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Osteoporosis, a systemic skeletal disorder marked by diminished bone mass and

compromised bone microarchitecture, is becoming increasingly prevalent due

to an aging population. The underlying pathophysiology of osteoporosis is

attributed to an imbalance between osteoclast-mediated bone resorption and

osteoblast-mediated bone formation. Osteoclasts play a crucial role in the

development of osteoporosis through various molecular pathways, including

the RANK/RANKL/OPG signaling axis, cytokines, and integrins. Notably, the

calcium signaling pathway is pivotal in regulating osteoclast activation and

function, influencing bone resorption activity. Disruption in calcium signaling

can lead to increased osteoclast-mediated bone resorption, contributing to the

progression of osteoporosis. Emerging research indicates that calcium-

permeable channels on the cellular membrane play a critical role in bone

metabolism by modulating these intracellular calcium pathways. Here, we

provide an overview of current literature on the regulation of plasma

membrane calcium channels in relation to bone metabolism with particular

emphasis on their dysregulation during the progression of osteoporosis.

Targeting these calcium channels may represent a potential therapeutic

strategy for treating osteoporosis.
KEYWORDS

osteoporosis, calcium ion channels, bone metabolism, calcium signaling,
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Introduction

Osteoporosis is a systemic skeletal disorder characterized by decreased bone mass and

deterioration of bone microarchitecture, resulting in increased bone fragility and

susceptibility to fractures (1, 2). According to a prevalence report encompassing 86

studies across five continents, the global prevalence rate of osteoporosis stands at 18.3%,

with only 31-36% of individuals aged over 70 maintaining normal bone health. The

remaining population exhibits varying degrees of osteopenia or osteoporosis (3). This
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number is expected to increase further due to the growing aging

population. The incidence of osteoporotic fractures exceeds three to

four times that of cardiovascular disease or cancer. A report in the

US indicated that due to demographic changes, by 2040,

approximately 25% of individuals over age 50 who have

experienced hip fractures related to osteoporosis are expected to

die within one year (4). The individual and societal impacts posed

by osteoporosis and its complications present significant challenges

for healthcare systems.

Primary osteoporosis includes postmenopausal and senile

forms primarily attributed to declining estrogen levels and aging

process (3, 5). Secondary osteoporosis is caused by underlying

diseases or their treatments, including cardiovascular,

neurological, endocrine disorders, and malignancies, as well as

long-term glucocorticoid use, lifestyle factors, and major

depression (6–9). Bone remodeling, a lifelong process, involves

osteoclast-mediated bone resorption and osteoblast-driven bone

formation (10–13). Additionally, osteocytes embedded within the

bone matrix also play a role in this remodeling process, they are

currently considered as the main source of molecules regulating the

osteoclast and osteoblast activity, such as receptor activator of

nuclear factor-kB ligand (RANKL) and sclerostin. Osteocytes

detect and respond to mechanical and hormonal stimuli to

coordinate both bone resorption and formation (14, 15). The

primary pathological mechanism in osteoporosis is increased

bone resorption due to abnormal osteoclast differentiation and

proliferation (Figure 1) (16, 17). Consequently, treatment

strategies focus on targeting osteoclast activity (18).

Additionally, recent studies suggest a correlation between bone

microvessels and bone loss, with reduced trans-cortical vessels

(TCV) observed in osteoporosis models and a positive correlation

between TCV numbers and bone mass (19–21). Trans-cortical

vessels are capillaries that run vertically through the cortical bone,

connecting the endosteal and periosteal surfaces (20). Xiao CL et al.

used old mice, ovariectomy mice, and db/db mice as osteoporosis
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models, finding reduced TCV in all models, which correlated

positively with bone mass (20).

The regulation of osteoclasts formation and differentiation

involves a complex interplay of cytokines, hormones, immune

factors, gut microbiota, and cellular aging (22–25). Among the

various cytokines and hormones that regulate osteoclasts formation

and function, macrophage colony-stimulating factor (M-CSF) and

RANKL are the most critical molecules. Senescent cells can produce

senescence-associated secretory phenotypes (SASP), which exert

deleterious paracrine and systemic effects, including the

development of osteoporosis (26, 27). Comparative analysis

between young mice (6 months old) and old mice (24 months

old) revealed significantly higher expression levels of multiple SASP

markers in osteocytes from the latter group (28). SASP has been

reported to promote osteoclastogenesis by enhancing the survival of

monocyte osteoclast progenitors. Moreover, inhibition of SASP

using the JAK1/2 inhibitor Ruxolitinib has been shown to prevent

age-related bone loss (29).

