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Regulation of soluble epoxide
hydrolase in renal-associated
diseases: insights from potential
mechanisms to
clinical researches
Peng Gao, Yongtong Cao* and Liang Ma*

Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
In recent years, numerous experimental studies have underscored the pivotal

role of soluble epoxide hydrolase (sEH) in renal diseases, demonstrating the

reno-protective effects of sEH inhibitors. The nexus between sEH and renal-

associated diseases has garnered escalating attention. This review endeavors to

elucidate the potential molecular mechanisms of sEH in renal diseases and

emphasize the critical role of sEH inhibitors as a prospective treatment

modality. Initially, we expound upon the correlation between sEH and

Epoxyeicosatrienoic acids (EETs) and also addressing the impact of sEH on

other epoxy fatty acids, delineate prevalent EPHX2 single nucleotide

polymorphisms (SNPs) associated with renal diseases, and delve into sEH-

mediated potential mechanisms, encompassing oxidative stress, inflammation,

ER stress, and autophagy. Subsequently, we delineate clinical research pertaining

to sEH inhibition or co-inhibition of sEH with other inhibitors for the regulation of

renal-associated diseases, covering conditions such as acute kidney injury,

chronic kidney diseases, diabetic nephropathy, and hypertension-induced renal

injury. Our objective is to validate the potential role of sEH inhibitors in the

treatment of renal injuries. We contend that a comprehensive comprehension of

the salient attributes of sEH, coupled with insights from clinical experiments,

provides invaluable guidance for clinicians and presents promising therapeutic

avenues for patients suffering from renal diseases.
KEYWORDS

soluble epoxide hydrolase, sEH inhibitors, renal diseases, epoxyeicosatrienoic acids,
sEH polymorphisms
1 Introduction

The interplay between soluble epoxide hydrolase (sEH) and epoxyeicosatrienoic acids

(EETs) plays a crucial role in regulating various physiological processes. Arachidonic acid

(AA), a polyunsaturated fatty acid, is metabolized by cytochrome P450 enzymes to form

EETs, which serve as endogenous signaling molecules with diverse activities including
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2024.1304547/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1304547/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1304547/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1304547/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1304547/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2024.1304547&domain=pdf&date_stamp=2024-02-15
mailto:liangma321@163.com
mailto:caoyongtong92@sina.com
https://doi.org/10.3389/fendo.2024.1304547
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2024.1304547
https://www.frontiersin.org/journals/endocrinology


Gao et al. 10.3389/fendo.2024.1304547
vascular regulation, anti-inflammation, antioxidation, and tissue

regeneration (1–3). sEH, encoded by the EPHX2 gene, modulates

EET bioavailability by converting them into diol metabolites (4).

Inhibiting sEH, either through genetic deletion or pharmacological

intervention, leads to elevated levels of EETs, resulting in a

spectrum of protective effects (5), so sEH has emerged as a

potential pharmacological target for kidney diseases. Moreover,

sEH exerts regulatory effects on renal diseases through

mechanisms involving oxidative stress , inflammation,

endoplasmic reticulum (ER) stress, and autophagy (6–8). This

intricate interplay between sEH, EETs, and their impact on renal

physiology and pathology forms a critical nexus in understanding

and potentially intervening in various renal-associated diseases.

In this review, we first clearly introduce the relationship

between sEH and Epoxyeicosatrienoic acids (EETs), enumerate

common typical EPHX2 single nucleotide polymorphisms (SNPs)

associated with renal diseases and investigate the sEH-regulated

potential mechanisms. Subsequently, we introduce the clinical

research on inhibition of sEH for regulation of renal-associated

diseases, including acute kidney injury, chronic kidney diseases,

diabetic nephropathy and hypertension-induced renal injury. Our

goal is to prove the possible role of sEH inhibitors in the treatment

of renal injury. In our opinion, a detailed understanding of the key

characteristics of sEH and its clinical experiment provides useful

information for clinicians and offers potential therapeutic options

for renal disease patients.
2 sEH and EETs

Arachidonic acid (AA) is a 20-carbon polyunsaturated fatty

acid, which is typically esterified in membrane phospholipids to

form the second carbon. Phospholipase A2 specifically recognizes

the sn-2 acyl bond of phospholipids and catalyzes the hydrolysis of

membrane phospholipids to release AA. Cytochrome P450 (CYP)

enzymes are used to metabolize AA to EETs in renal tubular cells.

