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46,XX Differences of Sex
Development outside congenital
adrenal hyperplasia:
pathogenesis, clinical aspects,
puberty, sex hormone
replacement therapy and
fertility outcomes
Marianna Rita Stancampiano*, Silvia Laura Carla Meroni,
Carmen Bucolo and Gianni Russo

Department of Pediatrics, IRCCS San Raffaele Scientific Institute, Milan, Italy
The term ‘differences of sex development’ (DSD) refers to a group of congenital

conditions that are associated with atypical development of chromosomal,

gonadal, and/or anatomical sex. DSD in individuals with a 46,XX karyotype can

occur due to fetal or postnatal exposure to elevated amount of androgens or

maldevelopment of internal genitalia. Clinical phenotype could be quite variable

and for this reason these conditions could be diagnosed at birth, in newborns

with atypical genitalia, but also even later in life, due to progressive virilization

during adolescence, or pubertal delay. Understand the physiological

development and the molecular bases of gonadal and adrenal structures is

crucial to determine the diagnosis and best management and treatment for

these patients. The most common cause of DSD in 46,XX newborns is congenital

adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency, determining primary

adrenal insufficiency and androgen excess. In this review we will focus on the

other rare causes of 46,XX DSD, outside CAH, summarizing the most relevant

data on genetic, clinical aspects, puberty and fertility outcomes of these

rare diseases.
KEYWORDS

46, XX DSD, gonadal differentiation, atypical genitalia, gonadal dysgenesis, ovotestis,
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1 Introduction

Phenotypic sex is the result of a complex and multistep

developmental process, controlled by different gene pathways and

transcriptional factors, determining specific hormone secretion

during critical stages of fetal life (1, 2). Sexual development

involves two different developmental processes: sex determination

(divided into chromosomal sex determination and gonadal sex

determination) and sex differentiation (3, 4). Chromosomal sex

determination already occurs during fertilization, when a sperm

contributes either an X or Y chromosome to the X chromosome in

the oocyte, determining an XX or XY zygote (5). Gonadal sex

determination is a complex and dynamic multistep event, regulated

by different genetic pathways, leading the bipotential indifferent

gonad either into an ovary or a testis (4, 6). Sex differentiation

occurs once the gonad has developed and is induced by the

hormones produced by gonadal tissues, establishing the internal

and external genitalia and a male or female phenotype (6–10).

Differences of sex development (DSD) are defined as congenital

conditions with atypical development of chromosomal, gonadal,

and/or anatomic sex (11). According to the Chicago Consensus

(11), recently revised in a European Consensus Statement (12),

DSD could be classified into chromosomal DSD, 46, XY DSD and

46,XX DSD. The 46,XX DSD group includes a wide spectrum of

conditions due to atypical gonadal development and altered

hormonal secretion; in the same group are also classified patients

with atypical differentiation of Mullerian structures, affected by the

Mayer-Rokitansky-Kuster-Hauser syndrome (MRKH).

The impact of DSD diagnosis in the affected individuals and

their families is quite huge: patients and parents are facing a

complex set of circumstances when they first hear about the term

DSD. For this reason, these conditions require a multidisciplinary

team, at diagnosis and during each stage of life (11–13). Diagnosis

and then follow-up are quite challenging for clinicians, including

crucial aspects like sex assignment (and re-assignment in some

cases), gonadal management (including the decision of

gonadectomy or gonadal surveillance) and pubertal induction (if

needed). A correct and preferable early diagnosis could represent a

key factor for improving quality of life of patients and their families,

followed by a constant psychological support (12, 14, 15).

The most common condition in 46,XX DSD is represented by

Congenital Adrenal Hyperplasia (CAH) due to 21-hydroxylase

deficiency, with an overall incidence in the Caucasian population

of 1:30.000 female newborns (16). Other forms of CAH include

11ß-hydroxylase deficiency, 3ß-hydroxysteroid dehydrogenase type

2 deficiency, and the newest P450 oxidoreductase deficiency,

characterized by DSD also often associated with skeletal

defects (16).

However, although rarer, other defects involving specific genetic

and/or steroidogenesis pathways could determine a DSD condition

in 46,XX subjects.

The aim of this review is to summarize the most relevant data

on the pathogenesis, diagnosis, clinical and therapeutic

management of 46,XX DSD, outside CAH. The first part will

focus on sexual differentiation, with a special emphasis on genetic

pathways involved in gonadal development, highlighting their role
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on 46,XX DSD. In the second part the author will discuss clinical

management of specific diseases.
2 Sexual development in 46,XX

Sexual development is a complex multistep process through

which the undifferentiated embryonic structures develop toward a

male or female phenotype (7, 8). Until approximately the fifth-sixth

week post-fertilization, no sexual differences are observable in a XX

or XY fetus. Gonadal determination into either ovaries or testes (or

‘atypical’ gonads in DSD) plays a key role in sexual differentiation,

influencing individual’s internal and external genitalia and

secondary sexual characteristics (7–10, 17–19).
2.1 Gonadal determination

In the last decades there has been a considerable increase in our

knowledge of the genes and mechanism involved in the

development and function of human gonads.

