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Background:Cardiovascular disease (CVD) has emerged as a global public health

concern. Identifying and preventing subclinical atherosclerosis (SCAS), an early

indicator of CVD, is critical for improving cardiovascular outcomes. This study

aimed to construct interpretable machine learning models for predicting SCAS

risk in type 2 diabetes mellitus (T2DM) patients.

Methods: This study included 3084 T2DM individuals who received health care at

Zhenhai Lianhua Hospital, Ningbo, China, from January 2018 to December 2022.

The least absolute shrinkage and selection operator combined with random forest-

recursive feature elimination were used to screen for characteristic variables. Linear

discriminant analysis, logistic regression, Naive Bayes, random forest, support vector

machine, and extreme gradient boosting were employed in constructing risk

prediction models for SCAS in T2DM patients. The area under the receiver

operating characteristic curve (AUC) was employed to assess the predictive

capacity of the model through 10-fold cross-validation. Additionally, the SHapley

Additive exPlanations were utilized to interpret the best-performing model.

Results: The percentage of SCAS was 38.46% (n=1186) in the study population.

Fourteen variables, including age, white blood cell count, and basophil count, were

identified as independent risk factors for SCAS. Nine predictors, including age,

albumin, and total protein, were screened for the construction of risk prediction

models. After validation, the random forest model exhibited the best clinical

predictive value in the training set with an AUC of 0.729 (95% CI: 0.709-0.749),

and it also demonstrated good predictive value in the internal validation set [AUC:

0.715 (95% CI: 0.688-0.742)]. The model interpretation revealed that age, albumin,

total protein, total cholesterol, and serum creatinine were the top five variables

contributing to the prediction model.

Conclusion: The construction of SCAS risk models based on the Chinese T2DM

population contributes to its early prevention and intervention, which would

reduce the incidence of adverse cardiovascular prognostic events.
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1 Introduction

Type 2 diabetes mellitus (T2DM) is a metabolic disorder

characterized by insulin resistance and relative insulin deficiency.

In recent years, the prevalence of T2DM has increased steadily,

which has become a serious public health issue. Updated estimates

for 2021 showed that about 10.5% of the global population had

T2DM, a prediction that this figure would increase to 12.2% by 2045

(1). Cardiovascular disease (CVD) is the leading cause of death and

disability in T2DM (2, 3). Studies have shown that the risk of CVD

in patients with T2DM is two to four times higher than in

individuals without diabetes (4, 5). Atherosclerosis (AS), the

predominant pathophysiologic process in CVD, may begin early

in life and remain latent and asymptomatic for extended periods

before progressing to advanced stages. Subclinical atherosclerosis

(SCAS) serves as an early indicator of atherosclerotic burden, and

its timely recognition can help slow down or prevent the

progression to CVD (6). Therefore, the early identification and

effective management of SCAS in individuals with T2DM are

crucial strategies to mitigate progression to overt CVD, thereby

improving life expectancy and quality.

Diagnostic methods for SCAS include angiography,

intravascular ultrasound, carotid ultrasound (CUS), computed

tomography (CT), and magnetic resonance imaging. Measuring

carotid intima-media thickness (CIMT) and coronary artery

calcification (CAC) using CUS and CT has become the mainstay

for assessing SCAS, owing to their noninvasive and easily accessible

nature (7, 8). However, large-scale use of CUS and CT could

inevitably lead to the waste of medical resources and increased

costs. Thus, establishing an assessment tool capable of screening

individuals at high risk for SCAS without the need for imaging

examinations is of great significance.

In recent years, artificial intelligence (AI) and machine learning

(ML) have increasingly been utilized in the healthcare field (9).

Several studies currently employ ML methods to research SCAS.