Many CYP enzymes can perform the epoxidation of AA, and

CYP2C and 2J are related to the formation of kidney EETs, with

11,12-EET being the predominant epoxide (9). As an endogenous

polarizing factor, EETs have a wide range of physiological activities,

including regulating vascular tension, glomerular hemodynamics,

anti-inflammation, antioxidation, anti-platelet aggregation,

promotion of sodium excretion, and organ and tissue

regeneration (10).

The human sEH is encoded by the gene EPHX2, which is

located to chromosomal region 8p21-p12 (11), which consisted of

19 exons encoding 555 amino acids (12). sEH is a member of the

epoxide hydrolase (EH) family, which is a bifunctional enzyme with

lipid epoxide hydrolase and lipid phosphatase activities. It consists

of an N-terminal phosphatase and a C-terminal hydrolase separated

by a short proline-rich linker (13, 14). The C-terminal domain

hydrolyzes epoxides to their corresponding diols by adding water to

the three-membered oxirane ring (15). The N-terminal domain has

phosphatase activity for hydrolyzing lipid phosphates (14) and

shows specificity for fatty acid diol phosphates (16). The

confirmed substrates of the sEH phosphatase domain in vitro also
Frontiers in Endocrinology 02
include sphingosine-1-phosphate (SIP), lysophosphatidic acid

(LPA), and various poly-isopentenyl phosphates including

farnesyl pyrophosphate, geranylgeranyl pyrophosphate, and

farnesyl monophosphate (17). sEH is widely expressed in many

tissues throughout the body, especially in the liver, kidney, intestine,

and vasculature (18–20). Additionally, sEH is found in human brain

tissue cells such as neurons, astrocytes, oligodendrocytes, and

ependymal cells (9). In human kidney tissue, sEH is highly

expressed in the renal cortex (21) and more concentrated in the

renal microvasculature and proximal tubule (18, 22).

The activity of sEH is thought to be the main determinant of

EET bioavailability (10, 18, 23). Conversion of EET to

dihydroxyeicosatrienoic acid (DHETs) by sEH is the main

pathway of EET metabolism (15). This attenuates most functional

effects of EETs, making sEH a logical target for increasing and

prolonging the actions of EETs. sEH inhibition decreases DHET

formation and leads to intracellular EET accumulation. This results

in more EET incorporation into phospholipids and utilization by

other metabolic pathways, including b-oxidation and chain-

elongation. Functional responses are increased because of the

larger amounts of intracellular unesterified EET and EET-

containing phospholipids. Furthermore, more EET is released

when intracellular phospholipids are hydrolyzed, maintaining the

increased intracellular concentration of unesterified EET (15).

Numerous researches have shown that either the genetic deletion

or pharmacological inhibition of sEH can decrease blood pressure

(24), suppress inflammatory response (5), attenuate histological

damage, and alleviate the progression of renal tubulointerstitial

fibrosis in diabetic nephropathy, hypertensive nephropathy, and

unilateral ureteral obstruction models (6, 22, 23). Due to its

potential role in kidney diseases, sEH is being pursued as a

potential pharmacological target. The reno-protection effect of

sEH inhibition is shown in the Figure 1.

Some studies suggest sexual dimorphism in EETs levels (25–

28). Sexually dimorphic of sEH was firstly identified in a study

which sEH activity was found to be remarkably higher in tissues of

male and ovariectomized female mice compared to intact females

(27, 29). Another study showed that knockout of the Ephx2 gene

(sEH-KO) or treatment with sEHIs in male mice reduced their

blood pressure to the level comparable to that of wild-type (WT)

females. In the latter, disruption of the Ephx2 gene further reduced

blood pressure but with significantly smaller decrement than in

male counterparts (28, 30). Studies have elucidated, through in vivo

and in vitro models, that estrogen silences sEH transcriptional

activity by methylation of the Ephx2 gene promoter. This process

involves multiple regulatory signals driven by transcription factors,

providing the basic mechanism explanations for the sexually

dimorphic expression of sEH (26). Female-specific adaptations

were observed in male sEH-KO mice, suggesting that estrogen

downregulation of sEH duplicates the actions of Ephx2 deletion,

resulting in identical patterns of attenuated coronary myogenic

responses, enhanced coronary perfusion and improved cardiac

contractility. This is consistent with similar cardiac EET

metabolic profiles among female WT, male sEH-KO mice and

male WT mice treated with sEHIs (30, 31). Studies using animal

models of cerebral ischemia demonstrated that estrogen
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suppression of sEH was responsible for the female-favorable

protection against cerebral ischemic damages in an EET-

dependent manner (25). Collectively, the increase in EETs

provides better cardiovascular performance and a lower incidence

of ischemic diseases in women.

