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heart failure with preserved
ejection fraction
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and Hongjun You1*

1Department of Cardiovascular Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China,
2Department of Cardiopulmonary Rehabilitation, Xi’an International Medical Center Hospital-
Rehabilitation Hospital, Xi’an, Shaanxi, China
Background: Heart failure with preserved ejection fraction (HFpEF) is associated

with changes in cardiac metabolism that affect energy supply in the heart.

However, there is limited research on energy metabolism-related genes

(EMRGs) in HFpEF.

Methods: The HFpEF mouse dataset (GSE180065, containing heart tissues from

10 HFpEF and five control samples) was sourced from the Gene Expression

Omnibus database. Gene expression profiles in HFpEF and control groups were

compared to identify differentially expressed EMRGs (DE-EMRGs), and the

diagnostic biomarkers with diagnostic value were screened using machine

learning algorithms. Meanwhile, we constructed a biomarker-based

nomogram model for its predictive power, and functionality of diagnostic

biomarkers were conducted using single-gene gene set enrichment analysis,

drug prediction, and regulatory network analysis. Additionally, consensus

clustering analysis based on the expression of diagnostic biomarkers was

utilized to identify differential HFpEF-related genes (HFpEF-RGs). Immune

microenvironment analysis in HFpEF and subtypes were performed for

analyzing correlations between immune cells and diagnostic biomarkers as

well as HFpEF-RGs. Finally, qRT-PCR analysis on the HFpEF mouse model was

used to validate the expression levels of diagnostic biomarkers.

Results:We selected 5 biomarkers (Chrna2, Gnb3, Gng7, Ddit4l, and Prss55) that

showed excellent diagnostic performance. The nomogram model we

constructed demonstrated high predictive power. Single-gene gene set

enrichment analysis revealed enrichment in aerobic respiration and energy

derivation. Further, various miRNAs and TFs were predicted by Gng7, such as

Gng7-mmu-miR-6921-5p, ETS1-Gng7. A lot of potential therapeutic targets

were predicted as well. Consensus clustering identified two distinct subtypes

of HFpEF. Functional enrichment analysis highlighted the involvement of DEGs-

cluster in protein amino acid modification and so on. Additionally, we identified

five HFpEF-RGs (Kcnt1, Acot1, Kcnc4, Scn3a, and Gpam). Immune analysis

revealed correlations between Macrophage M2, T cell CD4+ Th1 and

diagnostic biomarkers, as well as an association between Macrophage and

HFpEF-RGs. We further validated the expression trends of the selected

biomarkers through experimental validation.
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Conclusion: Our study identified 5 diagnostic biomarkers and provided insights

into the prediction and treatment of HFpEF through drug predictions and

network analysis. These findings contribute to a better understanding of HFpEF

and may guide future research and therapy development.
KEYWORDS
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diagnostic biomarkers, machine learning, immunoscape, targeted drug prediction
1 Introduction

Heart failure with preserved ejection fraction (HFpEF) is a

type of heart failure that occurs when the diastolic function of the

heart is impaired. In HFpEF, the cardiac ejection fraction remains

within the normal range, but the condition is characterized by

ventricular underfilling, left atrial dilatation, and elevated left

atrial pressure (1). The prevalence of HFpEF is believed to be

increasing and is associated with factors such as age, gender,

obesity, and hypertension (2). The diagnosis of HFpEF relies on

clinical symptoms, electrocardiogram, cardiac ultrasound, and

other examination methods, but there are no specific diagnostic

biomarkers (3). Therefore, it is crucial to identify potential

biomarkers that can aid in the accurate diagnosis of HFpEF.

Energy metabolism is essential for maintaining normal

physiological functions in the body, including processes

like glycolysis, the tricarboxylic acid cycle, and oxidative

phosphorylation. The heart’s energy supply primarily relies on

the metabolism of glucose, fatty acids, and lactate (4). Genes and

proteins related to energy metabolism play critical roles in various

human diseases, including cardiovascular disease (5), diabetes,

and obesity (6). A deeper understanding of the molecular

mechanisms underlying energy metabolism may provide

insights into novel therapeutic approaches for HFpEF (7, 8).

To identify potential diagnostic biomarkers and therapeutic

targets for HFpEF, this study conducted bioinformatics analysis

using the mouse HFpEF transcriptome from the GEO database.

Through screening and research, we identified five potential

biomarkers and constructed a regulatory network based on

energy metabolism-related genes. These biomarkers have the

potential to serve as diagnostic biomarkers for HFpEF and may

provide a foundation for discovering new therapeutic targets.
2 Materials and methods

2.1 Source of data

The GSE180065 dataset was sourced from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE180065).

