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Newborn screening for congenital adrenal hyperplasia using 17-

hydroxyprogesterone by immunoassay remains controversial despite screening

been available for almost 40 years. Screening is confounded by poor

immunoassay specificity, fetal adrenal physiology, stress, and illness which can

result in a large number of false positive screening tests. Screening programmes

apply higher screening thresholds based on co-variates such as birthweight or

gestational age but the false positive rate using immunoassay remains high. Mass

spectrometry was first applied to newborn screening for congenital adrenal

hyperplasia over 15 years ago. Elevated 17-hydroxprogesterone by immunoassay

can be retested with a specific liquid chromatography tandem mass

spectrometry assay that may include additional steroid markers. Laboratories

register with quality assurance programme providers to ensure accurate steroid

measurements. This has led to improvements in screening but there are

additional costs and added laboratory workload. The search for novel steroid

markers may inform further improvements to screening. Studies have shown that

11-oxygenated androgens are elevated in untreated patients and that the adrenal

steroidogenesis backdoor pathway is more active in babies with congenital

adrenal hyperplasia. There is continual interest in 21-deoxycortisol, a specific

marker of 21-hydroxylase deficiency. The measurement of androgenic steroids

and their precursors by liquid chromatography tandem mass spectrometry in

bloodspots may inform improvements for screening, diagnosis, and treatment

monitoring. In this review, we describe how liquid chromatography tandemmass

spectrometry has improved newborn screening for congenital adrenal

hyperplasia and explore how future developments may inform further

improvements to screening and diagnosis.
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1 Introduction

Congenital adrenal hyperplasia (CAH) caused by mutations in

CYP21A2 results in reduced activity of 21-hydroxylase, an enzyme

essential to the synthesis of aldosterone and cortisol. If not detected,

the severest form of CAH, leads to life-threatening salt-wasting

(SW-CAH) and hypoglycaemia in the early neonatal period.

Patients with the simple virilising form of CAH (SV-CAH) have

sufficient enzyme activity to maintain electrolyte balance under all

but the most extreme conditions (1). The metabolic block in CAH

diverts adrenal steroidogenesis towards excessive androgen

production, stimulated by a lack of negative feedback on the

hypothalamus and pituitary glands by cortisol, causing pre-natal

virilisation. Without careful clinical management, increased adrenal

androgens (and the aromatization to oestrogens) causes rapid post-

natal growth, epiphyseal maturation, premature puberty and

subfertility in both sexes. Undetected cases also carry a risk,

particularly during childhood, of an acute adrenal crisis during

periods of fever or infection. A milder non-classic form of CAH

results from a partial enzyme deficiency (NC-CAH) and is

considered one of the most common recessive inherited disorders

(2), with variable degrees of androgen excess which may lead to

rapid growth and premature puberty in childhood and subfertility

in adulthood (1).
2 Newborn screening for CAH

Newborn screening (NBS) for CAH, available in most

developed countries, is successful in preventing salt-wasting

adrenal crises with the additional benefits of earlier treatment and

reversal of incorrect sex assignment. Measurement of bloodspot 17-

hydroxyprogesterone (17OHP), the main accumulating adrenal

steroids, by high throughput automated immunoassay in the

newborn period is usually used as a screening test. Mutation

analysis or characteristic steroid profiles in plasma, with or

without an adrenal stimulation test, can confirm the diagnosis (1).

The accuracy of screening has been limited by two main

confounding factors. Firstly, dynamic changes in the fetal

hypothalamic-pituitary-adrenal (HPA) axis in the early third

trimester can lead to the accumulation of large quantities of

adrenal steroids and their sulfated conjugates in blood that

interfere with immunoassays resulting in falsely elevated

measurements of bloodspot 17OHP (3). Secondly, the late

expression of some adrenal enzymes in babies born before term,

and HPA stimulation of steroidogenesis in stressed or ill neonates,

increases the blood concentration of 17OHP (4, 5).