Furthermore, the expression of sEH and the levels of EETs also

impact macrophage infiltration and polarization. Current research

indicates that the CYP2J2-EETs-sEH metabolic pathway maintain

metabolic and immune homeostasis by regulating the polarization

of adipose tissue macrophages, ultimately alleviating inflammation

and associated insulin resistance, which is related to the inhibition

of the cAMP-EPAC signaling pathway (32). In vitro study showed

that EETs inhibited the polarization of lipopolysaccharide (LPS)-

induced M1 macrophage polarization, and reduced pro-

inflammatory cytokines production. Simultaneously, EETs

preserved the expression of M2 macrophage markers and

increased anti-inflammatory cytokine IL-10. EETs also

downregulated the activation of NF-kB and upregulated

peroxisome proliferator-activated receptors (PPAR a/g) and heme

oxygenase-1 (HO-1). In a mouse model of LPS-induced cardiac

dysfunction, recombinant adeno-associated virus (rAAV)-mediated

CYP2J2 expression increased EETs levels, alleviating LPS-induced

cardiac dysfunction and inflammation. Therefore, CYP2J2/EETs

regulates macrophage polarization and becomes potential

therapeutic applications in inflammatory diseases (33). Another

study explored the relationship between the expression of sEH and

macrophage polarization in IgA nephropathy. The study found a

positive correlation between sEH expression levels, proteinuria, and
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macrophage infiltration in the kidneys. Upregulation of sEH

promoted M1 polarization of macrophages, while inhibition of

sEH and supplementation with EETs reversed this effect,

promoting M2 polarization. Thus, inhibiting sEH could be a

potential strategy to prevent inflammation and alleviate renal

tubulointerstitial fibrosis (34).
3 sEH and other epoxy fatty acids

Eicosapentaenoic acid (EPA) and Docosahexaenoic (DHA)

have been shown to be highly efficient alternative substrates of

CYP ep o x y g e n a s e s , l e a d i n g t o t h e f o rma t i o n o f

epoxyeicosatetraenoic acids (EEQs) and epoxydocosapentaenoic

acids (EDPs or EpDPEs), respectively (35, 36). CYP epoxygenases

selectively catalyze the epoxidation of the terminal double bond of

w-3 PUFAs, leading to the predominate formation of 17,18-EEQ

from EPA and 19,20-EDP from DHA (37). In cells, EDPs and EEQs

are rapidly metabolized by cytosolic sEH enzyme that similarly

metabolizes other epoxy fatty acids including the EETs, to form

their corresponding vicinal diol dihydroxyeicosapentaenoic acids

(diHEPEs) and dihydroxyeicosatetraenoic acids (diHETEs),

respectively (38). Since the products are as a rule generally far less

active than their epoxide precursors, so these epoxides operate as

short-lived signaling agents that regulate the function of their

parent or nearby cells.

Compared with EETs, EEQs and EDPs have similar or more

potent effects for vasodilation, anti-inflammation and analgesia
FIGURE 1

The reno-protection effect of sEH inhibition.
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(39–44). 17,18-EEQ, as well as 14–15-EET, inhibited TNF-a-
induced inflammation in human bronchi via NF-kB- and PPAR-

g-related mechanisms (40, 41). In a rat model of carrageenan-

induced inflammatory pain, it was observed that all epoxygenated

polyunsaturated fatty acids (EETs, EEQs, and EDPs) demonstrated

inhibitory effects on inflammatory pain. However, the potency of

the anti-inflammatory effects of EEQs was found to be

comparatively lower than that of EETs and EDPs (44). In terms

of vasodilation, EDPs are among the most potent vasodilators ever

discovered (42). Research of murine hypertension model of

angiotensin-II dependent hypertension suggest that EPA and

DHA epoxy metabolites contribute to the reduction of systolic

blood pressure and alleviation of inflammation by decreasing

prostaglandins and MCP-1. Additionally, they contribute to

lowering blood pressure and mitigating inflammation by

upregulating the expression of ACE-2 in angiotensin II-

dependent hypertension (43).