The GSE180065 dataset (GPL24247) comprises RNA-seq data
02
obtained from heart tissue samples of 10 HFpEF mice and five

control mice. To construct the HFpEF mouse model in this publicly

available dataset, wide-type male C57BL/6J mice were treated with a

combination of high-fat diet and N[w]-nitro-l-arginine methyl ester

(L-NAME) at a concentration of 0.5g/L for five weeks. The 325

energy metabolism-related genes (EMRGs) were downloaded from

the NCBI and MsigDB databases.
2.2 Identification of DEGs

DEGs between the HFpEF and control groups were chosen by

using the DESeq2 package (v 1.36.1) (9) in the GSE180065 dataset

at P value < 0.05 and |log2FC| > 0.5. The results of the differential

analysis were illustrated by volcano map plotted by the ggplot2

package (v 3.4.1) (10). Next, the DEGs were intersected with the

EMRGs to obtain DE-EMRGs.
2.3 Machine learning screening and
performance evaluation of biomarkers

Three machine learning models were constructed based on DE-

EMRGs by least absolute shrinkage and selection operator (LASSO),

random forest (RF) and Support Vector Machine-Recursive Feature

Elimination (SVM-RFE) algorithms to screen feature genes

separately. LASSO regression profiling was carried out using the

glmnet package (version 4.1-6) (11) to obtain LASSO-feature genes.

RF analysis was performed using the caret package (v 6.0-86) based

on DE-EMRGs, and genes with top 10 importance scores were

screened as RF signature genes. Next, SVM analysis was performed.

Finally, the genes included in the portfolio with the highest accuracy

rate and lowest error rate were selected as SVM-RFE-feature genes.

The biomarkers were screened by overlapping LASSO-feature genes,

RF-feature genes and SVM-RFE-feature genes.

Subsequently, ROC curves were plotted using the pROC

package (v 1.17.0.1) (12) to assess the diagnostic value of the

biomarkers. In addition, logistic regression models were

constructed using the biomarkers as a whole and the model was

evaluated using ROC curves. Immediately after, the nomogram was

constructed and visualized via regplot (v 1.1) and rms package
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(v 4.1-1) (13). Next, the calibration curve was plotted to judge the

model performance.
2.4 Single-gene GSEA analysis

In order to further explore the biomarkers related

pathways and the functions they play, we performed a single-gene

GSEA analysis. The single-gene GSEA analysis of biomarkers

was carried out via clusterProfiler package (v 4.4.4) (14). The

top 10 most significant results for each biomarker were

visualized separately.
2.5 Construction of mRNA-drug interaction
and TF-mRNA-miRNA networks

In order to find potential therapeutic small molecule drugs

acting on biomarkers, we performed drug prediction. The drugs

targeting the biomarkers (transformation into human genes) were

predicted through the DrugBank database. A mRNA-drug network

was constructed based on the predicted results. Then,

NetworkAnalyst database was utilized to predict the targeting

miRNAs and TFs of biomarkers. Lastly, the network was

visualized using Cytoscape software (v 3.8.2) (15).
2.6 Consensus clustering analysis

The consensus clustering analysis was performed on the

GSE180065 dataset utilizing the ConsensusClusterPlus package (v

1.60.0) (16) on the basis of biomarkers.
2.7 Screening and enrichment analysis of
DEGs-cluster

DEGs-cluster between the subtypes were selected via the

DESeq2 package (v 1.36.1) (9) with P < 0.05 and |log2FC| > 0.5.

Gene Ontology (GO) enrichment analysis of DEGs-cluster was

executed via clusterProfiler package (v 4.4.4) (14) (P value < 0.05)

and org.Mm.eg.db package (v 3.12.0).
2.8 Screening for HFpEF-related genes

This part of the analysis was carried out in order to obtain

further information on the genes associated with the development

of HFpEF. Firstly, the DEGs was intersected with the DEGs-cluster

to obtain the intersected genes. Then, the protein-protein

interaction (PPI) network was created on the basis of intersected

genes via the STRING database (https://cn.string-db.org/). In this

study, the topology of the PPI network was analyzed using the

plugin cytoHubba, and the top 5 genes under the MCC algorithm

were selected as HFpEF-RGs for subsequent analysis.
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2.9 Immune-infiltration analysis

To obtain correlations of subtypes and biomarkers with

immune cells, we performed an immune infiltration analysis. The

immune score and proportions of immune cell subtypes for each

sample in the GSE180065 dataset were computed via the xcell

algorithm of the immunedeconv package (v 2.0.4) (17). In the first

step, the differences in abundance of each immune cell between

HFpEF and the control groups (differential immune cells 1) were

compared and the results were presented by box plots. Then,

differences in the proportion of immune cells were analyzed

between subtypes (differential immune cells 2). In addition, the

correlation of biomarkers with differential immune cells1 and the

association of HFpEF-RGs with differential immune cells2 were

computed using the Spearman method.
2.10 A ‘two-hit’ mouse model of HFpEF
and echocardiography

Male wild-type (WT) C57BL/6 mice weighing about 20 g at the

age of 8 weeks were obtained from the Hu’nan Silaikejingda

Experimental Animal Co., Ltd, China. All applicable international

and national guidelines for the care and use of animals were

followed. Mice were divided into two treatment groups and

exposed to a combination of a high-fat diet (HFD) (60%

kilocalories from fat) and Nw-nitro-L-arginine methyl ester (L-

NAME) (0.5 g l−1 in drinking water) or a standard (chow) diet for

15 weeks (18). The concomitant metabolic stress (obesity and

metabolic syndrome) and mechanical stress (hypertension

induced by constitutive NO synthases suppression) in mice—

elicited by the aforementioned ‘two-hit’—recapitulates the

numerous systemic and cardiovascular features of HFpEF in

humans. Transthoracic echocardiography was performed on mice

at 15 weeks after treatment. A two-dimensional echocardiographic

system (Philips iE33, Netherlands) was used to examine the cardiac

function of the left ventricle by detecting and calculating the left

ventricular systolic and diastolic indexes.
2.11 RNA isolation and quantitative real-
time polymerase chain reaction