In 1940s, after Jost’s discovery that the precocious removal of

embryonic gonads in rabbits leads to a female phenotype

(regardless chromosomal assessment) (20), the ovarian

development was long thought to be just a passive or default

process. In 1990, the discovery of SRY gene (21), also contribute

to this “classic theory” for which ovarian development has been

considered just as a consequence of the absence of the SRY. So, the

crucial event in sex determination was whether or not a testis

developed. This prompted the researchers to focus on the discovery

of genes eventually leading to testis differentiation (22–25).

However, the occurrence of male phenotype in XX individuals

in the absence of SRY gene, or the cases of XY sex reversal in the

presence of SRY, led to hypothesize that SRY could act as a repressor

of the female pathway, also highlighting the hypothesis of the

existence of a gene ‘Z’ repressing male development and/or

activating female development (26, 27). This model emphasized

the theory of the antagonistic nature of male and female specific

genetic pathways in the ‘battle of sexes’ during embryonic

development (8).

Although to date the precise genetic mechanism of sexual

development is still not completely understood, especially in

females, it is widely believed that the genetic programs of male

and female differentiation are closely intertwined and determined

by antagonistic pathways (8, 9, 17, 19).

In humans, the gonadal primordium (also known as the genital

ridge) first appears at the 4th week of gestational age, arising from the

urogenital ridge comprising of the pronephros (from which the adrenal

primordium derives), the mesonephros (from which the gonadal

primordium derives) and the metanephros (from which the reno-

urinary system derives) (28).

Since the 90s, there has been a significant increase in our

knowledge of the genes required for this early step of sexual

development, that is the formation of the bipotential

undifferentiated gonad. The genes identified as vital for the initial

process of gonadal ridge formation include nuclear receptor
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subfamily 5, group A, member 1 (NR5A1); Wilms’ tumor

suppressor 1 (WT1); GATA-binding protein 4 (GATA4);

chromobox homolog 2 (CBX2); LIM homeobox gene 9 (LHX9);

empty-spiracles homeobox gene 2 (EMX2) (2, 6, 8–10, 28–

30) (Figure 1).

Modification of genetic pathways, due to loss of function of the

above listed genes, at this early stage of human gestation, may lead

to DSD (31–40). In Table 1 we have summarized current

understanding on genes involved in genital ridge development

and their pathogenetic role in 46,XX individuals.

Until the beginning of differentiation at 6th-7th week of

gestation, there are no structural differences between XX and XY

gonadal primordium (7). In 46,XX fetuses, the gonads remain

undifferentiated for a longer period of time compared to 46,XY,

probably due to a later expression of the specific ovarian

differentiation pathways (9, 17, 30).

The two main roles of the ovary are the production of steroid

hormones and the generation of mature oocyte. For these reasons,

ovarian differentiation is characterized by two milestones: (i) the

entry of XX germ cells into meiosis and (ii) follicle formation (41,

42). Primordial cells differentiate into oogonia from week 8; at week

11-12, germ cells enter into the first meiosis and primordial follicles
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develop. At week 15, the primary follicles develop, with the

differentiation of theca cells. By the time of birth, the majority of

the oocytes in the human ovary are contained in primary follicles,

and a few in primordial follicles; the number of secondary or

tertiary antral follicles is very small (42).

Although the female regulatory cascade still lacks a ‘master’

regulator as an equivalent of SRY gene in males, it came to light that

specific pathways, involving different genes and transcription

factors, such as the wingless-type MMTV integration site family,

member 4 (WNT4), R-spondin1 (RSPO1), Forkhead box L2

(FOXL2), Gata4/6 and Fog2 and CTNNB1/beta catenin, are vital

for promoting ovarian differentiation and oocyte maturation and

maintenance (8–10).

Components of both male and female pathways antagonize

each other to promote development of either testes or

ovaries (Figure 1).

Changes on these specific pathways, altering this perfect

antagonism of ‘battle of sexes’, determine several spectrum of

DSD conditions, with variable phenotypes (43). In Table 2

we have summarized current knowledge on genes involved in

gonadal development and their pathogenetic role in 46,XX DSD

(41, 44–51).
FIGURE 1

Overview of the genetic pathways involved in gonadal determination. Arrows indicate activation of a downstream target. Lines ending in bars
indicate repression of a downstream target. The genes identified as vital for the development of the bi-potential gonad include: nuclear receptor
subfamily 5, group A, member 1 (NR5A1); Wilms’ tumor suppressor 1 (WT1) and chromobox homolog 2 (CBX2) (ref (2, 6, 8–10, 28–30). Various
genes have been implicated in the pathways leading the bipotential indifferent gonad either into an ovary or a testis. In XY: SRY determine an
increase of Sox9 expression, which then stimulate Fgf9 expression. Both Fgf9 and SOX9 suppress the female specific pathway, especially b-catenin
and WNT4, supporting testis specific program. Numerous other genes such as WT1, DAX1, AMH, MAP3K1 and DMRT1 are necessary for the
development and maintenance of testicular gonad. In XX: SRY is absent and specific genes are involved in ovarian development: WNT4 and RSPO1
have a synergic role on the activation of b-catenin, that suppress the SOX9/Fgf9 testicular pathway. Moreover, WNT4, RSPO1 and FOXL2 active Fst
(follistatin) expression (ref. 17–19). Figure adapted from Tevosian SG. Genetic control of ovarian development. Sex Dev. 2013;7 (1–3):33–45 (ref.17);
Eggers S, Ohnesorg T, Sinclair A. Genetic regulation of mammalian gonad development. Nat Rev Endocrinol. 2014;10 (11):673–683 (ref.18);
Ohnesorg T, Vilain E, Sinclair AH. The genetics of disorders of sex development in humans. Sex Dev. 2014;8 (5):262–272 (ref.19). Created with
BioRender.com.
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2.2 Internal genitalia differentiation

The internal genitalia are similar in both sexes until 9th week of

gestation, when they will differentiate into specific male or female

ducts, depending, in turn, by gonadal differentiation. At 5th of

gestation, two pairs of ducts, derived from the intermediate

mesoderm, begin to develop in fetus: the Wolff ducts, which

eventually lead to the epididymis, vas deferens and seminal

vesicles) and Mullerian ducts (lateral and parallel to Wolff),

which eventually lead to the uterus, fallopian tubes, cervix and

the upper third of the vagina (52).