For example, Sánchez-Cabo et al. (10) developed a SCAS risk

prediction model for young asymptomatic individuals using four

ML algorithms, demonstrating good clinical predictive value with

an area under the receiver operating characteristic curve (AUC) of

0.890. Additionally, Núñez et al. (11) used ML methods to identify

circulating proteins that can predict SCAS, also showing good

clinical predictive value with an AUC of 0.730. However, there

are few reports on the risk prediction models for SCAS in T2DM

patients. The purpose of this study was to establish SCAS risk

prediction models based on interpretable machine learning

algorithms, contributing to the early identification of SCAS and

guiding appropriate prevention and interventions.
2 Methods

2.1 Participants

This study enrolled 3140 T2DM individuals who had sought

medical care through outpatient visits, inpatient admissions, and

routine physical examinations at Zhenhai Lianhua Hospital in
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Ningbo, China, from January 2018 to December 2022. The

sample size for this study adhered to the rule of 10 events per

variable (12). The demographic data, comorbidities, complications,

and biochemical parameters were obtained by questionnaires and

laboratory tests. Inclusion criteria: participants aged ≥ 18 years who

either self-report T2DM, are undergoing pharmacological

treatment for T2DM, or meet the diagnostic criteria of T2DM.

These criteria include fasting blood glucose (FBG) levels of ≥ 7.0

mmol/L, 2-hour blood glucose levels of ≥ 11.1 mmol/L, or a glycated

hemoglobin level of ≥ 6.5% (13). Exclusion criteria: individuals with

other forms of diabetes mellitus, concurrent coronary heart disease

or cerebral infarction, acute complications related to diabetes

mellitus, malignant tumors, severe liver and kidney function

abnormalities, or pregnancy. SCAS was defined as CIMT >

1.0 mm and/or the presence of plaque without clinical

manifestations (14). Data with more than 20% missing were

excluded (n=56), and those with less than 20% were filled by

multiple interpolations (Supplementary Figure 1). Ultimately,

3084 T2DM patients were included in this study. The study’s flow

diagram is depicted in Figure 1.
2.2 Clinical baseline data

Participants’ general characteristics include gender, age, body

mass index, and blood pressure (both systolic and diastolic

measurements). Blood cell counts comprise white blood cell

count (WBC), neutrophil count, eosinophil count, basophil count

(BASO), lymphocyte count (LYC), red blood cell count,

hemoglobin, red blood cell distribution width, mean red blood

cell volume (MCV), platelet count, platelet distribution width

(PDW), and mean platelet volume (MPV). Biochemical indicators

encompass total cholesterol (TC), triglycerides, high-density

lipoprotein (HDL), low-density lipoprotein (LDL), FBG, total

protein (TP), albumin (ALB), aspartate aminotransferase, alanine

aminotransferase, gamma-glutamyl transpeptidase (GGT), serum

uric acid (SUA), and serum creatinine (SCR).
2.3 Statistical analysis

Kolmogorov-Smirnov assessed sample distribution normality.

Normal continuous variables were expressed as means (standard

deviation, SD), non-normal continuous variables as median

(interquartile range, IQR), and categorical variables as frequency

(percentage, %). Between-group analyses involved independent

samples t-tests for normal continuous variables, Mann-Whitney

U tests for non-normal continuous variables, and chi-square tests

for categorical variables. Box plots were used to elucidate the

relationship between various metabolic parameters [including

atherogenic index of plasma (AIP), Castelli risk index (CRI),

metabolic score for insulin resistance (METS-IR), and

triglyceride-glucose (TyG) index] and SCAS. The formulas for

these parameters were calculated as follows: AIP = Log(TG/HDL);

CRI = TC/HDL; METS-IR = Ln((2 * FBG + TG) * BMI)/(Ln

(HDL)); TyG = Ln[(TG * FBG)/2]. Multivariate logistic regression
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identified independent risk factors for SCAS. Restricted cubic spline

was employed to analyze the dose-response relationship betweent

AIP and SCAS.

Least absolute shrinkage and selection operator (LASSO)

combined with random forest-recursive feature elimination (RF-

RFE) were used to screen for characteristic variables. Six ML

methods, including linear discriminant analysis (LDA), logistic

regression (LR), Naive Bayes (NB), random forest (RF), support

vector machine (SVM), and extreme gradient boosting (XGboost),

were used to model construction. The primary parameters used to

evaluate the effectiveness of risk prediction models included

accuracy, sensitivity, specificity, precision, recall, and the F1 score.

AUC was utilized to assess the models’ predictive ability.