Eight pairs of frozen left ventricle tissue of mouse heart (8

HFpEF and 8 control samples) were collected. Afterwards, 16

samples were lysed with TRIzol reagent and total RNA was

isolated following the manufacturer ’s instructions. The

concentration of RNA was measured with a NanoPhotometer

N50. Afterwards, RNA was reverse transcribed into cDNA using

the SureScript First strand cDNA synthesis kit (Servicebio, Wuhan,

China). The qRT-PCR reaction consisted of 3 µL of reverse

transcription product, 5 µL of 2xUniversal Blue SYBR Green

qPCR Master Mix, and 1 µL each of forward and reverse primer.

All primer sequence information were shown in Table 1. The

GAPDH gene served as an internal control, and the relative
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expression of genes was determined using the 2-DDCT method (19).

Graphpad Prism 5 was used to make the graph and calculate the

p-value.
2.12 Statistical analysis

All bioinformatics analyses were carried out in R language. And

then, the data of different groups were compared by rank sum test.

It was a truism that P < 0.05 was in significant difference, where

P < 0.05: *, P < 0.01: **, P < 0.001: ***, and P < 0.0001: ****.
3 Results

3.1 Screening of DE-EMRGs

A total of 971 DEGs were identified through differential

expression analysis based on the GSE180065 dataset (P value <

0.05 and |log2FC| > 0.5; Supplementary Table 1). Among them, 599

genes were significantly upregulated, and 372 genes were

significantly downregulated (Figure 1A). To identify the EMRGs

within these DEGs, an intersection analysis was performed. The

results revealed 31 overlapping genes (Figure 1B), with 18 genes

showing upregulation and 13 genes showing downregulation in

expression (Supplementary Table 2). Hence, these genes were

defined as DE-EMRGs.
3.2 Screening and performance evaluation
of biomarkers

In order to obtain biomarkers, we filtered DE-EMRGs using 3

machine learning algorithms. A total of 6 LASSO-feature genes

(Chrna2, Rbp7, Gnb3, Gng7, Ddit4l, and Prss55) were screened by

LASSO regression analysis (Figure 2A). Subsequently, a total of 10

RF-feature genes (Cd36, Chrna2, Nr1d1, Prss55, Cacna2d2,

Selenom, Gnb3, Ddit4l, Gng7, and Cacna1d) were obtained after

RF analysis (Figure 2B). The accuracy and error rate were computed

and found that the SVM model had the highest accuracy rate and

lowest error rate when it contained 17 genes (Figure 2C). Therefore,

these 17 genes were selected as SVM-RFE-feature genes (Acot2,

Cacna1d, Cacna2d2, Rbp7, Gnb3, Ddit4l, Chrna2, Selenom, Gng7,

Prss55, Pparg, Ucp2, Nr1d1, Vdr, Npc1, S100a9, and
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4930590J08Rik) for further analysis. Hence, a total of 5

biomarkers (Chrna2, Gnb3, Gng7, Ddit4l, and Prss55) were

screened by overlapping LASSO-feature genes, RF-feature genes

and SVM-RFE-feature genes (Figure 2D).

The ROC results revealed excellent diagnostic performance for

both biomarkers and logistic regression models (Figures 3A–F).

The nomogram on the basis of biomarkers was utilized to predict

the risk of patients developing HFpEF (Figure 3G). The accuracy

of the nomogram was relatively high, which was validated by the

calibration curve (Figure 3H).
3.3 Single-gene GSEA analysis
of biomarkers

In quick succession, single-gene GSEA was performed to

explore the enriched regulatory pathways and molecular functions

of each biomarker. Chrna2, Gng7, Ddit4l, and Prss55 were

mainly enriched to GO terms such as aerobic respiration,

ribonucleoprotein complex biogenesis, etc. (Figures 4A–D;

Supplementary Tables 3-6). Gnb3 was mainly enriched to

ribosome, energy derivation by oxidation of organic compounds,

cellular amino acid metabolic process and so on (Figure 4E;

Supplementary Table 7).
3.4 The TF-mRNA-miRNA and mRNA-drug
networks of biomarkers

Considering the targeting drugs and regulatory factors of these

diagnostic biomarkers, we constructed the mRNA-drug and TF-

mRNA-miRNA networks. Through DrugBank database, 5

biomarkers were found that targeted by 97 therapeutic drugs

(Figure 5A; Supplementary Table 8). The network included 25

drugs (Cimetidine, Nonoxynol-9, Polyethylene glycol and so on) for

Chrna2, 25 drugs (Tetradecyl hydrogen sulfate (ester), Leuprolide,

Cianidanol, Methyldopa and so on) for Gnb3, 25 drugs

(Ursodeoxycholic acid, Caffeine, Rotavirus vaccine and so on) for

Gng7, 25 drugs (Lactitol, Loxapine, Lixisenatide and so on) for

Ddit4l, 15 drugs (Hydroxyethyl cellulose, Human adenovirus b

serotype 7, Tyrphostin B56 and so on) for Prss55In addition, based

on biomarkers, we obtained 73 miRNAs (mmu-miR-6921-5p,

mmu-miR-6988-5p, mmu-miR-6998-5p, mmu-miR-7049-3p and

so on) and 13 TFs (ETS1, NRF1, USF1 and so on) (Figure 5B;
TABLE 1 Primer sequences of PCR.