After gonadal differentiation, in case of testis development,

synthesis of testosterone by Leydig cells from 9-10th of gestation

and anti-mullerian hormone (AMH) by Sertoli cells from 12th week

of gestation, determine the regression of Mullerian ducts and the

stabilization of Wolff ducts. On the contrary, in females, the absence

of elevated androgens and AMH determine the regression of Wolff

ducts and development of Mullerian structures (42, 52).

Dur ing the embryogenes i s , in XX indiv idua l s , a

maldevelopment of Mullerian ducts may occur, determining the

Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome, that will be

discussed later in detail.
2.3 External genitalia differentiation

Development of external genitalia depends on androgen-

independent and androgen-dependent two different pathways. The

first phase begins at 5th week of gestation, with the formation of
Frontiers in Endocrinology 04
different structures, identical in both sexes: the genital tubercle, located

just cranial to the midline opening of the urogenital ostium; the

urogenital folds, laterally to the ostium; and the genital swelling/

labioscrotal folds, laterally to the urogenital folds. Formation of these

structures occurs identically in males and females, during the so-called

ambisexual stage of external genitalia development, a hormone-

independent phase, from 5th to 12th week of gestation (53).

After this first phase, in males, the androgen production

determines the elongation of genital tubercle to a penis, the

development of the penile urethra from the urogenital folds and the

fusion of labioscrotal folds in the midline to form the scrotum. In

females, the absence of elevated amount of androgens determine that

genital tubercle differentiate into the clitoris, the urogenital ostium

remains open with the subsequent development of the anterior urethra

ostium and posterior vagina ostium, the urogenital folds become the

labia minora and the labioscrotal folds become the major labia (53, 54).

In XX individuals, fetuses exposure to androgens between 8th and

15th week of gestation determine virilization of external genital with

several degree of ‘masculinization’, as in the cases of 46,XX newborns

with atypical genitalia, due to gonadal maldevelopment or

steroidogenesis defects. These conditions will be discussed below

in detail.
3 46,XX Differences of
Sex Development

According to the Chicago Consensus (11), recently revised in a

European Consensus Statement (12), 46,XX Differences of Sex
TABLE 2 Genes involved in gonadal development and their pathogenetic role in 46,XX DSD.

Gene Chr. Function Human pathologies Molecular pathogenesis (ref)

SRY Yp11.3 Transcription factor Testicular DSD Gain of function (44)

SOX9 17q24.3 Transcription factor Testicular DSD and
Ovotesticular DSD

Gain of function (45)

SOX3 Xq27.1 Transcription factor Testicular DSD and
Ovotesticular DSD

Gain of function (46, 47)

WNT4 1p36.12 Signaling protein Testicular DSD Loss of function (48, 49)

RSPO1 1p34.3 Signaling protein Testicular DSD Loss of function (50, 51)

FOXL2 3q22.3 Transcription factor Premature ovarian
insufficiency

Loss of function (41)
TABLE 1 Genes involved in genital ridge development and their pathogenetic role in 46,XX DSD.

Gene Chr. Function Human pathologies Molecular pathogenesis (ref)

NR5A1 9q33.3 Transcription factor/Nuclear receptor Ovotesticular DSD
Testicular DSD
Premature ovarian insufficiency

p.Arg92Trp variant (34–38)

Loss of function (39)

WT1 11p13 Transcription factor Ovotesticular DSD
Testicular DSD
Premature ovarian insufficiency

Missense and frameshift variants impacting the 4th ZF (31)

Loss of function (32, 33)

CBX2 17q25.3 Transcription factor Gonadal dysgenesis
Premature ovarian insufficiency

Loss of function (40)
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Development (DSD) include a wide spectrum of conditions due to

atypical gonadal development or altered hormonal secretion; in the

same group are also classified patients with atypical differentiation

of Mullerian structures, affected by the Mayer-Rokitansky-Kuster-

Hauser syndrome (MRKH).

Disorders/Differences of gonadal development include

testicular DSD, ovotesticular DSD and primary ovarian

insufficiency. Disorders/Differences of androgen excess comprise

the different forms of Congenital Adrenal Hyperplasia (not

discussed in this review), Aromatase deficiency and Maternal

causes of androgen excess, usually Luteoma.

In the next paragraphs we will summarize the most relevant

data on diagnosis, clinical aspects and management of these rare

diseases, outside CAH.
3.1 46,XX DSD due to disorders/differences
of gonadal development

3.1.1 46,XX testicular DSD
It is characterized by the presence of testes in 46,XX individuals,

with concomitant absence of Mullerian derivatives. In 60s A. de la
Frontiers in Endocrinology 05
Chapelle identified these subjects as ‘XX males with male

phenotype, male psychosexual gender identity, gonads

differentiated as testes without macroscopic and microscopic

evidence of ovarian tissue and absence of female internal

genitalia’ (55).