Furthermore, these epoxy fatty acids and their metabolites also

play a certain positive role in kidney diseases. 19,20-EDP shows

potential therapeutic effects in reducing renal fibrosis. In a unilateral

ureteral obstruction (UUO) mouse model, treatment with 19,20-

EDP resulted in a 40-50% reduction in renal fibrosis, decreased

collagen-positive areas and hydroxyproline content, and reduced

renal fibrosis by inhibiting epithelial-mesenchymal transition

(EMT) (45). In a chronic kidney disease (CKD) rat model,

providing a diet rich in ARA and DHA slowed down urinary

albumin excretion and reduced levels of plasma lipid peroxides

(LPO), indicating that the combination of ARA and DHA could

inhibit the progression of early-stage CKD (46). The significant

increase in EPA, EEQs, and the dihydroxy metabolites of these

epoxides in serum and urine induced by these diets may be a

contributing factor to the improvement of renal diseases.
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4 sEH polymorphisms associated with
renal diseases

Some sEH single nucleotide polymorphisms (SNPs) that lead to

amino acid substitutions have been identified in human populations

(47–49), including Lys55Arg, Arg103Cys, Cys154Tyr in the sEH

lipid phosphatase region and Arg287Gln, Val422Ala and

Glu470Gly in the sEH Lipid epoxide hydrolase domain (49). A

study has demonstrated that EPHX2 Arg287Gln and the double

mutant Arg287Gln/Arg103Cys showed significantly reduced

epoxide hydrolase activity, resulting in an sEH enzyme with 25–

58% and 11-18% inadequate catalytic activity, respectively. While

the Lys55Arg and the Cys154Tyr mutants tended to have increased

epoxide hydrolase activity (49). Furthermore, when compared to

the most frequent allele, Arg287Gln, Arg103Cys, Lys55Arg and the

Cys154Tyr variants have significantly reduced phosphatase activity.

This indicates that these polymorphisms influence both the N-

terminus and the C-terminus domains, and these domains are not

entirely independent of each other (49, 50). A study on the

relationship between EPHX2 Arg287Gln and DN in Chinese

patients with type 2 diabetes mellitus showed that there was a

significant correlation between Arg287Gln and homocysteine (Hcy)

levels and DN risk. The A allele of EPHX2 rs751141 exon

polymorphism was negatively correlated with the incidence rate

of DN, which may be regulated by homocysteine levels (51). The

research that explored the relationship between EPHX2 functional

variants and acute kidney injury (AKI) after cardiac surgery showed

that the Arg287Gln variant was not associated with AKI, while

EPHX2 Lys55Arg was associated with AKI after cardiac surgery in

patients without previous chronic kidney disease (CKD) (52). The

detailed information of EPHX2 polymorphisms is shown in

the Table 1.
TABLE 1 The detailed information of some common human EPHX2 gene polymorphisms.

Mutant dbSNP Alleles
Chromosome
(GRCh37)

Exon in
EPHX2
gene

Frequency
in ExAC

Epoxide
hydrolase
activity

compared
to MAF

Phosphatase
activity

compared
to MAF

Enzyme
stability

Lys55Arg rs41507953 A>G 8:27358505 Exon 2 G=0.09008/10913 Increase Decrease Decrease

Arg103Cys rs17057255 C>T 8:27361241 Exon 3 T=0.014243/1715
No

statistically
significant

Decrease Decrease

Cys154Tyr rs57699806 G>A 8:27362587 Exon 5 A=0.003695/447 Increase Decrease Decrease

Arg287Gln rs751141 G>A 8:27373865 Exon 8 A=0.115323/13999 Decrease Decrease Decrease

Val422Ala rs531961160 T>C 8:27396198 Exon 14 C=0.000008/1
No

statistically
significant

No
statistically
significant

Decrease

Glu470Gly rs68053459 A>G 8:27399019 Exon 16 G=0.00112/136
No

statistically
significant

No
statistically
significant

Decrease

Arg287Gln/
Arg103Cys

rs751141/
rs17057255

G>A/
C>T

8:27373865/
8:27361241

Exon 3/
Exon 8

A=0.115323/13999/
T=0.014243/1715

Decrease Decrease Decrease
fr
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5 Potential mechanisms regulated by
sEH in renal diseases

Research indicates that modulating sEH content, like through

EET, mitigates inflammation and safeguards kidney function.