Calibration curves and the Brier score were used to assess

calibration capability, while decision curve analysis (DCA) was

employed to evaluate clinical applicability. Additionally, the

Shapley Additive exPlanations (SHAP) was used to interpret the

best predictive model.

All statistical analyses were conducted using Python (https://

www.python.org/, version: 3.9.0) and R (https://cran.r-project.org/,

version: 4.1.3). All tests were two-sided and P < 0.05 was deemed

statistically significant.
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3 Results

3.1 Clinical baseline information of the
study population

A total of 3084 participants were enrolled in this study,

comprising 1898 individuals with T2DM without SCAS, and 1186

individuals with T2DM with SCAS. The percentage of SCAS in the

T2DM population was found to be as high as 38.46%. The median

age of participants was 56 years (IQR: 49-61). Participants in the

SCAS group were older, with a median age of 58 years (IQR: 53-62),

compared to 54 years (IQR: 46-60) in the control group. The male

proportion was similar in both groups (74.6% in the SCAS group vs.

73.8% in the control group, P > 0.05). Additionally, statistically

significant differences were observed between the groups in terms of

routine blood tests, lipid and glucose levels, and liver and kidney

function (P < 0.05). The baseline clinical characteristics of the study

population are presented in Table 1.

The AIP, CRI, METS-IR, and TyG index are metabolism-

related parameters commonly used in the diagnosis and risk

assessment of metabolism-related diseases (15–18). The current

study showed that three metabolism-related parameters, including
FIGURE 1

Flow diagram of the study. T2DM, type 2 diabetes mellitus; SHAP, Shapley Additive exPlanations.
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AIP, CRI, and TyG, were significantly higher in the SCAS group

than in the control group (P < 0.05) (Figure 2).
3.2 Independent risk factors

Nineteen potential risk factors associated with SCAS were

initially screened by univariate analysis (P < 0.05) (Table 1). To

ensure the accuracy and credibility of the findings, we calculated the
Frontiers in Endocrinology 04
variance inflation factor (VIF) for each variable and considered to

exhibit lower multicollinearity when their VIF was below 10

(Supplementary Figure 2). Afterward, we performed stepwise

backward logistic regression analysis with the Akaike information

criterion to filter and remove multicollinear variables. Ultimately,

fifteen variables were included in the multivariate logistic regression

analysis, and the final fourteen variables such as Age, WBC, BASO,

and LYC (P < 0.05) were identified as independent risk factors for

SCAS (Figure 3).
TABLE 1 Univariate analysis of subclinical atherosclerosis.

Overall Normal SCAS P-value

N 3084 1898 1186

Sex (male), % 2291 (74.3) 1416 (74.6) 875 (73.8) 0.639

Age, years 56.00 (49.00, 61.00) 54.00 (46.00, 60.00) 58.00 (53.00, 62.00) <0.001

BMI, kg/m2 24.62 (22.72, 26.99) 24.69 (22.77, 26.99) 24.54 (22.68, 26.96) 0.209

SBP, mmHg 133.69 (17.48) 133.43 (16.70) 134.10 (18.65) 0.298

DBP, mmHg 81.00 (73.00, 89.00) 81.00 (74.00, 89.00) 80.00 (72.00, 89.00) 0.009

WBC, 109/L 6.54 (1.73) 6.48 (1.67) 6.63 (1.81) 0.026

NEU, 109/L 3.70 (2.97, 4.60) 3.60 (2.90, 4.50) 3.80 (3.00, 4.81) <0.001

EOS, 109/L 0.11 (0.07, 0.19) 0.11 (0.07, 0.19) 0.12 (0.07, 0.20) 0.123

BASO, 109/L 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 0.02 (0.02, 0.03) <0.001

LYC, 109/L 2.00 (1.60, 2.50) 2.09 (1.60, 2.50) 1.92 (1.55, 2.40) <0.001

RBC, 1012/L 4.88 (0.52) 4.93 (0.51) 4.79 (0.53) <0.001

HB, g/L 150.00 (139.00, 159.00) 151.00 (140.00, 160.00) 148.00 (137.00, 158.00) <0.001