3.1.1.1 Genetic

The prevalence of this disease is estimated as 1:20.000 (56) and

in the majority of cases (almost 90%), the pathogenetic cause is the

translocation of SRY gene to the X chromosome or more rarely to

an autosome (56). 46,XX testicular DSD SRY negative, may be due

to an increased expression of genetic pathways involved in testicular

differentiation and/or an insufficient expression of genetic pathways

involved in ovarian differentiation (43) (Table 2).

3.1.1.2 Clinical aspects, puberty, sex hormone
replacement therapy and possibility of fertility

From a clinical point of view, affected patients usually present

with normal virilized male external genitalia; in other cases,

newborns may present with atypical genitalia (46–48, 50, 51, 57–

63) (Table 3). In patients with normal male external genitalia,

diagnoses may be delayed until adult life when they could be
TABLE 3 Genetics, clinical phenotypes and hormonal assessment of SRY-negative 46,XX testicular and ovotesticular DSD.

Pathogenesis Genetic
findings

Genital
phenotype

Gonadal histology Hormonal
assessment

Sex
of rearing

Ref.

Increased SOX9 expression Duplication of
SOX9 gene

Atypical genitalia

Male genitalia

NA

Testis

NA

FSH, LH, T prepubertal
T post HCG test 2.1
ng/ml

NA

Male

(59)

(60)

Rearrangement of
SOX9
regulatory regions

Infertility,
gynecomastia

Atypical genitalia

Infertility

Mild intellectual
disability

Atypical genitalia

NA

Ovotestis

NA

NA

NA

Hypergonadotropic
hypogonadism

FSH, LH, T prepubertal
T post HCG test 76 ng/dl
Hypergonadotropic
hypogonadism
NA

FSH, LH as minipuberty
T 113 ng/dl, AMH 19.4
ng/ml

Male

NA

Male

Male

Male

(61)

(61)

(61)

(61)

(62)

Increased SOX3 expression Duplication of
SOX3 gene

Atypical genitalia NA NA Male (47)

Rearrangement of
SOX3
regulatory regions

Atypical genitalia Ovotestis T post HCG test 24.6
nmol/l

Male (63)

Increased SOX10 expression Duplication
of chr.22q

Hypospadias

Atypical genitalia

NA

Ovotestis

NA

NA

Male

NA

(57)

(58)

Decreased WNT4 expression WNT4 mutation Atypical genitalia Testis or ovotestis NA NA (48)

Decreased
RSPO1 expression

RSPO1 mutation Atypical genitalia Ovotestis NA Female (50)

RSPO1 deletion Atypical genitalia Gonadal dysgenesis NA Male (51)
frontier
NA, Not available; FSH, Follicle-stimulating hormone; LH, Luteinizing hormone; T, Testosterone; HCG test, human chorionic gonadotropin stimulation test.
Adapted from Romina P. Grinspon, Rodolfo A. Rey; Disorders of Sex Development with Testicular Differentiation in SRY-Negative 46,XX Individuals: Clinical and Genetic Aspects. Sex Dev 28
May 2016; 10 (1): 1–11 (ref 43).
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referred to an endocrinologist because of infertility. Youngest boys

may also be referred to a pediatric endocrinologist because of

puberty delay or testicular hypoplasia (43) (Table 3). It has been

speculated that at pubertal age, the absence of Y chromosome and

genetic pathway needed for testicular maintenance, determine a

progressive germ cell loss, azoospermia and consequent reduced

testicular volume (64).

In these patients, gender identity is almost always male, but they

would need testosterone replacement therapy starting from young

adult age (43). It was suggested that levels of testosterone may be

normal during adolescence, but decreased in adulthood (65),

however, few data have been published so far. Moreover, no

studies on treatment to induce or sustain puberty in male patients

with gonadal dysgenesis are available in literature (66). Hormone

replacement therapy (HRT), if needed, consists of Testosterone

treatment, with formulations and therapeutic schemes

recommended in International clinical practice guidelines (66–

68), that we have summarized in Table 4.

Recently, Chen et al. retrospectively revised a population of 144

males with 46,XX DSD (71 SRY positive, 15 SRY negative),

analyzing clinical characteristics and assisted reproductive

technology (ART) outcomes (69). The mean age of patients

included in the study was 29.06 ± 4.5 yrs. Greater than 90% of

cases had elevated levels of follicle-stimulating hormone and
Frontiers in Endocrinology 06
luteinizing hormone, almost 63% of cases had low testosterone

values. The mean volume (95% CI) of left and right testis was 2.16

(1-82-2.49) and 2.16 (1.83-2.49) ml, respectively: 143 patients had

bilateral atrophic testes with testicular volume less than 15 ml on

both sides. Among patients with normal ejaculatory function,

azoospermia was found in the totality of cases, all presenting the

deletion of AZFa, AZFb and AZFc regions. Fertility was achieved in

87 patients, through ART: the live birth rates using artificial

insemination (AID) or in vitro fertilization (IVF) with donor

spermatozoa was 18.11 and 58.09% respectively, as already

described in other retrospective studies of ART (70).