Gene Forward primer (5–3) Reverse primer (5–3)

Chrna2 AACAATGCAGACGGGGAGTTT GGGAAGAAAGTCACGTCGATG

Gnb3 ATACTCCAGGGGCCATTCCT GGGGAAGGGGTCCATTCTTG

Gng7 GCTTTGCTATATCGAGCCTGC CCCAGCACTGAGGTTCCAAT

Ddit41 TGGATAGGATCGTGTGTGATGC CGTTCCAATCAGGGAGTACAGTT

Prss55 CTGCTACTTGTTGCCCACAC GAGGCGAGGAGAGCAGGTAT

GAPDH CCTTCCGTGTTCCTACCCC GCCCAAGATGCCCTTCAGT
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B

C

D

A

FIGURE 2

Identification of key DE-EMRGs using machine learning algorithms. (A) LASSO logistic regression algorithm used to screen key genes. (B) The
importance of the variables was ranked by RMSE loss after permutations, with higher values indicating that the variable contributes greater to the
accuracy of the model. (C) SVM-RFE algorithm to screen diagnostic biomarkers. (D) Venn diagram demonstrates the intersection of diagnostic
biomarkers obtained by the three algorithms. DE-EMRGs, differentially expressed energy metabolism-related genes; LASSO, least absolute shrinkage
and selection operator; RMSE, root mean square error; SVM-RFE, support vector machine-recursive feature elimination.
BA

FIGURE 1

Identification of DE-EMRGs. (A) Volcano plot of DEGs. Red and blue dots indicate upregulated and down-regulated genes, respectively, and gray is
the non-significant gene. (B) The intersection of DEGs with EMRGs. DE-EMRGs, differentially expressed energy metabolism-related genes; DEGs,
differentially expressed genes; EMRGs, energy metabolism-related genes.
Frontiers in Endocrinology frontiersin.org05

https://doi.org/10.3389/fendo.2023.1296547
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Gou et al. 10.3389/fendo.2023.1296547
Supplementary Table 9). Among them, more miRNAs and TFs

were predicted by Gng7. Among mmu-miR-7076-5p, mmu-miR-

7030-5p, mmu-miR-7075-5p were common targets of Gng7 and

Ddit4l, and mmu-miR-505-5p was shared by Gng7 and Chrna2.

Besides, TFs SIN3A and MAZmight common to regulate Gng7 and

Gnb3. TCF12 was related to Gnb3 and Prss55.
3.5 Identification of subtypes based on
biomarkers and enrichment analysis

In order to perform a comparative analysis of the different

subtypes of HFpEF, a consensus clustering analysis based on
Frontiers in Endocrinology 06
biomarkers was performed. The consensus clustering results

revealed that the samples were clustered into 2 subtypes

(Cluster1 and Cluster2), which had the discrimination between

subtypes (Figures 6A, B). A total of 464 DEGs in different

clusters were obtained. Among these clusters, Cluster 1 showed

upregulation with 217 genes and downregulation with 247 genes

compared to Cluster 2 (Figure 6C; Supplementary Table 10). The

results of functional enrichment analysis indicated that DEGs-

clusters were mainly enriched to GO entries such as the

regulation of carbohydrate metabolic process and blood

circulation, the N-terminal protein amino acid modification,

regulatory T cell differentiation and so on (Supplementary

Figure 1, Supplementary Table 11).
B C

D E F

G H

A

FIGURE 3

Diagnostic value of key DE-EMRGs in HFpEF. (A–E) The ROC curves of the key DE-EMRGs. (F) ROC curves of the diagnostic model in the GSE180065
dataset. (G) Nomogram for HFpEF samples. (H) Calibration curve to assess the predictive power of the nomogram. DE-EMRGs, differentially expressed
energy metabolism-related genes; HFpEF, heart failure with preserved ejection fraction; ROC, receiver operating characteristic.
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3.6 PPI network analysis and acquisition
of HFpEF-RGs

In order to further explore the crucial genes related to the

occurrence and development of HFpEF based on the genes-based

clusters of HFpEF, 55 intersected genes (Hmgcs2, Chrna2, Fbp2,

Gpam and so on) were acquired by overlapping 971 DEGs (DEGs1)

between the HFpEF and control groups and 464 DEGs (DEGs2) in

different clusters (Supplementary Figure 2A). The PPI network of

these 55 genes was built to understand the association among which

(Supplementary Figure 2B), where Kcnt1 had the most interactions

with the remaining genes. Furthermore, five core genes (Kcnt1,

Acot1, Kcnc4, Scn3a, and Gpam) in the network were obtained as

HFpEF-RGs using MCC algorithm (Supplementary Figure 2C).
3.7 Immune analysis of biomarkers
and HFpEF-RGs

To obtain correlations between biomarkers and HFpEF-RGs

with immune cells, we performed an immune-related analysis. The

Xcell analysis demonstrated significant down-regulation of B cell

and T cell CD4+ Th1 in the HFpEF group compared to the control

group, whereas Hematopoietic stem cell and Macrophage M2

exhibited higher expression in the HFpEF group (all P < 0.05;

Figure 7A). Additionally, the subsequent correlation analysis

(Figure 7B) revealed a strong positive correlation between

Macrophage M2 and Chrna2 (cor = 0.81, P = 0.00044).