RDW, % 12.50 (12.20, 12.90) 12.50 (12.20, 12.90) 12.60 (12.20, 13.00) 0.003

MCV, fL 91.00 (88.60, 94.00) 91.00 (88.10, 93.80) 91.90 (89.00, 94.90) <0.001

PLT, 109/L 226.93 (58.27) 227.49 (58.41) 226.04 (58.06) 0.499

PDW, % 15.00 (12.50, 16.30) 14.10 (12.30, 16.20) 15.90 (12.90, 16.30) <0.001

MPV, fL 10.59 (1.15) 10.70 (1.15) 10.41 (1.13) <0.001

TC, mmol/L 5.00 (1.16) 4.97 (1.07) 5.05 (1.30) 0.057

TG, mmol/L 1.50 (1.06, 2.21) 1.48 (1.04, 2.22) 1.54 (1.11, 2.20) 0.090

HDL, mmol/L 1.14 (0.95, 1.39) 1.16 (0.95, 1.44) 1.11 (0.96, 1.33) 0.001

LDL, mmol/L 2.82 (0.88) 2.80 (0.82) 2.85 (0.96) 0.081

FBG, mmol/L 6.80 (6.19, 8.35) 6.71 (6.18, 8.21) 6.98 (6.21, 8.61) 0.013

TP, g/L 73.00 (68.70, 76.60) 73.70 (70.10, 76.90) 71.50 (66.60, 75.50) <0.001

ALB, g/L 44.90 (42.27, 46.60) 45.35 (43.10, 46.90) 44.00 (40.90, 46.00) <0.001

AST, IU/L 23.00 (18.00, 29.00) 23.00 (18.00, 29.00) 23.00 (18.00, 30.00) 0.780

ALT, IU/L 24.00 (17.00, 38.00) 25.00 (17.00, 39.00) 23.00 (16.00, 37.00) 0.058

GGT, U/L 31.00 (21.00, 52.00) 30.00 (20.00, 51.00) 33.00 (22.00, 54.00) 0.008

SUA, mmol/L 357.19 (96.25) 354.05 (95.07) 362.22 (97.95) 0.022

SCR, mmol/L 66.00 (56.00, 76.00) 64.45 (55.10, 74.38) 68.00 (58.00, 79.00) <0.001
fro
BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC, white blood cell count; NEU, neutrophil count; EOC, eosinophil count; BASO, basophil count; LYC,
lymphocyte count; RBC, red blood cell count; HB, hemoglobin; RDW, red blood cell distribution width; MCV, mean red blood cell volume; PLT, platelet count; PDW, platelet distribution width;
MPV, mean platelet volume; TC, total cholesterol; TG, triglycerides; HDL, high-density lipoprotein; LDL, low-density lipoprotein; FBG, fasting blood glucose; TP, total protein; ALB, albumin;
AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma-glutamyl transpeptidase; SUA, serum uric acid; SCR, serum creatinine.
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Based on the independent risk factors, we proceeded to explore

the correlation between the variables (Figure 4). From the

correlation analysis, we observed a negative correlation between

AIP and Age (r = -0.24, P < 0.01), MCV (r = -0.13, P < 0.01), and

HDL (r = -0.69, P < 0.01). Additionally, positive correlations were

observed between AIP andWBC (r = 0.14, P < 0.01), GGT (r = 0.28,

P < 0.01), and SUA (r = 0.27, P < 0.01).

To further assess the clinical applicability of AIP, we conducted

a diagnostic experiment and a dose-response relationship study.

The result of the diagnostic experiment (Figure 5A) revealed that

although AIP holds promise as a potential biomarker for SCAS, its

diagnostic value was moderate (AUC: 0.535). The dose-response

relationship (Figure 5B) demonstrated a linear correlation between
Frontiers in Endocrinology 05
AIP and the risk of SCAS prevalence (P-overall < 0.001, P-non-

linear = 0.319), with a significant increase in risk observed when

AIP was greater than 0.625.
3.3 Construction of risk prediction models

The study population was divided into training and internal

validation sets at a 6:4 ratio. The basic characteristics of the

participants in the two sets did not differ (Table 2). LASSO

enables a data dimensionality reduction algorithm that screens

feature predictors by constructing a penalty function that

compresses regression coefficients to zero (19). RF-RFE is a
FIGURE 2

Association of four metabolism-related parameters with risk of SCAS. AIP, atherogenic index of plasma; CRI, Castelli risk index; TyG, triglyceride-
glucose; METS-IR, metabolic score for insulin resistance; SCAS, subclinical atherosclerosis.
FIGURE 3