3.1.2 46,XX Ovotesticular DSD
The differential diagnosis between ovotesticular and testicular

DSD is based on histological analysis. It requires the concomitant

existence of testicular tissue (seminiferous tubules) and ovarian

tissue (follicles containing oocytes) that can be found in each of the

two gonads (bilateral ovotestis), just in one of the two gonads

(unilateral ovotestis) with the other one normally differentiated as

testis or ovary, or one testis in one side and ovary on the other

(lateral ovotestis). The most common for is the unilateral (ovotestis/

ovary) in 34% of cases, followed by bilateral ovotestis in 29% of

cases, lateral (ovary/testis) in 25% of cases and unilateral (ovotestis/

testis) in 12% of cases (71).

3.1.2.1 Genetic

Contrary to Testicular DSD, 90% of patients are SRY negative.

However, similar to testicular DSD, also in these cases, a genetic

imbalance of testis and ovarian pathways determining an increased

expression of pro-testis genes and an insufficient expression of pro-

ovarian/anti-testis genes, results crucial for the onset of these

diseases (43, 72) (Table 3).

3.1.2.2 Clinical aspects, puberty, sex hormone
replacement therapy and possibility of fertility

The clinical presentation is highly variable, ranging from a

normal male phenotype or mild/severe hypospadias to a female

presentation with genital tubercle hypertrophy. Less virilized

patients may also present Mullerian derivatives (46–48, 50, 51,

57–63) (Table 3).

Sex assignment represents an important challenge for clinicians,

and the multidisciplinary team together with patients and families,

will apply clinical and ethical considerations discussed in the

Consensus Statement (12), to ensure the best quality of life of

each affected individual (14, 73–75). These state that the following

principles should guide clinical decisions: minimizing physical and

psychosocial risks, preserving the potential for fertility and

satisfying sexual relations in adolescence and adulthood, leaving

options open for the future if necessary, respecting the parents’

wishes, beliefs and sociocultural tradition, when possible, to

guarantee the best options for a healthy life (76) (health is a state

of complete physical, mental and social well-being and not merely

the absence of disease or infirmity; WHO, 1948).

When the sex may not be easily defined at birth, more time is

needed to determine the gender identity and the hormonal

assessment of patients, in terms of androgen or estrogen gonadal
TABLE 4 Testosterone replacement therapy in boys and adults with
hypogonadism (ref 66-68).

Testosterone
[T] formulation

Therapeutic schemes

T enanthate, cypionate
or mixture of T esters,
i.m. injection

Initial dose: 25-50 mg monthly. Increase of 50 mg
every 6-12 months
Adult dosage: 150-200 mg every 2 weeks

T undecanoate,
i.m. injection

Used for pubertal induction only in young men
Adult dosage:
750 mg every 10 weeks
1000 mg every 10-14 weeks

T transdermal gels Few data available
Gel 1% [Androgel®]. Initial dose: 0.5 g/daily.
Increase based on T level: 1.0, 1.5, 2.5, 3.0 or to 5 g/
daily as needed
Adult dosage: 5.0-10.0 g/daily
Gel 2% [Fortesta®, Tostrex®]. Initial dose: 10 mg/
daily
Adult dosage: 40-80 mg/daily

T undecanoate,
oral tablets

No data available in adolescent population.
Adult dosage [Andriol®]: 40-80 mg, 2-3 times/day
New formulation for adults, approved in USA
[Jatenzo®]: 158-396 mg twice/daily.

T transdermal patches Prepubertal 14-16 ys: 2.5 mg over 12 h, overnight
Partially virilized 17-19 ys: 2.5 mg/daily
Virilized men >20 ys: 5 mg/daily

T pellets subcutaneous 13.9-17.5 ys: 8-10 mg/Kg every 6 months, for
18 months

T intranasal No data available in adolescent population
Adult dosage: 11 mg three times a day

T transbuccal
bioadhesive tablets

No data available in adolescent population
Adult dosage: 30 mg twice daily
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production, waiting until pubertal age. Patients and families will be

followed by a specialized DSD multidisciplinary team at each stage

of life (12).

The risk of tumor development in the testicular portion it has

been reported to be low, probably due to the absence of Y

chromosome (77); the ovarian tissue, before puberty, remain

quiescent. For these reasons, in view of the unpredictable gender

outcome and in line with the recent recommendations of human

rights principles, the irreversible gonadectomy should be avoided in

any child with OT- DSD and postponed at pubertal age, after

discussion with patients theirselves and families (78).

At the onset of puberty, gonadectomy would be needed, to

avoid undesirable gonadal hormone production. However, surgical

irreversible procedure should be performed until patient’s gender

identity is confirmed by the psychological and psychiatric team.

When gender identity is still uncertain, temporary treatment with

GnRH analogs has been proposed, becoming a well-established

clinical practice in DSD nowadays (78, 79), as for young adolescents

with gender dysphoria (80).

Few studies have reported pubertal and fertility outcomes in

OT-DSD so far, analyzing just small cohorts (79, 81). Some XX-OT

boys may start and develop puberty spontaneously, other may need

HRT to induce puberty or maintain testosterone level through

adulthood (78, 80). As previously discussed, the absence of Y

chromosome and genetic pathway needed for testicular

maintenance, generally determine a progressive germ cell loss and

azoospermia in male individuals (78). Female OT-DSD patients,

who have normally developed ovarian tissue, may have

physiological pubertal development and regular cyclic

menstruation (77, 78, 80).