Furthermore, moderate negative correlations were observed with

Gnb3 (cor = -0.7, P = 0.0049), Ddit4l (cor = -0.59, P = 0.02), and

Prss55 (cor = -0.56, P = 0.03). As for T cell CD4+ Th1, it

demonstrated strong and moderate positive correlations with
Frontiers in Endocrinology 07
Prss55 (cor = 0.81, P = 0.00025) and Ddit4l (cor = 0.52, P =

0.047), respectively, along with a moderate negative correlation with

Chrna2 (cor = -0.66, P = 0.047). Conversely, B cell only exhibited a

significant correlation with Chrna2, indicating a moderate negative

relationship (cor = -0.56, P = 0.029).

In terms of differential expression between Cluster 1 and

Cluster 2, Mast cell and Macrophage were the only cell types that

exhibited significant differences, with both being significantly lower

in Cluster 1 (Supplementary Figure 3A). The correlation analysis

results indicated a moderate negative correlation between Acot1

and both Macrophage (cor = -0.54) and Mast cell (cor = -0.53).

Furthermore, Macrophage showed a moderate negative correlation

with Gpam (cor = -0.7) and Scn3a (cor = -0.53) (all P < 0.05;

Supplementary Figure 3B).
3.8 Expression analysis of biomarkers

Echocardiography evaluation revealed significant alterations in

left ventricular diastolic indexes, including interventricular septal

thickness (IVS), left ventricular posterior wall thickness (LVPW),

and mitral ratio of peak early to late diastolic filling velocity (E/A),

in the HFpEF group compared to normal mice. However, both

groups exhibited preserved left ventricular ejection fraction

(LVEF) (Figure 8).

To further investigate the expression changes of biomarkers in

the HFpEF and control groups, eight pairs of HFpEF and control

samples were collected and subjected to qRT-PCR. The results

demonstrated that the expression levels of Gng7 and Prss55 were

significantly lower in HFpEF samples compared to control tissues;

conversely, the expression of Chrna2 was higher in HFpEF samples

than in control tissues (Figures 9A–C), which aligns with findings
B C

D E

A

FIGURE 4

Single gene GSEA-GO for the 5 key DE-EMRGs. Enrichment in GO collection by Chrna2 (A), Ddit4l (B), Gng7 (C), Prss55 (D), and Gnb3 (E). Each line
represents one gene set with unique color. Gene sets were considered significant only when |NES| > 1, P < 0.05, and q < 0.05. Only several leading
gene sets (Top 10) were displayed in the plot. GSEA, gene set enrichment analysis; GO, Gene Ontology; DE-EMRGs, differentially expressed energy
metabolism-related genes; NES, normalized enrichment score.
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from public databases. On the other hand, no significant differences

in expression were observed for Gnb3 and Ddit4l between the two

groups (Figures 9D, E).
4 Discussion

The pathogenesis of HFpEF remains complex and not fully

understood. However, accumulating evidence suggests a significant

association between energy metabolism and the development of this

disease (20–22). In patients with HFpEF, abnormal energy

metabolism in cardiomyocytes leads to pathological changes,

including ventricular underfilling, left atrial dilatation, and
Frontiers in Endocrinology 08
elevated left atrial pressure (23). Therefore, investigating the

expression changes of genes related to energy metabolism in

HFpEF can shed light on their roles in disease progression and

potentially offer novel targets for the diagnosis and treatment

of HFpEF.

After conducting a differential gene analysis and integrating

three distinct machine-learning methods in the online HFpEF

mouse dataset (GSE180065), cholinergic receptor nicotinic alpha

2 subunit (Chrna2), DNA damage-inducible transcript 4-like

(Ddit4l), guanine nucleotide binding protein beta 3 (Gnb3),

guanine nucleotide binding protein gamma 7 (Gng7), and serine

protease 55 (Pess55) emerged as promising potential diagnostic

biomarkers for HFpEF associated with energy metabolism.
B

A

FIGURE 5

Targeted drugs and regulatory networks for key DE-EMRGs. (A) DrugBank-based drug-key DE-EMRGs interaction network. (B) Integrated miRNA-
key DE-EMRGs and key DE-EMRGs-TFs interaction networks for the 5 biomarkers. Blue squares represent nine hub genes. Yellow circles represent
TFs that have connectivity with biomarkers. Pink diamonds represent miRNAs associated with biomarkers. DE-EMRGs, differentially expressed energy
metabolism-related genes; miRNA, microRNA; TFs, transcription factor.
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Subsequent qRT-PCR experiment on the our HFpEF mouse model

that were collected from eight HFpEF and eight control samples

validated the upregulation of Chrna2, and the downregulations of

Gng7 and Prss55 in HFpEF, as did in public database.

