03

OB2 1.05 1.02 1.09 5.41E-03

WC 1.06 1.02 1.10 3.26E-03

WHR 1.03 1.00 1.06 2.33E-02

HC

Severity

1.06 1.02 1.10 5.45E-03

OB2 1.07 1.02 1.12 7.30E-03

WC 1.07 1.02 1.13 3.86E-03

WHR 1.03 1.00 1.07 4.56E-02
Beta = log (OR).
PM2.5, Particulate matter air pollution; NO2, Nitrogen dioxide; NOX, Nitrogen oxides; ASAT, abdominal subcutaneous adipose tissue; BMI, body mass index; HC, hip circumference; OB1,
obesity class 1; OB2, obesity class 2; OB3, obesity class 3; VAT, visceral adipose tissue; WC, waist circumference; WHR, waist-to-hip ratio; UCI, Upper confidence interval; LCI, Lower confidence
interval.
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shown that the adipocyte membrane receptors ACE2, DPP4 and

CD147 as well as the expression of SARS-CoV-2 entry protease-

furin are upregulated in patients with obesity (52). These receptors

and proteins may therefore be potential targets for SARS-CoV-2

attack and contribute to the severe consequences of COVID-19 in

patients with obesity by enhancing systemic inflammation and

immune responses. However, these observational studies do not

provide powerful evidence for a causal correlation between obesity

and COVID-19 risk. In our MR study, we found that most obesity

traits, including BMI, HC, OB1, OB2, VAT, WC andWHR, directly

increase COVID-19 risk. Our findings are generally consistent with

previous observational studies and will provide theoretical support

for future prevention of COVID-19 and improved prognosis of

patients with COVID-19.

Long-term exposure to air pollution can damage the body’s

immune system to defend against external pathogens, which can

cause a lot of diseases. In recent years, several studies have shown

that exposure to air pollution, such as PM2.5, NO2, and O3, can

increase the susceptibility and severity of COVID-19 (9). Although

the molecular mechanisms by which pollutant exposure affects the

pathogenesis of COVID-19 remain unknown. Studies suggested

that air pollutants may contribute to virus transmission by

modulating mucociliary clearance, altered proteases required for

viruses, interferon production, mediated autophagy, immune

presenting cell activation, and epithelial cell permeability (34). An

epidemiological study from the United Kingdom found that PM2.5

was a major contributor to COVID-19 hospitalization in England,

with a 12% increase in COVID-19 cases for every 1 cubic meter

increase in the long-term mean PM2.5 (53). Moreover, the

relationship between air pollution and COVID-19 mortality

remained significant after adjusting for other relevant variables.

An observational study that collected data on COVD-19 from

3,087 countries in the United States showed that a 1 µg/m3 elevation in

PM2.5 increased COVID-19 mortality by 8% (95% CI: 2%-15%) (54).

In this present study, we used Mendelian randomization and found no

evidence that air pollution directly increased COVID-19 risk.

Interestingly, we found that air pollution can indirectly increase

hospitalization, susceptibility and severity of COVID-19 by

contributing to obesity. We found that PM2.5 and NOx increased

COVID-19 risk (hospitalization and susceptibility) through BMI.

PM2.5, NO2 and NOx increased COVID-19 susceptibility through

WC. NO2 and NOx increased COVID-19 hospitalization through HC.

NOx increased COVID-19 hospitalization through WC and WHR,

and increased COVID-19 severity through WC and HC. More

attention should be paid to those with obesity living in heavy air

pollution in terms of COVID-19 prevention and protection, because

obesity caused by air pollution might mediate increasing COVID-19

susceptibility, hospitalization and severity. Encouraging weight loss for

this population is needed.

According to our understanding, this is the first systematic

exploration of the causal correlation between air pollution and

COVID-19 and whether obesity traits play a possible mediating role

between them, using an MR approach. We used latest and

comprehensive GWAS data (exposure, mediators, and outcomes)

to systematically explore the relationship between the three, and will
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contribute in part to reducing the prevalence of obesity and

COVID-19 in the future, as well as raising awareness of

environmental protection. However, our study has several

limitations. First, our studies were based on online public

databases and, therefore, we could not validate them in our own

or other databases. Second, obesity may be only one of many

mediators of the risk of air pollution affecting COVID-19, and

there may be other mediators between the two. Third, this paper

only explored the causal correlation between air pollution, obesity

and COVID-19 using Mendelian randomization, and the exact

molecular mechanisms of the interactions still need to be explored

in future studies.
Conclusion

To summarize, this study exposes a causal relationship between

air pollution, obesity and COVID-19. Our results suggested that air

pollution can increase the risk of obesity and indirectly increase

COVID-19 susceptibility and severity through mediating factors

such as obesity. However, the specific mechanism of action between

the three has not been clarified, and the detailed pathological

mechanisms and molecular pathways need to be further explored

in future studies.
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