Many NBS laboratories use birthweight (BW) or gestational age

(GA) adjusted laboratory thresholds for 17OHP immunoassays as

there is a negative correlation between GA and BW with 17OHP

measurements (6, 7). Additional improvements may be possible

with the combined use of BW and GA (8) or with the collection of

additional screening samples (9). Another approach is to use a

second-tier immunoassay after the removal of interfering

metabolites with a non-polar volatile solvent. While reducing the
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number of falsely elevated results, the positive predictive value

(PPV) of CAH screening remains one of the lowest of disorders

included in some NBS programmes (10). Indeed, a review of

screening in France led to the recommendation for the

discontinuation of screening in premature babies due to the

unacceptably low PPV (0.4%) of screening and the close clinical

monitoring that is available in hospitalised babies (11), while

screening has not yet been recommended in the United Kingdom

(12) in part due to the limitations of immunoassay.

Newborn screening using 17OHP immunoassays has high

sensitivity in identifying SW-CAH, but some cases of SV-CAH

and most NC-CAH will not be detected. In a retrospective analysis

of 143 cases of CAH identified by newborn screening over 26 years

in Sweden, the sensitivity of screening for SW-CAH, SV-CAH and

NC-CAH were 100%, 79.7% and 32.4% respectively when

molecular analysis was used to define disease classification (13).

Higher 17OHP thresholds for babies born before term will improve

the PPV of screening but may reduce the screening sensitivity for

SV-CAH, although cases will be missed even with low screening

thresholds for 17OHP (14, 15). In general, variations in screening

accuracy can also be associated with differences in the timing of

sample collection (16), the number of repeat samples collected (9,

16), whether second tier testing is used as part of the screening

pathway (17) and how different screening programmes define a

positive screening test. The most frequent recommended age for

screening sample collection is between 24-72 hours, as later

collections increase the likelihood of progressive salt wasting prior

to screening notification. However, collection of additional later

samples, such as occurs routinely in two-screen states, increases the

sensitivity of screening for SV-CAH and NC-CAH (9). In recent

years, many screening protocols have incorporated second-tier

liquid chromatography-tandem mass spectrometry testing, which

accurately measures multiple informative steroids simultaneously

and can further improve the efficiency of screening (15, 18, 19).
3 Blood spot steroids by liquid
chromatography –tandem
mass spectrometry

Tandem mass spectrometry (LCMSMS) is a core analytical

technology in many clinical and public health laboratories. The

technique facilitates the simultaneous quantitation of low molecular

weight metabolites in biological specimens. In NBS, target

metabolites are extracted from punched bloodspot disks with a

suitable volatile polar solvent, then nebulized and ionised through a

heated high voltage probe. The resulting molecular ions enter the

mass spectrometer in a gaseous state for mass filtering and

detection. Mass detection is usually in the multiple reaction

monitoring (MRM) mode due to the high signal to noise ratios

that can be achieved. Molecular ions are focused through the first

mass filter, then fragmented, after which specific mass fragments

associated with the molecular ion can be detected and measured.

Rapid switching of both mass filters allows specific molecular to

fragment ion transitions to be collected for each target metabolite.
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For steroid analysis, additional sample clean up using liquid

chromatography removes ion suppressing compounds that are

present in bloodspots, enabling the sensitive measurement of

nanomolar concentrations of steroids. The use of matched

isotopic labelled steroids improves the accuracy of measurement

as they can be used to correct for any loss of target steroids during

the sample preparation procedure.

Improvements in NBS for CAH have been possible with the

introduction of LCMSMS to measure steroids in bloodspots (18–

20). Commonly measured steroid metabolites such as 17OHP,

androstenedione (A4), 11-deoxycortisol (11DF), 21-deoxycortisol

(21DF) and cortisol (F) are particularly suited to LCMSMS analysis.

These and other steroids with a D4 ring structure (4-pregnene or 4-
androstene) are proton acceptors and are readily ionised using the

electrospray technique universally used by newborn screening

laboratories. Other informative adrenal steroids in the D5
pathway such as dehydroepiandrosterone (DHEA) are more

difficult to ionise while testosterone (T) and dihydrotestosterone

(DHT) are not adrenal specific and are normally not used in

screening protocols.

Early LCMSMS methods described the measurement of

17OHP, A4 and F in bloodspots as a second-tier test on the same

bloodspot specimen when the initial 17OHP immunoassay

measurements were elevated (19). Steroids are extracted from

bloodspots using a solvent such as acetonitrile, methanol or

diethylether after which eluants are dried and reconstituted in a

suitable solvent for LCMSMS or undergo further purification using

an additional solid phase extraction step (21, 22) before analysis.