Chrna2, the gene encoding acetylcholine receptor subunit a2, is
expressed primarily in the nervous system (24). It is involved in

signaling of the neurotransmitter acetylcholine and plays an

important regulatory role in the nervous system. Additionally, it

is closely associated with the onset and progression of a variety of

neurological diseases (25). Although no direct association

between Chrna2 and cardiovascular disease has been identified,

acetylcholine regulates physiological processes in the cardiovascular

system. For example, it controls the contraction and diastole of the

heart and the dilation and contraction of blood vessels by binding to

acetylcholine receptors on the heart and blood vessels (26).

Furthermore, the results of Chrna2-GSEA in this study indicate

its association with energy metabolism, angiogenesis and

development, and cardiac ventricle morphogenesis. These

findings suggest that Chrna2, as an energy metabolism-related

gene, may have potential diagnostic value for HFpEF.

Ddit4l is a gene that plays an important role in cellular stress

and DNA damage response. The expression of Ddit4l is regulated

by a variety of factors such as oxygen levels, nutritional status, and

cellular stress (27, 28). Bridget Simonson et al.’s study in mice with

conditional cardiac-specific overexpression of DDiT4L (29)

indicated that in the heart, DDiT4L may be an important
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pathway for pathological stress (such as metabolic stress)

transduction to autophagy through the mTOR signaling pathway.

This suggests that DDiT4L may be a therapeutic target in

cardiovascular diseases when autophagy and mTOR signaling

pathways play important roles. Our study also supports these

findings, as the Ddit4l-GSEA results showed a close association

between Ddit4l and apoptotic signaling regulation, cardiac

conduction, cardiac contraction, and ventricular development.

Additionally, through miRNA-Ddit4l network analysis, we

identified that miR-669c-5p might regulate Ddit4l. Interestingly,

previous research has shown that miR-669c-3p has a protective

effect in a mouse model of ischemic stroke by enhancing alternative

microglia/macrophage activation and inhibiting MyD88 signaling

(30). This evidence further supports the important regulatory role

of Ddit4l in the development of heart failure or HFpEF.

Gnb3 is a gene encoding the beta subunit of the G protein. It has

been considered a candidate gene for hypertension, autonomic

nervous system disorders, and coronary heart disease (31–33). A

genetic association study has demonstrated a pathophysiological

association between the genetic locus rs5443 (Gnb3) and ventricular

remodeling in heart failure (34). In this study, Gnb3-GSEA results

consistently showed its involvement in the development of cardiac

chambers/ventricles, morphogenesis of the heart/ventricles, and

development of ventricular myocardial tissue. These findings

suggest that the Gnb3 gene may be associated with structural and

functional abnormalities in the hearts of patients with HFpEF. On
B

CA

FIGURE 6

Identification of DEGs among biomarker-based subtypes. (A) Heatmap depicts consensus clustering solution (k = 2) for 5 biomarkers in 10 HFpEF
samples; (B) Delta area curve of consensus clustering indicates the relative change in area under the CDF curve for k = 2 to 6. (C) Volcano plot of
DEGs between Cluster1 and Cluster2. Red and blue dots indicate upregulated and down-regulated genes, respectively, and gray is the non-
significant gene. DEGs, differentially expressed genes; HFpEF, heart failure with preserved ejection fraction; CDF, cumulative distribution function.
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the other hand, the GNB3 825T allele might be involved in ET-1-

induced vasoconstriction in the skin microcirculation (35), and

there is association of GNB3 825T variant with increased renal

perfusion (36), suggesting the potential relationship of Gnb3 and

circulating changes as well as cardiorenal interaction in patients

with HFpEF (37). Furthermore, an analysis of the TF-Gnb3

network revealed interesting results about TBP expression. When

comparing the right ventricle to the left ventricle or ventricle in

healthy controls and HF patients, TBP expression was found to be

highly erratic (38). However, in another study conducted on the MI

mouse model, TBP expression was stable (39). These findings

indicate that the TBP-Gnb3 axis may play a significant role in the

pathogenesis of HFpEF.

Gng7 is a gene that encodes the gamma subunit of G protein,

which plays a regulatory or translational role in various

transmembrane signaling systems (40). Previous studies have

shown a correlation between reduced expression of Gng7 and

breast cancer (41), lung cancer (42), head and neck cancer (43,

44), and esophageal cancer (45). However, there have been no

studies directly linking Gng7 to HFpEF. Our study discovered a

potential close association between Gng7 and ventricular

development, myocardial tissue development, and cardiac

contractile regulation through Gng7-GSEA results. Additionally,

our analysis of the miRNA-Gng7 network revealed a close

relationship between miR-199a-5p (46), miR-18a-3p (47), miR-

491-5p (48), and On the other hand, the GNB3 825T allele might be
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involved in ET-1-induced vasoconstriction in the skin

microcirculation, and there is an association of the GNB3 825T

variant with increased renal perfusion, suggesting the potential

relationship of Gnb3 with circulating changes, as well as

cardiorenal interaction in patients with HFpEF. The predicted

interaction of Gng7 and Gnb3 in the BioGRID database might

provide more theoretical support to study the underlying

mechanism of Gng7 in HFpEF as well (49). These findings

suggest that Gng7 may play a role in the pathogenesis of HFpEF.