Multivariate logistic regression analysis of subclinical atherosclerosis. WBC, white blood cell count; BASO, basophil count; LYC, lymphocyte count;
RDW, red blood cell distribution width; MCV, mean red blood cell volume; PDW, platelet distribution width; MPV, mean platelet volume; HDL, high-
density lipoprotein; FBG, fasting blood glucose; TP, total protein; GGT, gamma-glutamyl transpeptidase; SUA, serum uric acid; SCR, serum
creatinine; AIP, atherogenic index of plasma.
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recursive backward feature elimination method that evaluates the

importance of variables and progressively removes the least

important ones, ultimately screening the optimal number of

features (20). In the training set, LASSO combined with RF-RFE

was applied to screen the most characteristic variables for SCAS

(Figures 6A, B). Subsequently, the common variables screened by

both algorithms were selected as predictors for constructing the

SCAS risk prediction models, which included Age, FBG, TC, HDL,

LDL, TP, ALB, SUA, and SCR (Figure 6C). To determine the
Frontiers in Endocrinology 06
optimal risk prediction model, six machine learning algorithms,

namely LDA, LR, NB, RF, SVM, and XGboost, were employed to

construct risk prediction models.
3.4 Validation of risk prediction models

Within the training set, 10-fold cross-validation was employed

to evaluate the predictive value of the models and showed that the
FIGURE 4

Correlation analysis between the variables. MCV, mean red blood cell volume; HDL, high-density lipoprotein; PDW, platelet distribution width; MPV,
mean platelet volume; FBG, fasting blood glucose; BASO, basophil count; AIP, atherogenic index of plasma; WBC, white blood cell count; LYC,
lymphocyte count; GGT, gamma-glutamyl transpeptidase; SCR, serum creatinine; SUA, serum uric acid; TP, total protein. *P < 0.05; **P < 0.01.
A B

FIGURE 5

Receiver operating characteristic (ROC) curve and dose-response relationship between AIP and subclinical atherosclerosis. (A) ROC curve; (B) Dose-
response relationship. AIP, atherogenic index of plasma.
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TABLE 2 Characteristics of participants in different sets.