Reduced sEH content correlates with lower ER stress, decreased

autophagy, and reduced NF-kB-induced inflammation. Autophagy,

enhanced with sEH deficiency, plays a protective role in kidney

function. The following will explore the potential regulatory

mechanisms of sEH in kidney disease from three aspects:

oxidative stress and inflammation, ER stress, and autophagy.
5.1 Oxidative stress and inflammation

Previous studies and experiments have confirmed that oxidative

stress can effectively activate NF-kB, which promotes the expression

of inflammatory genes in the body of diabetic patients (53). In an

experiment involving gene upregulation expression, researchers

tested the effects of overexpressed CYP2J2, CYP2C8 and sEH on

the genomes of knockout mice. Experimental results show that EET

has a certain anti-inflammatory effect, can effectively inhibit the

functional activation of NF-kB, and reduce the protein expression

level of cytokines (7). Therefore, based on this result, oxidative

stress symptoms and cellular inflammation can be improved by

controlling sEH content, effectively reducing the degradation of

EET and better protecting the normal operation of kidney function.
5.2 ER stress

Studies have proven that the lack of sEH content in the body is

due to a decrease in the ER stress response and an increase in

autophagy behavior, resulting in a decrease in the degree of NF-kB-
stimulated inflammatory factor production and the development of

fibrosis. Lack of sEH content and high glucose-induced podocyte

autophagy are caused by decreased ER stress, a process consistent

with the effect of sEH content in regulating the degree of ER stress

(54, 55). Decreased podocyte autophagy and ER stress attenuate the

activation of hyperglycemic-induced NF-kB inflammatory factor.

In addition, there is a link between ER stress response and the

pathogenesis of DN (56), and relief of ER stress response and

associated molecular chaperones can appropriately alleviate the

severity of diabetic nephropathy (57, 58). Therefore, a reasonable

definition of podocyte sEH deficiency can start from the renal

protective function of patients with hyperglycemia, mediated by

reduced ER stress.
5.3 Autophagy

Autophagy occurs in cells as a protective mechanism.

Macromolecular components are degraded or recycled by

phagocytizing one’s own protein cells or organelles. Autophagy

prevents cell damage and responds to toxic stimuli of cells, which is
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a self-protective mechanism for cells (59). It has been shown that

the enhancement of autophagy behavior in podocytes is related to

the decrease in sEH content, and several elements (Beclin, LC3-I/II

and Atg5/7) are labeled with protein labeling techniques. It can be

found that these labeled elements do play a significant role in the

development and maturation evolution of autophagosomes. This

finding is the same as the increased autophagy behavior that has

been reported due to symptoms of sEH deficiency (8, 60). With the

continuous demonstration of experimental phenomena, autophagic

cells play a great role in regulating kidney function and ensuring

kidney function. Some studies have shown that the STZ-induced

diabetic disease model can also effectively mimic the diabetes-

inducing chemicals in laboratory animals (61, 62). Enhanced

autophagy responses have been observed in diabetic mice and in

epithelial cells cultured with nutrients with higher glucose content

(63, 64). It is undeniable that the lack of sEH in podocytes in the

body can cause cells to enhance the autophagy response, thereby

exhibiting certain protective and stressful behaviors against

podocyte damage.
6 Inhibition of sEH or co-inhibition of
sEH with other inhibitors for the
regulation of renal-
associated diseases

Effectively inhibiting the level of sEH or co-inhibition of sEH

with other inhibitors can have a good protective effect on renal-

associated diseases, such as AKI, CKD and DN, which has been

effectively verified in several researches.
6.1 Inhibition of sEH as a single target for
the regulation of renal-associated diseases

The complex pathophysiological processes of AKI include

hemodynamic changes, inflammation, endothelial dysfunction,

and damage to tubular epithelial cells (65–67). Many studies have

investigated their role in AKI through genetic disruption of the

Ephx2 gene or chemical inhibition of sEH. In a C57BL/6 mouse

model of renal ischemia-reperfusion injury (IR), it has been

confirmed that targeting sEH may reduce the risk of AKI. This

was achieved by controlling sEH activity through intraperitoneal

injection of the sEH inhibitor AUDA. Administration of a sEH

inhibitor prior to IR attenuated renal functional decline, tubular

necrosis, and renal inflammation and the severity of IR- induced

renal damage correlated inversely with endogenous EET levels (68).

The current study established protective effects of podocyte-specific

sEH deficiency against LPS-induced renal injury. Bettaieeb et al.

have reported in a lipopolysaccharide (LPS)-induced mouse model,

and they believe that mRNA protein expression levels in mouse

podocytes increase significantly when LPS attacks. Podocyte sEH-

deficient mice experienced less renal impairment than controls with

normal renal function (69). Podocyte-specific sEH disruption

notably alleviated LPS-induced kidney dysfunction, and this was
frontiersin.org
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associated with reductions in NF-kB inflammatory response,

MAPK, and ER stress signals, indicating that sEH inhibition in

podocytes may have potential therapeutic implications for

combating podocyte injury (69). Additionally, research showed

that soluble epoxide hydrolase (sEH) inhibitor, n-butylester of 12-

(3-adamantan-1-yl-ureiido)-dodecanoic acid (nbAUDA), can

attenuate cisplatin-induced acute nephrotoxicity (70). EET

hydrolysis was significantly reduced in Ephx2(-/-) mice and

correlated with the attenuation of elevated serum blood urea

nitrogen and creatinine levels induced by cisplatin. Histological

evidence of tubular injury and neutrophil infiltration in Ephx2(-/-)

mice was also reduced. Similarly, cisplatin had no impact on renal

function, neutrophil infiltration, or tubular structure and integrity

in mice treated with the potent sEH inhibitor AR9273 (71). PTUPB

effectively reduces sorafenib-induced glomerular nephrotoxicity.