As a crucial intracellular second messenger, Ca2+ plays a

significant role in the regulation of osteoclast differentiation and

bone resorption (30). Many studies have shown that osteoclast

dysfunction is often accompanied by increased intracellular calcium

levels (17). Consequently, there has been a surge of interest in

devising strategies to modulate the intracellular calcium system as a

pivotal approach for regulating osteoclast function. Ca2+-permeable

channels located on cell membranes are an essential component of

the calcium signaling system, mediating the influx of extracellular

Ca2+. Recently, accumulating evidence has highlighted the critical

role these channels play in maintaining dynamic bone metabolism.

In this review, we present a summary of existing research on the

control of calcium channels in the plasma membrane concerning

bone health, with specific focus on their irregularities during the

development of osteoporosis. The exploration of these calcium

channels as a potential therapeutic approach for managing

osteoporosis is discussed.
FIGURE 1

Schematic diagram of the bone remodeling. The process of bone remodeling begins with the recruitment of osteoclast precursors, which fuse to
form multinucleated, active osteoclasts that mediate bone resorption. After resorption, osteoclasts leave the site, allowing osteoblasts to move in
and cover the excavated area. Osteoblasts then initiate new bone formation by secreting osteoid. Osteocytes detect and respond to mechanical
stimuli to regulate bone remodeling by regulating their secreted cytokines, for example, RANKL and sclerostin.
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Calcium signaling in the process of
bone remodeling
Calcium signaling plays a crucial role in bone metabolism, with

imbalanced Ca2+ homeostasis significantly affecting osteoblast

activity and bone formation. Excessive Ca2+ loading in osteoblasts

can limit differentiation by inducing apoptosis in mitochondria and

the endoplasmic reticulum (ER) (31, 32). Mitochondria are essential

for normal bone formation; however, elevated intracellular calcium

levels can disrupt the function of the inner mitochondrial

membrane, thereby impairing bone formation (33, 34). Similarly,

high intracellular calcium levels can cause ER stress, leading to

apoptosis in osteoblasts (35). Bone marrow mesenchymal stem cells

(BMMSCs) differentiate into osteoblasts and regulate osteoclast

activity through the secretion of RANKL and osteoprotegerin

(OPG), maintaining bone metabolism balance. BMMSCs play a

crucial role in bone remodeling by directly forming new bone and

indirectly influencing bone resorption. Li et al. reported disrupted

intracellular calcium homeostasis in bone samples from

osteoporosis patients and mice, leading to impaired osteoblast

differentiation and compromised bone formation (36).

In osteoclast differentiation and function, calcium signaling is

key (37) (Figure 2). RANKL utilizes this pathway to activate

NFATC, promoting osteoclast formation (38). RANKL/RANK

signaling transactivates phospholipase C (PLC), producing

inositol 1,4,5-trisphosphate (IP3), which binds to inositol 1,4,5-

trisphosphate receptors (IP3Rs) on the ER, triggering Ca2+

oscillations. This leads to Ca2+ binding to calmodulin, activating

calcineurin, which dephosphorylates NFATc1, thus promoting

osteoclast differentiation (39–41). Additionally, Kim et al. have

identified an upstream signaling pathway for RANKL-induced
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PLC activation and Ca2+ oscillations. The small G protein Rac1 is

the most upstream component activated by RANKL, and its

activation can induce long-term production of reactive oxygen

species (ROS) and trigger calcium oscillation by activating PLC to

promote osteoclast differentiation (42, 43). However, continuous

supply of Ca2+ is required for Ca2+ oscillations to reload the stores

between spikes. RANKL-induced ER Ca2+ release occurs through

the activation of STIM1 on the ER membrane, leading to STIM1

aggregation into puncta at the ER-PM junction. This induces an

influx of extracellular calcium via store-operated calcium entry

(SOCE), facilitating osteoclast genesis (42–44). Both types of Ca2+

oscillations are terminated when extracellular Ca2+ removing or

SOCE blocker Gd3+ are used (43). RANK-bound RANKL also

activates TRAF6, leading to NF-kB activation and NFATc1

transcription (45, 46). Studies on (–)-Epicatechin 3-O-b-D-

allopyranoside (ECAP) show it inhibits osteoclastogenesis by

blocking NF-kB activation and reducing NFATc1 expression (47).