Training set Internal validation set P-value

N 1852 1232

Sex (male), % 1367 (73.8) 924 (75.0) 0.486

Age, years 56.00 (49.00, 61.00) 55.00 (50.00, 61.00) 0.406

BMI, kg/m2 24.70 (22.81, 26.99) 24.56 (22.65, 26.95) 0.132

SBP, mmHg 133.83 (17.23) 133.48 (17.84) 0.590

DBP, mmHg 81.00 (73.00, 90.00) 81.00 (73.00, 89.00) 0.750

WBC, 109/L 6.52 (1.73) 6.57 (1.72) 0.473

NEU, 109/L 3.70 (2.96, 4.60) 3.70 (2.99, 4.67) 0.765

EOS, 109/L 0.11 (0.07, 0.19) 0.11 (0.07, 0.19) 0.417

BASO, 109/L 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 0.579

LYC, 109/L 2.00 (1.60, 2.44) 2.00 (1.60, 2.50) 0.354

RBC, 1012/L 4.86 (0.53) 4.90 (0.52) 0.043

HB, g/L 150.00 (138.00, 159.00) 150.00 (139.00, 159.25) 0.124

RDW, % 12.60 (12.20, 13.00) 12.50 (12.20, 12.90) 0.113

MCV, fL 91.00 (88.80, 94.00) 91.00 (88.40, 94.00) 0.909

PLT, 109/L 226.23 (59.25) 227.99 (56.77) 0.413

PDW, % 15.20 (12.50, 16.30) 14.60 (12.50, 16.30) 0.409

MPV, fL 10.59 (1.17) 10.58 (1.12) 0.726

TC, mmol/L 4.99 (1.16) 5.02 (1.17) 0.552

TG, mmol/L 1.50 (1.08, 2.20) 1.49 (1.03, 2.22) 0.288

HDL, mmol/L 1.14 (0.95, 1.39) 1.14 (0.97, 1.40) 0.254

LDL, mmol/L 2.81 (0.88) 2.83 (0.88) 0.622

FBG, mmol/L 6.78 (6.18, 8.36) 6.84 (6.20, 8.31) 0.433

TP, g/L 72.90 (68.60, 76.60) 73.00 (68.80, 76.50) 0.870

ALB, g/L 44.90 (42.30, 46.60) 44.85 (42.20, 46.52) 0.818

AST, IU/L 23.00 (18.00, 29.00) 23.00 (18.00, 30.00) 0.216

ALT, IU/L 24.00 (17.00, 37.00) 24.00 (17.00, 40.00) 0.098

GGT, U/L 31.00 (21.00, 50.00) 31.00 (21.00, 54.00) 0.319

SUA, mmol/L 356.67 (94.60) 357.97 (98.72) 0.714

SCR, mmol/L 65.90 (56.00, 76.00) 66.00 (56.00, 76.43) 0.864

AIP 0.63 (0.14) 0.62 (0.14) 0.432

CRI 4.24 (3.36, 5.31) 4.15 (3.30, 5.32) 0.379

TyG 9.12 (0.64) 9.09 (0.65) 0.295

METS-IR 39.32 (34.83, 44.89) 38.62 (34.54, 44.24) 0.058
F
rontiers in Endocrinology
 07
 fro
BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC, white blood cell count; NEU, neutrophil count; EOC, eosinophil count; BASO, basophil count; LYC,
lymphocyte count; RBC, red blood cell count; HB, hemoglobin; RDW, red blood cell distribution width; MCV, mean red blood cell volume; PLT, platelet count; PDW, platelet distribution width;
MPV, mean platelet volume; TC, total cholesterol; TG, triglycerides; HDL, high-density lipoprotein; LDL, low-density lipoprotein; FBG, fasting blood glucose; TP, total protein; ALB, albumin;
AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma-glutamyl transpeptidase; SUA, serum uric acid; SCR, serum creatinine; AIP, atherogenic index of plasma; CRI,
Castelli risk index; TyG, triglyceride-glucose; METS-IR, metabolic score for insulin resistance.
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RF model had the best clinical predictive value [AUC: 0.729 (95%

CI: 0.709-0.749)], followed by the SVM model [AUC: 0.720 (0.705-

0.735)](Figure 7A). In the internal validation set, the RF model also

demonstrated a good clinical predictive value [AUC: 0.715 (95% CI:

0.688-0.742)](Figure 7B). Furthermore, a comprehensive

comparison of other clinical performance parameters, such as

sensitivity and specificity, was conducted among the prediction

models (Table 3). From the table, we observed that the RF model

exhibits excellent performance in various parameters in the training
Frontiers in Endocrinology 08
set. The confusion matrix of the six machine learning models in the

training set is shown in Figure 8.

The calibration curve visually displays the fit of the risk

prediction models. As shown in Figure 9, except for the XGboost

and NB models, the predicted values of the other models closely

match the theoretical values, demonstrating good clinical calibration.

DCA was used to assess the clinical applicability of predictive

models by showing the relationship between risks and benefits

corresponding to different decision-making. In the training set, all
A B

C

FIGURE 6

Screening of characteristic predictors. (A) Characteristic variables screening based on LASSO (lambda: 1SE); (B) Characteristic variables screening
based on RF-RFE; (C) LASSO combined RF-RFE. LASSO, least absolute shrinkage and selection operator; SE, standard error; RF-RFE, random forest-
recursive feature elimination.
A B

FIGURE 7

Receiver operating characteristic curve. (A) Training set; (B) Internal validation set. LDA, linear discriminant analysis; LR, logistic regression; NB, Naive
Bayes; RF, random forest; SVM, support vector machine; XGboost, extreme gradient boosting.
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six ML models showed good clinical applicability (Figure 10A).