Prss55 is a gene that encodes a protease known as “proteinase,

serine 55”. It belongs to the serine family of proteases and is

primarily expressed in testicular tissue (50). Despite being

relatively understudied, Prss55 is an important enzyme molecule,

and its specific function and mechanism of action remain unknown.

Nevertheless, emerging research suggests a potential association

between Prss55 and the reproductive system (51, 52). In our study,

utilizing Prss55-GSEA, we have identified its potential involvement

in crucial biological processes such as angiogenesis and

developmental regulation, myocardial tissue development,

myocardial contraction, and cardiomyocyte development. To fully

comprehend the function and biological significance of Prss55,

further investigations are warranted.

In the development of HFpEF, inflammatory response plays a

significant role (53). This response is triggered by the infiltration of

immune cells, leading to the release of inflammatory mediators in

cardiac tissue. The present study’s immunoscape analysis revealed
B

A

FIGURE 7

The association of biomarkers with immune microenvironment. (A) Immune cell infiltration between two groups by XCELL algorithms and only
statistically significant ones are shown. (B) Scatter plots show the correlation of biomarkers with the infiltration of Macrophage M2, T cell CD4+ Th1,
and B cell. *P < 0.05; **P < 0.01.
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that in the HFpEF group, CD4+ Th1 expression was downregulated

in B cells and T cells, while hematopoietic stem cells and M2

macrophages were dominant compared to the control group. B

lymphocytes, specialized immune cells present in all jawed
Frontiers in Endocrinology 11
vertebrates, have shown increasing association with the heart

(54). Although limited, available evidence suggests that B cells

may be key players in the development of HFpEF. Biopsies from

patients with diastolic dysfunction and controls have shown higher
B C

D E

A

FIGURE 9

RNA expression of the 5 biomarkers was measured in HFpEF and control samples. RNA expression of Gng7 (A), Prss55 (B), Chrna2 (C), Gnb3 (D), and Ddit4l
(E) were measured in blood samples using qRT-PCR. P-values were calculated using a two-sided unpaired Student’s t-test. *P < 0.05; ****P < 0.0001; ns
represents no significance. HFpEF, heart failure with preserved ejection fraction; qRT-PCR, quantitative reverse transcription polymerase chain reaction.
BA

FIGURE 8

Assessment of cardiac function in the HFpEF mouse model. Echocardiography was performed at 15 weeks after a combination of a HFD (60%
kilocalories from fat) and L-NAME (0.5 g l−1 in drinking water) or a standard (chow) diet in mice. (A) Representative recordings of echocardiographic
images of the LV. (B) IVSs, IVSd, LVPWs, LVPWd, E/A, and LVEF were measured by echocardiography. *P < 0.05, **P < 0.01, ***P < 0.001 vs.
corresponding control group. ns represents no significance. Data are means ± SEM. HFpEF, heart failure with preserved ejection fraction; HFD, high-
fat diet; L-NAME, Nw-nitro-L-arginine methyl ester; LV, left ventricle; IVSs, inter-ventricular septum thickness end systolic; IVSd, inter-ventricular
septum thickness end diastolic; LVPWs, left ventricular systolic posterior wall thickness; LVPWd, left ventricular posterior wall thickness end-diastolic;
E/A, the early (E) wave peak velocity, representing the passive filling, to the late (A) wave peak velocity ratio, representing the active filling due to the
atrial contraction; LVEF, left ventricular ejection fraction.
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circulating IgG1 and IgG3 levels in patients at higher risk of

developing HFpEF (55). Anecdotal evidence points towards the

potential improvement of HFpEF with immunomodulation using

B-cell-targeted drugs in patients with connective tissue diseases

(56). Animal models have also demonstrated the pathogenic role of

CD4+ Th1 and Th17 in HF development (57, 58). Sinha et al. found

that a higher proportion of CD4+ Th1 cells was associated with a

lower risk of developing HF, consistent with the present study (59).

Zhang et al. observed increased neutrophil and macrophage

infiltration in HFpEF mice hearts, but their results showed an

increase in M1 macrophages and a decrease in M2 macrophages,

contrasting our findings. However, further studies are needed to

explore this discrepancy and provide a rational explanation.

To promote the clinical application of the five diagnostic

biomarkers, we used the DrugBank database to predict potential

target drugs. Among the predictions, Cianidanol emerged as a co-

targeted drug for Chrna2, Gnb3, and Gng7. Cianidanol is a member

of the polyphenolic brass subfamily known for its strong

antioxidant properties (60). It has been recognized for its

potential therapeutic effects in cardiometabolic disorders (61, 62)

and cancers (63). Animal and preclinical studies have also

demonstrated the vasoprotective effects of cianidanol (64, 65).