Additional informative steroids such as 11DF and 21DF were

incorporated and methods now have established screening

protocols using 17OHP, 21DF and a combination of steroid ratios

(18, 20). The metabolic block in CAH leads to accumulation of

blood 17OHP, A4 and 21DF while the distal metabolites 11DF and

F will be reduced. Several methods have incorporated an expanded

profile that includes other D4 steroids such as progesterone,

corticosterone, 11-deoxycorticosterone, testosterone and cortisone

but there is no indication that these have been incorporated into

NBS protocols (23, 24). Most detailed published methods

(Supplementary Table) use standard C18 reverse phase

chromatography columns which are particularly suited to

separate informative steroids in less than 10 minutes (18–21,

23–30).

Accurate measurement is made possible with the incorporation

of bloodspot steroid calibrators. Whole blood is washed with saline

to remove endogenous steroids and then enriched with known

quantities of target steroid metabolites in a serum substitute to

manufacture bloodspot calibrators (19, 20, 24). In 2006, a pilot

proficiency scheme was made available by the Newborn Quality

Assurance Programme provided by the Center for Disease Control

and Prevention (CDC, Atlanta, USA). The scheme distributed

bloodspots enriched with known quantities of 17OHP, A4 and F

to each participating laboratory. Participation in the scheme

resulted in improved analyte recoveries and enhanced sample

preparation and continuous improvements to second tier testing

for CAH (31). The scheme has now expanded to include 11DF and

21DF while participation in the United States has grown from 11 in
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2009 to 17 in 2019. Newborn screening for CAH is now available in

Australia and the Royal College of Pathologists of Australasia has

introduced a pilot scheme for bloodspots steroids to assist six

regional laboratories in assessing their performance. Use of short

analytical chromatography columns (≤50mm) can speed up

analysis times (26) that may be sufficiently rapid for urgent

analysis. Several studies have performed prospective and

retrospective analyses of bloodspots to determine newborn

reference intervals for steroids included in methods (20, 23, 24)

but ranges are highly variable due to age, BW and GA ranges that

are applied. There remains an ongoing need for the development of

local population reference ranges after assay validation.
4 Use of LCMSMS to improve
screening accuracy

The primary goal of bloodspot steroid analysis in NBS for CAH

is to reduce the number of false positive tests encountered using

immunoassay while maintaining screening sensitivity. False positive

tests result in increased healthcare costs and can lead to lasting

anxiety in families (32). LCMSMS is not suitable as a primary

screening test as samples are processed sequentially and the cost of

dedicated instrumentation is high. The method is almost universally

used as a second-tier test when first tier immunoassay 17OHP

measurements are elevated.

Analysis of 17OHP by LCMSMS in residual bloodspots revealed

that measurements were lower in NBS specimens when compared

to immunoassay and that correlation between the methods of

measurement was poor (19, 20) due to the improved analytical

specificity of LCMSMS. In a retrospective study from Minnesota,

measurement of 17OHP by LCMSMS reduced the false positive rate

by 55% due to the more specific nature of the second-tier analysis

(18). However, prospective data over a 3-year period from the same

screening programme, revealed that 41% of specimens reflexed to

second tier LCMSMS had 17OHP measurements above the

laboratory threshold for a positive screening test (33), indicating a

need for alternative approaches to improve the positive

predictive value.

One suggested approach is to use the steroid ratio (17OHP

+A4)/F to further distinguish between babies with CAH and

unaffected newborns. When used in combination, 17OHP and

(17OHP+A4)/F, was modelled to reduce the FP rate by 93% in

Minnesota (USA) when compared to an immunoassay only

approach (18, 19). Similar improvements in the Utah (USA)

screening programme found that the false positive rate was

reduced from 2.6% to 0.09% (94% improvement) when using

17OHP with (17OH+A4)/F as second tier markers (34). In an

Australian prospective study using 2 years of screening data, the

positive predictive value of screening was 71.4% with the combined

use of 17OHP and (17OHP+A4)/F (28). The use of BW or GA

adjusted screening cut-offs for both 17OHP and (17OHP+A4)/F

remain necessary as both parameters show a negative correlation

with both GA and BW (8, 29). Incorporation of 11DF and 21DF

measurements facilitated the calculation of additional informative

steroid ratios such as 17OHP/11DF and (17OHP+21DF)/F (20, 21).
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Most studies showed in improvements in specificity without any

loss of screening sensitivity, however retrospective analysis of

screening data from Minnesota revealed a reduction in screening

sensitivity when second tier LCMSMS was introduced, partly due to

the selection of screening thresholds for LCMSMS (14). It should be

noted that 11DF and F are not stable when stored at room

temperature for extended periods. The use of LCMSMS analysis

of stored NBS specimens to set steroid ratio parameter screening

threshold such as (17OHP+A4)/F or 17OHP/11DF may lead to

inappropriately high thresholds that impact screening

accuracy (35).