In the absence of cellular calcium Ca2+, integrins are also able to

activate intracellular Ca2+ storage structures by binding to integrin

receptors at the cell membrane, induced an increase in intracellular

Ca2+ (48). IP3Rs, particularly IP3R2, regulate calcium release from

the ER, playing a critical role in osteoclast genesis (49). In cultured

osteoclasts and monocyte precursors, increased intracellular Ca2+

lead to decreased adhesion and reduced expression of podosomes,

key to osteoclasts function (50).

Maintaining proper intracellular Ca2+ levels is essential for

osteoclast differentiation and activity, making calcium signaling

pathways potential therapeutic targets for osteoporosis. The calcium

permeability channels in the cell membrane are critical for extracellular

calcium influx, which is vital for bone metabolism. An imbalance in

calcium homeostasis due to these channels can impact the function and

differentiation of both osteoblasts and osteoclasts.
FIGURE 2

Calcium signaling in osteoclast. During RANKL-mediated osteoclastogenesis, cytoplasmic Ca2+ oscillation, Causing downstream related pathways to
activate NFATC1,and thus inducing osteoclast differentiation. SOCE is involved in RANKL-induced Ca2+ oscillations and maintains the sustained
production of Ca2+ oscillations, the Ca2+ oscillations induced by RANKL are blocked by SOCE blockers. Specific peptide activation of integrin
receptors also causes a transient Ca2+ response, allowing osteoclasts to adhere to the bone matrix.
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Calcium channels in osteoclasts

Calcium channels influence skeletal homeostasis by mediating

processes that mediate the extracellular and intracellular Ca2+

balance, Osteoclasts differentiation and apoptosis are widely regulated

by Ca2+ channels located in the cell membrane. The regulation of these

Ca2+ channels on osteoclasts is detailed below (Table 1).
Voltage-gated calcium channels

Most of the studies on VGCCs have focused on excitable cells

such as neuro- and muscle cells. However, an increasing body of

research has also demonstrated the involvement of VSCCs in

nonexcitable cells, including bone cells and stem cells (70–72).

These studies have highlighted the crucial role of VSCCs in bone

remodeling. Specifically, disrupting VSCCs or using blockers can

significantly impair osteogenesis and result in abnormal bone

metabolism (73). The depolarization of the membrane potential

activates VGCCs, mediating the influx of extracellular calcium (74).

The Ca2+ influx of VGCCs was monitored in cultured osteoclasts of

chickens by their depolarization to the membrane. Found that the

enhanced activity of VGCCs in stimulated osteoclasts could affect

cell adhesion and reduce bone resorption activity (50).
Store-operated calcium entry

SOCE is considered as the primary pathway for calcium release-

activated calcium (CRAC) channel activation, involving the ORAI1

channel on the plasma membrane (PM) and the stromal interaction

molecule 1 (STIM1) on the ERmembrane.When ER calcium ion levels

are high, STIM1 remains inactive. However, reduced ER Ca2+ levels

activate both STIM1 and STIM2, triggering conformational changes in

STIM1, its translocation to the PM, redistribution to ER-PM junctions,

interaction with clustered Orai1 channels, and subsequent extracellular

calcium influx into cells (75, 76). This process is crucial for maintaining

intracellular calcium homeostasis during cellular activation by external

stimuli. STIM1 knockout in precursor osteoclasts attenuates Ca2+

oscillations induced by RANKL (43), and ORAI1 knockdown
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impairs bone mineral resorption and leads to osteoclast deficiency,

indicating that SOCE is essential for the Ca2+ oscillation/NFATc1-

dependent signaling complex induced by RANKL (53, 54).
Transient receptor potential channels

TRP channels, comprising six subfamilies (TRPC, TRPV,

TRPP, TRPM, TRPA, and TRPML), play significant roles in

maintaining Ca2+ balance during bone homeostasis (77, 78).