Several uneventful pregnancies, spontaneous or induced

through ART, have been reported (78, 79, 82–85).

Hormone replacement therapy, if needed, consists of

Testosterone or Estrogen treatment, depending on gender

assignment, with formulations and therapeutic schemes

recommended in International guidelines (66).

As previously discussed, no studies on treatment to induce or

sustain puberty in male patients with gonadal dysgenesis are

available in literature (66). Therapeutic approaches with

Testosterone, standardized in clinical practice, have been

summarized in Table 4.

On the contrary, looking at clinical studies on treatment to

induce or sustain puberty in females with gonadal dysgenesis,

several randomized trials and cohort studies have been compared

(66); however, the majority of these, have brought patients

diagnosed with Turner syndrome, primary ovarian failure or

transgender women (66, 86, 87). Further specific studies,

focusing on DSD patients, are needed to evaluate the best

therapeutic approach ensuring a good quality of life on a long-

term follow-up. In Table 5 we have summarized the most

common preparations and relative therapeutic schemes that can

be used for pubertal induction and maintenance in DSD girls

with hypogonadism.
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TABLE 5 Estrogen and progesterone preparations for pubertal induction
and maintenance in girls with hypogonadism (ref 66, 85).

Estrogen
Preparations

Doses
available

Therapeutic
schemes

Transdermal E2:

-Menostar

-Vivelle Mini e Vivelle
Dot
-Estraderm MX

-Generic (different
brands in
different countries)

-E2 gel 0.1%

-E2 gel 0.06%

14 µg patch

25, 37.5, 50, 75, 100
µg patches
25, 50, 100 µg
patches
25, 37.5, 50, 75, 100
µg patches

0.5 and 1 mg E2/
sachet

0.75 mgE2/pump

Only used for low dosing: 3-
7 ug/d or half path weekly

Initial dose: part of patch
twice weekly
Adult dosage: 50-100 µg
twice weekly

Not used for pubertal
induction
Adult dosage: 1-2 sachet
daily
Not used for pubertal
induction
Adult dosage: 1-3
pumps daily

E2 oral options:

-17b-estradiol or
Estradiol valerate

-Ethinylestradiol (EE2)

0.5, 1, 2, 4 mg Initial dose: 5 µg/Kg/day
(part of a pill daily)
Adult dosage: 1-4 mg/day
Initial dose: 2 µg/day
Adult dosage: 10-20 µg/day

Progesterone
Preparations
(if uterus present)

Doses
available

Therapeutic
schemes

Medroxyprogesterone
acetate or
Dydrogesterone

Micronized progesterone

10 mg tablet

100, 200 mg tablet

Give with E2, or alone for
10 days/cycle

Give with E2, or alone for
10 days/cycle

Combined E2/Gestagen

Sequential patch:

-Climara Pro

-Combipatch

E2 0.045 mg/
levonorgestrel 0.015
mg/24 h

E2 0.045 mg/
norethidrone 0.014
or 0.25 mg/24 h

Not used for starting
puberty
Adult dosage: 1 patch
weekly
Not used for starting
puberty
Adult dosage: 1
patch weekly

Sequential pills:

-Femoston 1/10 or 2/10

-Femoston Continu

Tablet 1-14: 1-2
mg E2;
Tablet 15-28: 1-2 mg
E2 + 10 mg
dydrogesterone

All tablets: 1mg
E2 + 5
mg dydrogesterone

Not used for starting puberty
Adult dosage: 1 tablet/day

Not used for starting puberty
Adult dosage: 1 tablet/day
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3.1.3 Premature ovarian insufficiency (POI)
According to the ESHRE guidelines, Premature ovarian

insufficiency (POI) is defined as a clinical syndrome characterized

by loss of ovarian activity before the age of 40 years, determining

menstrual disturbance (amenorrhea or oligomenorrhea) with raised

gonadotrophins and low estradiol (88).

3.1.3.1 Genetic

A wide range of different etiological causes may determine POI

disease, including genetic, autoimmune, metabolic, infectious and

iatrogenic factors (41, 89).

3.1.3.2 Clinical aspects, puberty, sex hormone
replacement therapy and possibility of fertility

The clinical presentation of POI is highly heterogeneous as it

can be associated with gonadal dysgenesis and consequent absence

of spontaneous pubertal development, primary amenorrhea or

secondary amenorrhea due to anticipated depletion of the ovarian

reserve before 40 years of age.

Patients with autoimmune or genetic disorders, which it is

known to have an increased risk to develop a POI (such as X

chromosome defects, BPES, AIRE and other), may benefit from

fertility preservation at young age with ovarian tissue or egg freezing

(90). In the same way, the evidence of pathogenetic variants in adult

women already diagnosed with POI, could be extremely useful for

female relatives, who can be precociously referred to specialized

team of endocrinologists and gynecologists.

Hormone replacement therapy consists of Estrogen and

Progesterone treatments, with formulations and therapeutic schemes

recommended in International guidelines (66), summarized

in Table 5.
3.2 46,XX DSD due to atypical
differentiation of Mullerian structures

3.2.1 Mayer-Rokitansky-Küster-Hauser syndrome
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome, also

referred to as Müllerian agenesis or aplasia, is a congenital disorder

caused by embryologic underdevelopment of the Müllerian duct and

characterized by agenesis of the uterus, the cervix and the upper two-

thirds of the vagina in otherwise phenotypically 46,XX females. The

ovaries, considering their different embryogenesis (as mentioned

previously), are typically normal in morphology and function (91).