Incorporating 21DF as an additional bloodspot marker offers

further improvements to screening for CAH as 21DF has long been

recognised as a sensitive and specific marker of 21-hydroxylase

deficiency (36, 37). In CAH, accumulating 17OHP is predominantly

converted to 21DF by adrenal specific cytochrome P450 11b-
hydroxylase (CYP11B1). In a retrospective and prospective study

from Germany, 21DF showed a clear distinction between CAH

affected and unaffected newborns. Additionally, the use of (17OHP

+21DF)/F led to further improvements in sensitivity (20). A further

benefit of using 21DF is that levels do not appear to correlate with

BW or GA (37).

Two screening programmes have evaluated the use of 21DF

alone as a second-tier screening marker. In a study fromWisconsin,

906 newborn screening specimens were subjected to 21DF analysis

(851 unaffected, 55 affected with CAH) that yielded a test PPV of

91.7% when the laboratory threshold for 21DF was optimised for
Frontiers in Endocrinology 04
100% sensitivity (37). A similar outcome was found in a screening

pilot from the Netherlands which found the 21DF eliminated false

positive results if used following 17OHP immunoassay (38). In both

studies there were mild elevations in 21DF in some specimens from

babies that were presumed not to have CAH which would result in a

few additional sample recollections.

To date, prospective studies from newborn screening

programmes, summarised in Table 1, have shown that the use of

LCMSMS as a second tier test incorporating 17OHP, steroid ratios

and 21DF can improve the PPV of NBS for CAH. Some milder

cases of CAH may be missed by this two-tier approach.
5 Future directions – bloodspot
androgen markers in CAH

5.1 Pathways to androgen synthesis in CAH

The enzyme deficiency in CAH diverts adrenal steroidogenesis

towards excessive adrenal androgen production. There has been

significant progress in our understanding of the pathways to

androgen synthesis in CAH that raises the possibility of using less

recognised androgen metabolites as biomarkers of CAH (42). In the

classic adrenal steroidogenesis pathway, A4 and T are synthesised

via DHEA as 17OHP is poorly converted directly to A4 by 17a-
hydroxylase/17,20 lyase (CYP17A1). In CAH, accumulating

17OHP may overcome the low 17,20 lyase activity of CYP17A1
TABLE 1 Prospective studies on newborn screening for CAH using second tier LCMSMS analysis.

Author
No

Screens
No. 2nd Tier

Tests
CAH
cases

2nd tier
parameters

PPV before
LCMSMS

PPV After
LCMSMS

Janzen et al
2007 (20)

242,500 1609 16
17OHP

(17OHP+21DF)/F
1.0% 100%

Matern et al., 2008 (33) 204,281 1298 9
17OHP

(17OHP+A4)/F
0.8% 7.3%

Schwarz et al., 2009 (34) 64,115 1709 6
17OHP

(17OHP+A4)/F
<1.0% 9.4%

Dhillon et al., 2011 (25) 2,702,000 10,932 143
17OHP

(17OHP+A4)/F
1.3% 7.0%

Seo et al
2014 (39)

5852 104 2
17OHP

(17OHP+A4)/F
1.9% 100%

Bialk et al
2019 (29)

63,725 472 5
17OHP

(17OHP+A4)/F
1% 17%

Lai et al
2020 (28)

202,960 4218 12
17OHP

(17OHP+A4)/F
– 71.4%

Stroek et al
2021 (38)

– 350 37 21DF 24.7% 53%

Cavarzere et al., 2022
(40)

99518 – 3
17OHP,

21DF,11DF
(17OHP+A4)/F

0.24% 2.54%

de Hora et al., 2022 (15) 236,835 1915 11
17OHP, 21DF
(17OHP+A4)/F

1.7% 45.8%

Lind Holst et al., 2022
(41)

593,435 15121 29
17OHP

(17OHP+A4)/F
– 55.8%
frontiersin.org

https://doi.org/10.3389/fendo.2023.1226284
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


de Hora et al. 10.3389/fendo.2023.1226284
and drive the direct conversion of 17OHP to A4. In target tissues T

is converted by 5a reductase (types 1 or 2) to the potent androgen

dihydrotestosterone (DHT). Additionally, A4 may be 5a-reduced
to 5a-androstandione (5adione) before 17b-reduction by to

DHT (43).