TRPC1 inactivation under physiological conditions in mice, and

the subsequent upregulation of osteoclasts in MyoD family isoform

“A” (I-mfa) knockout mice, suggests the role of TRPC1 in osteoclast

differentiation (55). TRPC3 and TRPC6 are associated with

osteoporosis, with TRPC3 promoting osteoclast differentiation

and bone resorption in TRPC6-deficient phenotypes (56). TRPV

channels are extensively documented in osteoblast and osteoclast

differentiation. TRPV1 promotes osteoclast differentiation, with

TRPV1-deficient mice showing reduced osteoclast numbers (57,

58). TRPV2 facilitates Ca2+ oscillation during osteoclast genesis

(79), and TRPV4 is crucial during late osteoclast differentiation

stages (80, 81). TRPV5 and TRPV6 regulate osteoclast size and

number, with TRPV6 acting as a negative regulator (30, 59–61).

Knockdown of TRPV6 resulting in a significant rise in bone

resorption (17). Both knockdown and deletion of TRPML1

significantly reduced the differentiation of bone marrow-derived

macrophages into osteoclasts (64), highlighting the complex roles of

TRP channels in osteoclast function.
Others

Ryanodine receptors (RyRs) and IP3Rs mediate the release of

Ca2+ from the endoplasmic reticulum (ER). The activation of PLC

leads to the production of IP3, which subsequently binds to IP3Rs on

the ER membrane, causing the release of Ca2+ stores. Gene knockout

studies suggest that IP3R2 plays a critical role in calcium oscillation

during osteoclastogenesis (49), with its absence resulting in a partial

defect in osteoclast differentiation (82). RyRs calcium channels may

contribute to the release of intracellular calcium stores, while plasma
TABLE 1 Calcium channels and their functions in osteoblasts and osteoclasts.

Channel
type

Osteoblasts/
osteoclasts

Mechanism Physiological/Pathological
outcome

Ref.

VGCC

L&T Promoting OB differentiation Upregulation: improve osteoporosis
Downregulation: decreased

OB differentiation

(51, 52)

VGCC
Promoting OC differentiation Stimulation elevated the

channel activity
Downregulation: decreased

Ca2+ activity
(50)

SOCE

STIM1 Promoting osteoclast differentiation Keep calcium oscillation continued Downregulation: Calcium oscillation (43, 53, 54)

ORAI1
Promoting osteoclast differentiation Combined with STIM 1 to maintain

calcium oscillation
Downregulation: decreased Ca2+ influx,
NFATC1 translocation injury, and
decreased osteoclast formation

(Continued)
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membrane-bound RyR2 potentially regulates osteoclast activity based

on extracellular calcium concentration (83).

Purinoceptor 2X (P2X) receptors are ligand-gated ion channels

primarily activated by ATP and exhibit significant permeability to

Ca2+ (84). The P2X4 receptors are highly expressed in both

osteoblasts and osteoclasts, and their inhibitors have been shown

to dose-dependently inhibit osteoclastic and osteogenic

differentiation (66). Studies examining OPG induced osteoclast

adhesion structural changes mediated by mitogen-activated

protein kinase (MAPK) signaling via P2X7 receptors indicate that

loss of P2X7 receptors inhibits osteoclast activation (67).

Despite the large number of studies demonstrating the regulation

of calcium channels in osteoclasts, Compared with mesenchymal

osteoblasts and osteocytes, few studies regulate osteoclasts by VGCC,

with unclear regulatory mechanisms likely due to the lower sensitivity
Frontiers in Endocrinology 05
of VGCCs in non-excitatory cells. BothORAI1 and STIM1 have shown

positive regulation of osteoclasts in the SOCE pathway. The regulation

of osteoclast differentiation and activity by the TRP family, particularly

TRPC and TRPV channels, is well-documented. Existing studies

support the negative regulatory role of the TRPC family on

osteoclasts. Additionally, TRPC3 has been found to be highly

expressed in individuals with reduced bone mass (56), suggesting

that TRPC3 may serve as an early warning signal for osteoporosis.

The TRPV family is notably significant in regulating osteoclasts, with

its six members influencing osteoclast differentiation and function. This

family presents a potential target for osteoporosis treatment, though

specific targets within the TRPV channels have yet to be identified.

Future research should focus on discovering precise targets within

TRPV channels and identifying new Ca2+ channels that could serve as

therapeutic targets for osteoporosis.
TABLE 1 Continued

Channel
type

Osteoblasts/
osteoclasts

Mechanism Physiological/Pathological
outcome

Ref.