MRKH syndrome has an estimated incidence of about 1:4.000 to

1:5.000 female live births (92) and it is classified among the most severe

uterinemalformation by the “European Society of HumanReproduction

and Embryology” and the “European Society for Gynaecological

Endoscopy” classification. It represents the second most common

cause of primary amenorrhea after ovarian insufficiency, reported in ~

16% of female with primary amenorrhea (93).

3.2.1.1 Genetic

The etiology of MRKH syndrome remains unclear.

Environmental and genetic causes that may interfere during the
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embryonic development have been proposed (91, 94). However,

currently, the pathogenesis remains not completely understood

and the majority of cases do not have a molecular diagnosis. Also,

the inheritance is not completely clear: the identification of

monozygotic twins discordant for MRKH syndrome (95) and

the absence of genital malformations in biological children of

women with MRKH syndrome born from surrogate mothers

(96), support the sporadic nature of the disease; however,

familial cases have been described (97) indicating that, at least

in a subgroup of patients, MRKH syndrome may be an

inherited disorder.

The most reported genes implicated in the pathogenesis of

MRKH syndrome have been WNT4, LHX1 (LIM homebox protein

1) and HNF1B (hepatocyte nuclear factor-1B) (98). In particular,

LHX1 and HNF1B, are considered important transcription factors

regulating Mullerian ducts development (98). Mutations in LHX1

(99) and deletions at 17q12, encompassing LHX1 and HNF1B, have

been detected in patients with MRKH syndrome (100, 101);

mutations in the HNF1B gene have been detected in a familial

case, in which two out of four female mutation carriers were affected

by uterine malformations (102).

3.2.1.2 Clinical aspects, puberty, sex hormone
replacement therapy and possibility of fertility

Physical examination of patient with MRKH syndrome reveals

female external genitalia with short blind-ending vagina. Patients

usually reach puberty at the physiological time, showing normal

development of secondary sex characteristics and do not need HRT.

The most frequent reason for referral to the endocrinologist or

gynecologist is primary amenorrhea, and the median age at first

presentation has been reported to be 17.5 years (92). In rare cases,

patients may be referred at younger age for ‘incidental’ evidence of

uterus agenesis at abdomen ultrasound or abdominal surgery

performed for other reasons.

The role of an expert multidisciplinary team (MDT) is essential

for the diagnosis and management of the disease.

Pelvic ultrasound (US) is considered the first line diagnostic

tool, demonstrating the absence of uterus but the presence of

normal bilateral ovaries; pelvic magnetic resonance imaging

(MRI) is the gold standard for diagnosis, showing the Müllerian

structures in detail, with a better resolution compared to the US

(103, 104). One of the most common condition that may be

confused with MRKH syndrome is Complete Androgen

Insensitivity Syndrome (CAIS), however with a 46,XY karyotype,

so the importance of MDT with a great experience on

DSD management.

The evaluation of the presence of concomitant congenital

extragenital anomalies is essential in patients with MRKH

syndrome: in some individuals, uterine maldevelopment may be

associated with urological abnormalities or other malformations

(91). For this reason, in literature, it is possibly to classify the

MRKH syndrome into the type I, (isolated or typical) and type II,

where additional extragenital malformation are documented,

involving mainly the kidneys and the axial skeleton and less

frequently heart and hearing (91).
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In European patients with MRKH syndrome, the proportion of

type II was reported to be 43.5-54.4% (92, 105), while in Chinese

patients was reported to be 30.4% (106). This discrepancy may be

explained by ethnic differences. Renal malformations are the most

frequent extragenital abnormalities, occurring in ~ 30–40% in

European cohorts (92, 105). Unilateral renal agenesis is the most

frequent anomaly accounting about half of all renal malformations

associated with MRKH syndrome; it is often associated with

complete absence of the ipsilateral Müllerian duct which suggests

a close relationship between early kidney and Müllerian duct

development. Other renal malformations include pelvic kidney,

duplex kidney, and horseshoe kidney (92).

Anomalies of the skeleton are the second most frequent

extragenital manifestations affecting about ~10–40% of patients

(92). Skeletal anomalies typically involve the axial skeleton

(scoliosis, Klippel-Feil anomaly, hemivertebrae, rib aplasia) and

more rarely the extremities.

Cardiac abnormalities are reported in < 5% of patients

(pulmonary valve stenosis, atrial septal defect) (92). Hearing

impairment, including both sensorineural and conductive hearing,

is generally reported in < 5% of patient, but is not routinely

examined (92).

The coexistence of Müllerian aplasia with unilateral renal

aplasia/ectopic kidney and cervicothoracic somite dysplasia is

called Müllerian aplasia, renal aplasia, and cervicothoracic somite

dysplasia syndrome (MURCS) (107).

Caring of patients with MRKH syndrome require a

multidisciplinary team consisting of expert gynecologists,

surgeons, physiologists and sexologists, playing a key role at

diagnosis and long-term follow-up (12).

The creation of a new functional neovagina represents one of

the most important intervention to discuss with patients and

families. In the last decades, different surgical and non-surgical

treatment strategies have been suggested for vaginal reconstruction.