In 2004, a “backdoor” pathway was described with a metabolic

route from 17OHP to DHT that does not involve A4 or T. In CAH,

accumulating 17OHP is 5a- and 3a- reduced before being

converted to androsterone by CYP17A1 with subsequent

reduction and oxidation steps yielding DHT (44). Urinary steroid

profiles in babies with CAH revealed that this pathway is active in

CAH in the newborn period (45). The backdoor pathway may also

make further contributions to the total androgen pool in CAH in

the newborn period. In vitro studies have demonstrated that 11-

hydroxylated corticosteroids such as 21DF, 21-deoxycortisone

(21DE) and 11b-hydroxyprogesterone (11bOHP) can be

converted by backdoor pathway enzymes to yield 11-

ketodihydrotestosterone (11KDHT) (46), an androgen with a

similar potency to DHT (Figure 1). Almost 60 years ago, Jailer

and colleagues demonstrated that 21DF and not 17OHP dosing

resulted in increased 11-hydroxyandrosterone (11OHAST)

excretion, an indication that 21DF is an androgen precursor (47).

Whether the route is via the backdoor pathway or by the direct

conversion of 21DF to 11OHA4 via CYP17A1, 21DF may be an

important contributor to the androgen pool in CAH.

More recently, there has been growing interest in the role of 11-

oxygenated androgens in CAH. The adrenal glands produce a series

of C19 steroids via the adrenal specific enzyme, CYP11B1. The most
Frontiers in Endocrinology 05
abundant of these 11-oxygenated androgens i s 11-

hydroxyandrostenedione (11OHA4), which normally circulates at

higher concentrations than A4 (48). In CAH, accumulating A4 is

readily hydroxylated by CYP11B1 leading to higher circulating

concentrations of 11OHA4 and then oxidised in the periphery to

11-ketoandrostenedione (11KA4). Additionally, accumulating T is

converted by adrenal CYP11B1 to 11OH-testosterone and then

converted to 11-ketotestosterone (KT). Both 11KT and T have

similar androgenic potency. Accumulating 11KA4 can be converted

to 11KT by 17b-reduction in peripheral tissues (Figure 1). At

specific target tissues such as adipose, prostate and skin, T,

11OHT and 11KT can be converted to the most potent

androgens, DHT and KDHT. In treated classical CAH patients,

plasma studies have shown that 11-oxygenated C19 steroids are the

dominant circulating adrenal specific androgen precursors (48).

Additionally, Turcu and colleagues revealed that adrenal 11-

oxygenated androgen are disproportionally elevated compared to

T and A4 in non-classical CAH in unstimulated blood tests (49).
5.2 Bloodspot androgen measurements for
NBS for CAH