Further, we calculated the risk threshold probability for the RF

prediction model in the internal validation set, which showed that

the RF model was clinically beneficial in the range of 2%-

70% (Figure 10B).
3.5 Interpretation of risk prediction model

Based on the aforementioned analysis, we found that the RF

prediction model demonstrated outstanding performance in both the

training and internal validation sets, with the highest clinical

predictive value observed in the training set [AUC: 0.729 (95% CI:
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0.709-0.749)] and outperformed others in terms of accuracy,

sensitivity, recall, and F1 score. Therefore, we have selected the RF

model as the optimal prediction model for further model

interpretation. SHAP interpretation is currently an emerging and

the most commonly used method for interpreting predictive models

in the field of ML, which interprets the model by computing the

“contribution value” (Shapley values) of each characteristic predictor

(21). Figure 11A depicts the contribution degree of the characteristic

predictors to the prediction model, with the top five variables being

Age, ALB, TP, TC, and SCR. Moreover, we observed that higher

values of Age, TC, and SCR correspond to higher SHAP values and

increased disease risk, whereas higher values of ALB and TP result in

smaller SHAP values and reduced disease risk (Figure 11B).
TABLE 3 Performance parameters of six machine learning prediction models in the training set.

Model Accuracy Sensitivity Specificity Precision Recall F1

LDA 0.676 (0.654-0.697) 0.407 0.842 0.613 0.407 0.489

LR 0.677 (0.655-0.698) 0.421 0.834 0.610 0.421 0.498

NB 0.664 (0.642-0.685) 0.442 0.800 0.577 0.442 0.500

RF 0.681 (0.659-0.702) 0.445 0.826 0.612 0.445 0.515

SVM 0.670 (0.648-0.691) 0.399 0.836 0.600 0.399 0.480

XGboost 0.678 (0.656-0.699) 0.425 0.834 0.612 0.425 0.502
LDA, linear discriminant analysis; LR, logistic regression; NB, Naive Bayes; RF, random forest; SVM, support vector machine; XGboost, extreme gradient boosting.
A B

D E F

C

FIGURE 8

The confusion matrix of the six machine learning models in the training set. (A) Linear discriminant analysis; (B) Logistic regression; (C) Naive Bayes;
(D) Random forest; (E) Support vector machine; (F) Extreme gradient boosting.
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4 Discussion

This study included a total of 3084 T2DM individuals, of whom

1186 had SCAS. Multivariate logistic regression analysis identified 14

variables, such as Age, WBC, BASO, and LYC (P < 0.05) as

independent risk factors for SCAS in T2DM patients. LASSO

combined with RF-RFE algorithms revealed nine characteristic

variables, including Age, FBG, TC, HDL, LDL, TP, ALB, SUA, and

SCR, as predictors for the SCAS risk model. Six ML models were

developed and validated for clinical performance. Ultimately, the RF

model exhibited the highest clinical predictive value in the training set

[AUC: 0.729 (0.709-0.749)] and outperformed in accuracy, sensitivity,

recall, and F1 score. The SHAP interpretation of the RFmodel revealed

that Age, ALB, TP, TC, and SCR were the top five variables that made

the most significant contributions to the predictive model.

In this study, the percentage of SCAS in the T2DM population

was 38.46%, lower than the 43.68% reported by Hashimoto et al. in

a Japanese T2DM population (22), which might be related to the

region and sample size. Multiple studies have demonstrated an
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association between the TyG index and the incidence of CVD,

coronary artery stenosis, stroke, and AS (23, 24). A meta-analysis

has revealed that an elevated TyG index is associated with SCAS and

arterial stiffness in the adult population (25). Notably, the I-Lan

Longitudinal Aging Study identified an association between the

TyG index and SCAS in non-diabetic individuals, but not in those

with diabetes (26). Consistent with this finding, our study also

found no significant statistical association between the TyG index

and SCAS in the T2DM population. AIP has emerged as a novel

predictive biomarker for CVD. Associations have been identified

between elevated AIP levels and increased incidences of CAC and

AS (27, 28). In this study, we observed that for every 0.1 unit

increase in AIP, the risk of SCAS increased by 0.31-fold [OR: 1.310

(1.201-1.401)]. However, the receiver operating characteristic curve

indicated an average diagnostic value for AIP (AUC: 0.535).