PTUPB can lower blood pressure and proteinuria, alleviate

tubular and fibrotic damage, and improve glomerular health (72).

These data suggest that inhibit ing sEH can alleviate

chemotherapeutic agent-induced kidney injury. However, there

are also studies indicating that the absence of sEH may have

detrimental effects in AKI. In a mouse model of unilateral

ischemia-reperfusion injury induced after acute non-renal

excision in the remaining kidney, sEH gene disruption did not

improve I/R-induced kidney damage but rather exacerbated renal

functional impairment, tubular injury, and inflammatory

response (73).

Due to the complexity of its pathogenesis, treatment for CKD

has always been challenging. Tubulointerstitial fibrosis is the

primary pathway in CKD that leads to disease progression and

ultimately results in End-Stage Renal Disease (ESRD). Inhibiting

sEH is a potential CKD treatment strategy. In a CKD murine model

of type 1 diabetes, sEH inhibition improved renal endothelial

function and reduced renal injury and inflammation (74). sEH

inhibitors have potential applications in the treatment of

fibrogenesis in the CKD unilateral ureteral obstruction (UUO)

model. sEH inhibitor t-TUCB promoted anti-inflammatory and

fibro-protective effects in UUO kidney, prevented tubular damage,

downregulated NF-kB, transformed growth Factor-b1/Smad3, and

affected inflammatory signaling pathways, while also activating

PPAR subtypes. The increased levels of EET due to sEH

deficiency also prevented renal interstitial inflammation and

fibrosis (75). Research has found that sEH inhibition improves

proteinuria-induced renal tubular epithelial-mesenchymal

transition (EMT) by regulating the PI3kt-GSK-3b signaling

pathway. In the in vitro experiments of proteinuria-induced renal

tubular EMT, E-cadherin expression decreased, while a-smooth

muscle actin (a-sma) expression increased, and its morphology

transformed into a myofibroblast like phenotype. In chronic

proteinuria nephropathy rat model, the sEH inhibitor AUDA

treatment suppressed the activation of PI3K-Akt and

phosphorylation of GSK-3b, simultaneously reducing the levels of

EMT markers (76). Furthermore, sEH may be a promising

preventive target for CKD-associated vascular calcification. In

vivo and in vitro experiments have suggested that the absence of

sEH may inhibit vascular calcification (77). However, there are also
Frontiers in Endocrinology 06
studies indicating that sEH inhibition may have detrimental effects

in CKD. In a CD1 mouse model where ischemic AKI progressing to

CKD, treatment with the sEH inhibitor TPPU effectively controlled

elevated blood pressure and glomerulosclerosis, but it enhanced

renal perfusion injury, leading to increased inflammation and

tubulointerstitial fibrosis (78).

Many studies have confirmed that sEH inhibition has a

potential therapeutic effect on DN. In streptozotocin-induced DN

mouse models, deficiency mice in the sEH gene exhibited reduced

diabetes manifestations. The excretion levels of Hb A1c, creatinine,

blood urea nitrogen, and urinary microalbumin excretion were

significantly decreased. The apoptosis of renal tubules in sEH

deficient mice was also reduced, which is consistent with an

increase in the levels of Bcl-2 and Bcl-xl that resist apoptosis and

a decrease in the levels of Bax that promote apoptosis. These effects

are related to the activation of the PI3K Akt NOS3 and AMPK

signaling cascades. sEH inhibition and exogenous EETs

significantly protected HK-2 cells from TNFa-induced apoptosis

(79). In another study on STZ-induced DN mice, sEH inhibitor t-

AUCB reduced glomerular albumin permeability. Since albumin

and glomerular alpha3 integrin levels can be maintained stably in

diabetes rats, the expression of nephron protein is reduced, thus

reducing kidney damage. The treatment of t-AUCB has also been

shown to protect partial renal function in db/db mice and reduce

HK-2 cell apoptosis under high glucose exposure (80).