The American College of Obstetricians and Gynecologists

(ACOG) has recommended self-dilation therapy using vaginal

dilatators as first line approach in most patients, based on the

high overall success rate, safeness with low complication rate and

reduced operating costs than surgery (108). Adverse effects reported

with dilation include urinary complaints, bleeding and pain.

Patients should receive a psychological support and encouraged

to start dilation when she feels emotionally and physically

ready (109).

ACOG recommend that surgery should be reserved for those

patients experiencing failure with dilation, choosing among

different surgical approaches and techniques. A comprehensive

literature review on the management of vaginal agenesis has been

conducted by Callens et al. discussing outcome, advantages and

disadvantages of the different procedures (110). However, discuss

with patients and families the possibility of different therapeutical

approaches is absolutely important, highlighting that also the

surgical option require a postoperative dilation to ensure a

satisfactory long-term outcome.

Currently, patients affected by MRKH syndrome may

experience motherhood adopting a child or, in some Countries

also with a surrogate pregnancy, transferring the embryo derived
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from their own oocytes and partner’s sperm (111, 112); very

recently, the uterus transplantation technique has also been

reported (113). Since the first l ive birth after uterus

transplantation achieved by the Swedish team (113), more than

80 procedures have been performed around the globe and at least 40

children were born (114).

Despite recent scientific progress, further studies are needed to

improve quality of life of these patients and reduce psychological

discomforts (115, 116).
3.3 46,XX DSD due to androgen excess

3.3.1 Aromatase deficiency
Aromatase deficiency (AroD) is a rare genetic condition that is

caused by mutations in the CYP19A1 gene, located on the long arm

of chromosome 15 (15q21.1) (16). It is an autosomal recessive

disorder, first described by Shozu et al. in 1991 (117); then, almost

40 cases have been described, due to several pathogenetic variations

in the CYP19A1 gene (118).

Aromatase is the enzyme that catalyzes the synthesis of estrogens

from androgens. The three main precursors are androstenedione,

testosterone, and 16-a-hydroxy dehydroepiandrosterone sulfate,

catalyzed into estrone, estradiol, and estriol, respectively. During

pregnancy, 16OH-dehydroepiandrosterone sulfate (16OH-DHEAS)

arising from fetal liver hydroxylation of fetal adrenal DHEAS

represents an important substrate for placental aromatase and

subsequent estriol production (119).

3.3.1.1 Genetic

In human, the CYP19A1 gene and its product aromatase are

expressed in the ovary, testis, placenta, adipose tissue, skin, and the

brain. The size of the aromatase gene is greater than 123 kb, and its

tissue-specific expression is regulated by the use of tissue-specific

promoters involving alternative splicing (120). Moreover, CYP19

gene expression is regulated by several hormones and factors that

differ markedly between tissues. Thus, a strict control over tissue-

specific expression is needed for proper regulation of estrogen

synthesis during fetal development and post-natal life. The

biological importance of the aromatase complex is related not

only to its role in the synthesis of estrogens, but also to its

potential influence on the balance of the androgen-estrogen ratio

in different tissues (118).

3.3.1.2 Clinical aspects, puberty, sex hormone
replacement therapy

Clinical phenotype in patients affected by AroD is quite

variable, depending on the enzymatic activity (121). In most 46,

XX newborn diagnosed with aromatase deficiency, atypical genitalia

with various degrees of masculinization of the external genitalia

have been described (16, 118, 121). A typical aspect that could alert

to the possibility of diagnosis is the maternal virilization during

gestation, that progressively disappear after delivery.

During infancy and childhood, there are usually no symptoms

of aromatase deficiency. However, it has been reported that basal

and stimulated gonadotropin levels (LH, FSH) remain significantly
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high during the infancy and childhood period, resulting in a higher

risk of follicular ovarian cysts (122, 123). It has been speculated that

a prolonged effect of androgens or lack of estrogens during

gestation, persisting into infancy, might result in an irreversible

incorrect maturation of the GnRH pulse generator (123).

In adolescent girls, AroD may determine several conditions

such as puberty delay, hypergonadotropic hypogonadism or

primary amenorrhea, due to estrogen deficiency; moreover,

clinical signs of hyperandrogenism may also be present (16). In

affected individuals, regular follow-up is needed to avoid long-term

consequences of hypoestrogenism.

To date there is no consensus on the appropriate age, type and

dosage of estrogen replacement therapy and the usefulness of

starting low-dose estrogen treatment from infancy in

affected females.

Further retrospective and prospective studies on large

population are needed to define the best management of

these patients.
4 Conclusions

The 46,XX DSD group includes a wide spectrum of conditions,

with different etiopathogenesis. Even if the majority of cases are

caused by CAH, it is crucial to know that other rarer disorders exist,

in order to make a correct and preferable early diagnosis. Patients

should be referred to a specialized Centre, where a trained

multidisciplinary team (MDT) could manage these children/

adolescents (and families), from diagnosis to adulthood. Support

group may have a key role, together with MDT, helping families to

not fell alone, sharing parents’ and patients’ experiences. While

many patients fare well and have a good quality of life, other

individuals have expressed a sense of anxiety and discomfort about

the DSD condition or have reported poor quality of life. For these
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reasons is important to improve our knowledge on diagnosis,

management and long-term prognosis of these individuals,

organizing international collaborative studies focusing on more

debate aspects, such as clinical care, psychosocial development

and psychosocial adaptation.
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