SOCE

STIM1 Promoting OC differentiation Keep calcium oscillation continued Downregulation: Calcium oscillation

(43, 53, 54)
ORAI1

Promoting OC differentiation Combined with STIM 1 to maintain
calcium oscillation

Downregulation: decreased Ca2+ influx,
NFATC1 translocation injury, and

decreased OC formation

TRPs

TRPC1 Promoting OC differentiation Upregulation: increased OC
differentiation and decreased bone mass

(55)

TRPC3 Promoting OC differentiation They are complementary relationships (56)

TRPC6

TRPV1 Promoting OB and OC differentiation Loss of TRPV1:osteoclast
differentiation↓, increased bone mass;

BMMSCs differentiation↓
osteogenesis↓

(57, 58)

TRPV5 Promoting OC differentiation Knockout number and volume↑, bone
resorption↓.

However, the bone resorption was
enhanced in the mature

(59–61)

TRPV6 Inhibition OC differentiation Inhibition of the IGF IR-PI3K-
AKT pathway

Knockout number and volume↑,
bone resorption↑.

(17, 30)

TRPM7 Promoting OB differentiation Downregulation differentiation
and mineralization↓

(62)

TRPM8 Promoting OB differentiation promotes the differentiation of
BMMSCs into OB

Downregulation: OB differentiation ↓ (63)

TRPML1 Promoting OC differentiation (64)

P2X P2X1 Promoting OB differentiation (65)

P2X4 Promote OB and OC differentiation Downregulation: OB differentiation↓
OC differentiation↓

(66)

P2X7 Activation of OC Osteoporosis can activate P2X7 and
OC differentiation increases

(67)

IP3Rs IP3R2 Promoting OC differentiation Loss of IP3R2: diminished
OC differentiation

(49)

Piezo Piezo1 Promoting OB differentiation knockout: OB differentiation ↓ (68, 69)
fr
IGFIR-PI3K-AKT, Insulin-like growth factor insulin receptor-phosphatidyl inositol 3-kinase-protein kinase; BMMSCs, Bone marrow mesenchymal stem cells; OB, Osteoblast; OC, Osteoclast;
↑: indicates that the functions have been increased; ↓: indicates that the functions have been weakened.
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Calcium channels in osteoblasts

The activation of calcium channels on the osteoblast membrane

plays a crucial role in regulating cell differentiation and activity,

with varying regulatory processes and effects observed across

different types of calcium channels. The regulation of these Ca2+

channels on osteoclasts is outlined as follows (Figure 3).
VGCCs

The calcium increase caused by bone microinjury area induced the

formation of bone matrix. The main mechanism is that extracellular

high calcium stimulated cell membrane depolarization, which enabled

Ca2+ to enter MC3T3-E1 cells in local areas through L-type and T-type

VGCC and promoted bone matrix formation. When L and t-type

blockers were used, the calcium inflow activity of cells in the bone

micro-damage area was significantly reduced (51). Osteoblasts of the

mouse skull were seeded on inactivated bovine bone wafers, and by

inducing local diffuse damage near the cells, the cells on the damaged

bone wafers showed significant increases in Runx2 and Osterix

expression and synthesis of numerous osteocalcin and mineralized

nodules. Moreover, when cells were treated with the nonselective

VGCC inhibitor bepredil before loading, Runx2 and Osterix

expression were significantly inhibited and osteocalcin and

mineralized nodule formation was significantly reduced, indicating

that the diffuse microlesion-induced Ca2+ efflux activates the anabolic

response in osteoblasts by activating VGCCs (52). Functional mutated

CaV1.2 mice exhibited elevated serum concentrations of OPG, while

isolated BMMSCs displayed a reduced ratio of RANKL to OPG (85).

Fei D et al. and Zhang Y et al. identified the downregulation of CaV1.2

in Zmpste24-mouse BMMSCs as a limiting factor for

osteogenic differentiation.
Frontiers in Endocrinology 06
In contrast, pharmacological upregulation of CaV1.2 activity

alleviated osteoporosis in Zmpste24-/- mice (86). Bei Li et al.

discovered that alkaline phosphatase (ALPL) regulates L-type

calcium channel trafficking by binding to the a2d subunit to

maintain intracellular calcium homeostasis. Reduced intracellular

calcium levels due to alkaline phosphatase deficiency lead to

decreased osteogenic differentiation of BMMSCs, but ionomycin

can improve the osteoporotic phenotype in alpl-/- mice and

BMMSC-specific conditional alpl-/- mice by promoting L-type

channel calcium flux (87).
SOCE

In the context of SOCE, ORAI1 deficiency leads to significant

reductions in Ca2+ influx, alkaline phosphatase activity,

substrate mineralization, and overall bone formation (51).