The challenge for NBS laboratories is the development of

methods that can measure androgens and androgen precursor

steroids in bloodspot specimens in a reliable way and to

characterize the typical profiles in bloodspots from babies with

classical CAH and unaffected newborns. While studies have
FIGURE 1

Possible pathways to androgen synthesis in CAH. Steroidogenesis is diverted by the metabolic block in CAH in classic pathway via A4 and DHEA.
Accumulating 17OHP can overcome the relatively low A4 substrate affinity for 17a-hydroxylase/17,20 lyase CYP17A1 that results in A4 been directly
converted to T. Subsequent 5a reduction (SRD5A) of T to DHT, one of the 2 most potent androgens, occurs in target tissues (Solid arrows).
Accumulating 17OHP can also be metabolised to DHT via the steroidogenesis backdoor pathway, after 5a and 3a reduction the 17,20-lyase activity
of CYP17A1 forms the C19 steroid androsterone (dashed arrows) which is then converted to DHT by subsequent reductive (17bHSD6) and oxidative
reactions (17bHSD3). In vitro studies have suggested that additional accumulating C21 steroids, such as 21-deoxycortisol (21dF), 21-deoxycortisone
(21dE) and 11-hydroxyprogesterone (11OHP4) can be metabolised by the backdoor pathway to 11-ketodehydrotestosterone (11KDHT), a C19 steroid
with similar androgenic potency as DHT (dashed arrows). An additional route for androgen synthesis is through the C19 oxygenated steroid pathway
(dotted arrows). Accumulating A4 and T are converted to 11OHA4 and 11OHT via the adrenal specific enzyme CPY11B1. 21DF may also be converted
directly to 11OHA4 BY CYP17A1. 11OHA4 is the most abundant 11-oxygenated steroid. KT is synthesised via 11KA4 (11bHSD2, 17bHSD) and
subsequently 5a-reduced to 11KDHT. Enzymes are denoted by their coding gene. 17bHSD, 17b-hydroxysteroid dehydrogenase; CYP11B1, 11b-
hydroxylase; SRDA1/2, 5a-reductase; AKR1C2, aldo-keto reductase.
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revealed the 21DF is the most specific single corticosteroid marker

for CAH, it is not 100% sensitive or specific in newborn screening

(37, 38). The development of methods to include the 11-oxygenated

C19 steroids along with DHT and KDHT in newborn screening for

CAH may offer further improvements to screening accuracy. The

C19 oxygenated steroids will undergo sufficient ionization in

LCMSMS due to their 4-androstene structure while the saturated

androgens (11KDHT, DHT) and the 5-androstenes (DHEA) have

much lower ionization efficiencies that require more sensitive and

expensive instrumentation for reliable quantitation.

Alternatively, chemical derivatisation can be used to improve the

ionisation of steroids by electrospray ionisation. Many screening

laboratories butylate endogenous amino acids and acylcarnitines to

increase the ionisation efficiency of target compounds to screen for

amino and fatty acid breakdown disorders. Use of derivatisation to

enhance the sensitivity of steroidmeasurements has been reviewed (50,

51) but the most common method for enhancing the sensitivity of D5
steroids and C19 androgens is an oximation reaction. This is usually

done as a last step in sample preparation and does not require any

additional sample clean up after the derivatisation reaction is complete.

In a method described by Caron and colleagues, hydroxylamine

derivatised C19-oxygenated steroids were measured in plasma at a

lower limit of quantification than other non-derivatised methods for

11A4OH, 11KA4, 11OHT, 11KT, 11KDHT, 11OHAST and 11KAST

(52). The derivatisation method has also been applied to measure a

broader range of steroids including DHT, corticosteroids and the

steroids of the D5 pathway (53). while methoxylamine derivatisation

was used tomeasure 17 ketosteroids in plasma (54). In a further study,

oximation of ketosteroids before LCMSMS improved the lower limit of

quantification for DHTby 25-foldwhen compared to an underivatized

approach and greater improvements were achieved for DHEA and

21DF (55).

One of the limitations of derivatising steroids before LCMSMS

analysis is that there is no universal derivatising chemical available

for all steroid classes. Oximation only targets steroids with a

carbonyl group, however almost all informative steroids in CAH

have carbonyl functional groups. A second limiting factor of using

hydroxylamine as a derivatising reagent is that several isoforms of

target steroids can occur as hydroxylamine groups can form in an a
or b configuration and steroids with 2 or more carbonyl group

generally result in 2 chromatographic peaks. Lastly, isobaric

androgen derivatives may also co-elute and chromatographic

conditions should be sought to ensure they are appropriately

separated on the chosen chromatography column. In a technical

report, Hakkinen and colleagues assessed 3 types of reversed phase

columns and found that a biphenyl column had enough selectivity

to separate most of the ketosteroids that may be informative for

NBS for CAH (51).

In summary, the accuracy of newborn screening for CAH due to

21-hydroxylase deficiency is improved with the use of second tier

LCMSMS analysis. Screening programmes that use this approach

have a lower false positive rate than programmes that use

immunoassay alone. The use of additional steroid parameters

such as (17OHP+A4)/F and 21DF offer even better sensitivity and

specificity while incorporating oxygenated C19 steroids and the

potent androgens DHT and KDHT may, in the future, offer further
Frontiers in Endocrinology 06
improvements to screening performance. To date, the markedly

improved PPV due to the use of LCMSMS has strengthened the case

for CAH newborn screening, that may be further strengthened as

new markers are incorporated in NBS protocols.
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