Age, PDW, MPV, SUA, and GGT were observed as independent

risk factors for SCAS, consistent with previous studies (29–33).

Inflammation-related markers such as WBC, BASO, and LYC, were

also found to be independent risk factors for SCAS. Long-term studies
A B

FIGURE 9

Calibration curve. (A) Training set; (B) Internal validation set. LDA, linear discriminant analysis; LR, logistic regression; NB, Naive Bayes; RF, random
forest; SVM, support vector machine; XGboost, extreme gradient boosting.
A B

FIGURE 10

Decision curve analysis. (A) Training set; (B) Internal validation set. LDA, linear discriminant analysis; LR, logistic regression; NB, Naive Bayes; RF,
random forest; SVM, support vector machine; XGboost, extreme gradient boosting.
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have shown that AS has a complex pathogenesis, primarily attributed

to lipoprotein retention in the arterial wall and chronic inflammation

(34, 35). Hyperglycemia leads to increased inflammasome activity,

upregulated nucleotide-binding oligomerization domain-like receptor

3, and ultimately elevated pro-inflammatory interleukin1b and

interleukin 18 levels (36). Our study further confirms that SCAS in

T2DM is a chronic inflammatory condition. Dyslipidemia is a well-

established independent risk factor for CVD. In our study, we observed

that HDL is an independent risk factor for SCAS. While early research

consistently demonstrated an inverse correlation between HDL levels

and CVD risk (37, 38), more recent studies have unveiled a non-linear,

U-shaped relationship, with very high HDL levels associated with

cardiovascular mortality (39, 40).

Optimizing approaches for early diagnosis of SCAS and providing

earlier and more precise interventions are crucial to reducing adverse

cardiovascular events. Currently, CUS and CT examinations are the

primary methods for screening SCAS, but massive generalization

inevitably leads to the wastage of medical resources and increased

costs, particularly in low-income countries with limited resources. In

recent years, with the growing demand for high-quality healthcare, AI

has become a powerful tool in clinical medicine. ML, as a branch of AI,

was able to analyze large datasets, find complex patterns, and generate

insights that contribute to early disease diagnosis, drug discovery, and

risk prediction (41, 42). For instance, a study based on electronic health

records used ML to generate an in-silico marker for coronary artery

disease (CAD) that can non-invasively quantify AS and risk of death on

a continuous spectrum, and identify underdiagnosed individuals (43).

In addition, Ninomiya et al. (44) developed ML models to predict 5-

year all-causemortality in patients with CAD and assessedML’s benefit

in guiding decision-making between percutaneous coronary

intervention (PCI) and coronary artery bypass grafting (CABG). The

results showed that the hybrid gradient boosting model was the most

effective for predicting 5-year all-cause mortality (C-indexes of 0.78)

and that ML is feasible and effective for identifying individuals who

benefit from CABG or PCI. In this study, we have developed risk

prediction models for SCAS in T2DM patients based on interpretable

machine learning methods that could contribute to the early

identification of high-risk individuals.

Our study carries significant clinical importance. This might be one

of the initial studies to perform SCAS risk prediction in the T2DM
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population using interpretable ML methods. As a chronic condition,

SCAS is challenging to reverse once it develops, emphasizing the

effectiveness of early prevention over active treatment. This

prediction model enables the identification of high-risk individuals

with SCAS within the T2DM population, providing a valuable

advantage for early disease prevention. Moreover, the prediction

model could bring benefits not only to medically underdeveloped

regions but also to inform the clinical decisions of physicians, thus

contributing to the optimization of healthcare resources.

This study has certain unavoidable limitations. Firstly, the study

population was limited to a specific region, which might impact the

generalizability of the prediction model. Secondly, the collection of

clinical data lacked comprehensiveness, which may have led to the

omission of potential predictors. Thirdly, the risk prediction model

has only undergone validation using internal datasets, necessitating

further validation with external datasets. In future studies, we will

conduct a long-term follow-up study and collaborate with multiple

centers to further revise and improve the model.
5 Conclusions

In summary, the development, validation, and interpretation of

the SCAS risk prediction model in a Chinese T2DM population has

significant implications for the reduction and prevention of adverse

cardiovascular events.
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