Additionally, studies suggest that it may offer a unique approach

to reducing atherosclerosis (66). Esmolol, which is currently used in

the treatment of cardiovascular disease, has been predicted as a co-

targeted agent targeting Chrna2 and Gnb3. This cardioselective b-
blocker has shown effectiveness in controlling tachycardia and acute

ischemic elevated hemodynamic parameters in patients with heart

disease (67). Perindopril, a co-target of Chrna2 and Gng7, is an

angiotensin-converting enzyme inhibitor indicated for the

treatment of hypertension (68). Furthermore, a review has shown

that Perindopril, when combined with other antihypertensives,

minimizes cardiovascular events (69). Methyldopa has been

identified as a co-targeted agent of Ddit4l and Gng3. This drug

has been used in the treatment of hypertension since the 1960s (70).

Lovastatin, on the other hand, is a co-targeted drug for Ddit4l and

Gng7 and is commonly used to treat coronary heart disease and

hypercholesterolemia (71). Additionally, other potentially targeted

drugs such as Rosuvastatin (72), Mexiletine (73), Labetalol (74),

Lomitapide (75), and Metolazone (76) may be beneficial in the

treatment of cardiovascular disease. However, no reports or

studies have been conducted on the association of these targeted

agents with HFpEF or with Chrna2, Ddit4l, Gnb3, and Gbg7.

Therefore, further studies are needed to confirm their potential

mechanisms of action. As for Prss55, DrugBank analysis showed

that there are no potential targeted drugs directly related to

cardiovascular disease treatment. This finding deserves further

attention and investigation.

There are some shortcomings of this study that need to be

noted. First, the study was based on bioinformatic analysis of

HFpEF mouse transcriptome data from the GEO database.

However, the sample size was relatively small, which may limit

the statistical reliability and generalizability of the results. Second,

the study identified five diagnostic biomarkers associated with

energy metabolism, but expression validation in human clinical

samples was not performed. It is crucial to perform clinical sample
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validation to determine the practical application and validity of

these markers in patients with HFpEF. Although PCR validation

was conducted using HFpEF mice, the results did not successfully

validate the differential expression of Gnb3 and Ddit4l between the

control and HFpEF groups. This lack of validation may be

attributed to individual differences between samples, the

variability of experimental techniques, and the complexity of gene

regulation. Thirdly, although a consistent cluster analysis of HFpEF

was performed based on five diagnostic biomarkers associated with

energy metabolism, practical clinical significance could not be

assigned to these subclasses due to the current lack of human

data. Additionally, bioinformatics analysis, while important in

HFpEF research, still suffers from limitations such as the quality

and consistency of data, data processing, and choice of analysis

methods. Furthermore, this study used a mouse model to study

HFpEF, but the mouse model cannot fully reflect the complex

pathological process and biological characteristics of human

HFpEF, while enough public data on human HFpEF samples

could not be found for analysis. Therefore, caution should be

exercised when applying these findings to clinical practice. To

overcome these shortcomings, future studies should aim to

increase the sample size, perform human clinical sample

validation, and validate and confirm the clinical application

potential of these analytical results by integrating other

experimental models and methods.
5 Conclusion

The analysis of HFpEF mouse transcriptome data from the

GEO database successfully identified five diagnostic biomarkers,

namely Chrna2, Ddit4l, Gnb3, Gng7, and Prss55, which are

associated with energy metabolism. These biomarkers

demonstrated a strong ability to distinguish between HFpEF

samples and control samples. Furthermore, the GSEA analysis

revealed their potential involvement in crucial biological processes

like ventricular development and cardiac contraction. These

findings have significant implications for understanding the

pathogenesis of HFpEF and identifying potential disease

biomarkers. Moreover, these biomarkers hold promise as early

diagnostic and predictive indicators for HFpEF, offering new

prospects for personalized therapy.
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GO functional enrichment analysis of 464 DEGs in Cluster1 and Cluster2
samples. (A) Relationship among the top 10 enriched BP terms and targets is

represented in a chord plot. (B) Relationship among the top 10 enriched CC
terms and targets is represented in a chord plot. (C) Relationship among the

top 10 enriched mf terms and targets is represented in a chord plot. The
colors of the nodes range from red to blue in descending order of logFC

values. The genes are ordered according to logFC values. GO: Gene

Ontology; DEGs: differentially expressed genes; BP: biological process; CC:
cellular component; MF: molecular function.

SUPPLEMENTARY FIGURE 2

Construction of PPI network and identification of hub genes. (A) The Venn
diagram of DEGs1 and DEGs2. DEGs1 represents DEGs between control and

HFpEF groups, and DEGs2 represents DEGs between cluster 1 and cluster 2.

(B) PPI network of the DEGs between cluster 1 and cluster 2. The PPI network
of DEGs was constructed using Cytoscape. (C) The top 5 key genes were

screened through the PPI network map. PPI: protein-protein interaction;
DEGs: differentially expressed genes.

SUPPLEMENTARY FIGURE 3

The association of hub genes with immune microenvironment. (A) Immune

cell infiltration between two cluster s by XCELL algorithms and only
statistically significant ones are shown. (B) Scatter plots show the

correlation of hub genes with the infiltration of Mast cell and Macrophage.
*P < 0.05.. Primer sequences of PCR.
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