Furthermore, another study has shown that sEH inhibition with

t-AUCB can alleviate kidney damage in db/db mice, partially

restore autophagic flux, improve mitochondrial function, reduce

renal ROS generation, and alleviate endoplasmic reticulum stress.

The sEH inhibitor t-AUCB plays a protective role in hyperglycemia

induced proximal renal tubular injury, and the potential

mechanism of t-AUCB mediated protective autophagy is involved

in the regulation of mitochondrial function and endoplasmic

reticulum stress (81). Increased expression of sEH protein was

observed in the glomeruli of high-fat diet and STZ-induced

hyperglycemic mice. Notably, podocyte-specific sEH deficiency

preserved kidney function and glucose control, mitigating

hyperglycemia-induced renal injury. The beneficial effects of

podocyte sEH deficiency were associated with decreased ER

stress, enhanced autophagy with a corresponding attenuation in

inflammation and fibrosis (82). The beneficial effects of podocyte-

specific sEH deficiency suggest that sEH inhibition may have

therapeutic significance for hyperglycemia induced renal injury

and DN.

Many studies have confirmed the antihypertensive and renal

protective effects of sEH inhibitors in angiotensin-dependent

hypertension. The renal damage and inflammation caused by salt-

sensitive hypertension can be improved by inhibiting the

degradation of epoxides, which is related to the hydrolase domain

of the Ephx2 gene. Ephx2 gene deficiency can lower blood pressure,

alleviate renal inflammation, and improve glomerular damage in

patients with DOCA salt-induced hypertension. Therefore, the use

of sEH inhibitors provides a dual protection against blood pressure

and inflammation, which can alleviate the progression of ESRD

associated with salt-sensitive hypertension (83). Previous studies
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have indicated that the levels of sEH protein in the kidneys of Ang

type II hypertensive patients are elevated, which is associated with

increased levels of urinary 14,15-DHET in the urine. These studies

suggest that the long-term use of selective sEH inhibitor CDU can

increase EET levels and lower arterial blood pressure in Type II

hypertension animal model. The fact that CDU leads to diuresis,

increased urinary EET, and decreased urinary 14,15-DHET

excretion rate supports the idea that renal vasodilation and an

increase in natriuretic EET may be the potential reasons for sEH

inhibition and antihypertensive effect (3). Studies showed long-term

sEH inhibition on renal vascular function, vascular, and glomerular

damage induced by angiotensin infusion indicates that sEH protein

in renal micro vessels is elevated in patients with angiotensin-

induced hypertension. Chronic administration of CDU can lower

blood pressure and improve renal damage associated with

angiotensin-induced hypertension, providing protection for renal

vasculature and glomeruli. In the angiotensin-induced hypertension

Sprague-Dawley rat model, CDU treatment resulted in reduced

urinary albumin excretion (84). In a hypertensive GK rat model, the

sEH inhibitor AUDA can inhibit the increased albumin excretion

caused by hypertension, prevent morphological changes in the

kidneys induced by hypertension, and inhibit the infiltration of

monocytes/macrophages into the kidneys, reducing the expression

of MCP-1 (85). Another study used sEH inhibitor AUDA to treat

angiotensin-sensitive hypertension rats, which led to decreased

urinary microalbumin levels and the number of ED-1 positive

cells. sEH inhibition can lower blood pressure in patients with

angiotensin-sensitive hypertension and improve renal damage (86).
6.2 Inhibition of sEH synergizes with other
inhibitors for the regulation of renal-
associated diseases

6.2.1 Dual inhibitors of sEH and COX
It has been demonstrated that simultaneous augmentation of

CYP450-derived EETs along with COX inhibition exerts an additive

response attenuating LPS-induced pain and hypotension (87, 88).

Besides, CYP450-derived EETs, especially 8,9-EETs, can be further

metabolized by COX enzymes to angiogenic 11-hydroxy-8,9-EETs

(89, 90). The single molecule sEH/COX-2 dual inhibitor, PTUPB,

can lower blood pressure and proteinuria, alleviate tubular and

fibrotic damage, and improve glomerular health (72). In type 2

diabetic obese ZSF1 rats, PTUPB reduced renal cytokine expression,

decreased immune cell infiltration, and reduced production of

chemokine MCP-1 to alleviate kidney inflammation. In in vitro

studies of isolated renal glomeruli, PTUPB alleviated renal

inflammation in DN and also directly affected the glomerular

filtration barrier. PTUPB effectively alleviated diabetes-induced

kidney injury with DN associated with hyperlipidemia and

obesity (91). Additionally, PTUPB resulted in a 30-80% reduction

in renal injury parameters and a 25-57% decrease in inflammation

and oxidative stress markers in type 2 diabetic rats, indicating

PTUPB has a protective effect on metabolic abnormalities and renal

function (92).
Frontiers in Endocrinology 07
6.2.2 Dual inhibitors of sEH and PPAR
Several studies highlighted an extensive crosstalk between

effects mediated by EETs and peroxisome proliferator-activated

receptor (PPAR) signaling (1). PPARs play multiple roles in lipid

and glucose homeostasis, however, among these effects, the anti-

inflammatory and oxidative stress-reducing properties of EETs

which are associated with PPARg activation, are of special

importance (93, 94). RB394 is an equipotent PPARg-selective full

agonist and sEH inhibitor with a favorable pharmacokinetic and

pharmacodynamic profile. A study explored the mitigation of renal

fibrosis using RB394 in UUO model, the results showed that RB394

alleviated renal fibrosis by reducing kidney inflammation, oxidative

stress, tubular injury, and vascular injury (95). Another study was

conducted using rat models of the metabolic syndrome and type 2

diabetes. The results showed that RB394 was effective in preventing

metabolic syndrome phenotypes, reducing fasting blood glucose

and HbA1c levels, improving glucose tolerance, reducing blood

pressure, improving lipid profiles, and reducing liver fibrosis and

hepatosteatosis. RB394 also demonstrated positive effects in treating

diabetic nephropathy by reducing renal interstitial fibrosis and renal

tubular and glomerular injury (96). The findings suggest that RB394

is a promising molecule for treating renal-associated diseases.
7 Clinical trials on sEH inhibitors

Numerous relevant experimental data from preclinical animal

models show that sEH inhibition can effectively improve renal-

associated diseases. This is the reason that sEH inhibitors can be

widely used in clinical trials. Two well-established sEH inhibitors

have been used in human clinical trials (84, 97, 98). The effects of

AR9281 and GSK2256294 are evident (99, 100), but AR9281 may

not have a sufficiently high therapeutic effect in clinical trials for

hypertension and the treatment of type 2 diabetes (99). In addition,

there is a sEH inhibitor is GSK2256294A, which works by

weakening cell activity and inhibiting the conversion rate of

14,15-EET to 14,15-DHET in human, rat and mouse whole

blood. GSK2256294 has entered a human clinical trial to evaluate

the treatment of diabetes mellitus and metabolic disorders

(ClinicalTrials.gov ID: NCT03486223). EC5026 is an orally active

sEH inhibitor to resolve inflammation and neuropathic pain

without the addictive potential of opioids (101). Two phase 1a

clinical trials of EC5026 (ClinicalTrials.gov ID: NCT04908995 and

ClinicalTrials.gov ID: NCT04228302) have demonstrated favorable

safety. Another Phase 1b multiple ascending dose (MAD) study is

in process (ClinicalTrials.gov ID: NCT06089837) to investigate the

safety, tolerability, and pharmacokinetics (PK) of two sequential

dose regimens of oral EC5026 in healthy volunteers. The commonly

used sEH inhibitors have been shown in the Table 2.
8 Conclusion

In this review, we first briefly introduced the sEH, including its

structure, distribution, substrates, and physiological functions. We
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listed some typical EPHX2 single nucleotide polymorphisms (SNPs)

and elaborated on their potential effects on sEH. Next, we outlined

the potential mechanisms regulated by sEH from three aspects:

oxidative stress and inflammation, ER stress, and autophagy.

Subsequently, we introduced the in vivo and in vitro experiments

involving sEH inhibition associated with various types of renal

injury, as well as recent clinical trials of sEH inhibitors. Our aim is

to determine the potential role of sEH inhibitors in the treatment of

renal diseases.

Numerous preclinical animal models have provided evidence of

the efficacy of sEH inhibition in renal injury, considering sEH as a

prominent therapeutic target. Besides, clinical trials of sEH

inhibitors for other diseases have not yielded exciting results, and

some of the clinical trials have proved to be ineffective. It is worth
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noting that not all studies have shown the beneficial effect of sEH

inhibition on kidney diseases. Jung et al. reported that sEH

inhibition with t-AUCB failed to elicit protective effects in the 5/6

nephrectomy mouse model and notably aggravated proteinuria

(102). Thus, the role of sEH in diverse kidney diseases needs to

be further elucidated by future studies, and many more mechanistic

studies are required to enable extrapolation of animal results to

clinical applications.
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