Studies have indicated that long-term usage of lansoprazole

(LPZ) induces calcium overload in osteoblasts and triggers

apoptosis. This calcium release primarily occurs through the

store-operated calcium entry (SOCE) influx at the cell

membrane and via the IP3Rs located on the endoplasmic

reticulum. Inhibition of IP3Rs and SOCE pathway using 2-APB

improves osteoporosis condition (32). Furthermore, ORAI1 has

been identified as a crucial mediator for enhancing the

osteogenic potential of BMMSCs. The absence of ORAI1

results in limited phosphorylation of Smad 1/5/8 within the

BMP signaling pathway; however, activation of BMP signaling

can rescue the impaired osteogenic differentiation ability

observed in ORAI1 BMMSCs. These findings suggest that

targeting ORAI1-BMP signaling could be a potential

therapeutic approach for treating bone formation defects (88).
FIGURE 3

Calcium Channels in Osteoblasts. Various calcium channels on the osteoblast membrane play crucial roles in regulating osteoblast activity. Different
types of calcium channels can modulate bone-forming factors, thereby promoting or inhibiting osteoblast differentiation and function through
distinct signaling pathways.
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TRPs

In vitro studies on TRPV1-deficient BMMSCs have demonstrated

impaired osteoblast differentiation and mineralization (57). In vitro

studies on TRPV1-deficient BMMSCs have demonstrated impaired

osteoblast differentiation and mineralization (89). Although research

on TRPM channels is limited, it has been shown that TRPM7 is

upregulated during osteoblast differentiation, and its deficiency impairs

osteoblast proliferation, differentiation, and mineralization (62).

Notably, TRPM8 knockout mice exposed to cold temperatures

exhibit reduced bone density and significant reductions in femoral

size in males, along with lower vertebral bone microarchitectural

parameters in females, suggesting TRPM8’s role in bone modeling

and remodeling (90). Furthermore, TRPM8 promotes the

differentiation of BMMSCs into osteoblasts. Treatments using

TRPM8 agonists such as menthol or icilin enhance osteogenic

differentiation, while the antagonist BCTC decreases it (63).
Others

P2X1 receptors negatively regulate osteoblast mineralization (65).

Recently discovered mechanosensory ion channels Piezo1 and Piezo2

also play a regulatory role in osteoblasts (68). Targeted deletion of

Piezo1 in osteoblasts resulted in severe osteoporosis and spontaneous

fractures, highlighting Piezo1’s function in growth plate chondrocytes

(69). Additionally, the activation of Sr2+ on the calcium-sensing

receptor (CaR) exerts an anti-osteoporotic effect. Compared to Sr2+,

CaR has a better sensitivity to Ca2+, and the combination of Ca2+ and

CaR can better promote osteoclast apoptosis and osteoblast

differentiation, thereby enhancing bone tissue (91).

The regulatory effect of calcium channels on osteoblasts

primarily focuses on the positive regulation of osteogenesis by
Frontiers in Endocrinology 07
VGCCs. L-type and T-type VGCCs are widely present on

osteoblasts and are activated by changes in the extracellular

environment, such as high calcium levels and hormones,

promoting osteogenic differentiation. Additionally, TRPM8 has

been shown to promote BMMSC osteogenic differentiation,

although the specific mechanisms require further study. Through

these findings, it can be observed that the activation of VGCCs,

TRPs, SOCE, and Piezo channels on the osteoblast membrane can

reduce the symptoms of osteoporosis (Figure 3).
Calcium channels in osteocytes

Osteocytes are mechanical load-sensing cells that mediate bone

formation, adaptation, and resorption in response to mechanical load

(92). Various mechanical stimuli, including fluid shear stresses and

matrix strains (e.g., compressive, tensile, and torsional loads), can

activate osteocytes within the pericellular matrix (93). In the bone

microenvironment, osteocytes are encased in a pericellular matrix at

the interface between the cell membrane and the hard bone matrix.

Small force stimuli generate fluid shear from the extracellular fluid flow

due to spatial deformation, which activates mechanically stimulus-

sensitive ion channels and integrins on the osteocyte membranes. This

activation initiates a series of downstream pathways to regulate bone

remodeling (Figure 4).

Several studies have demonstrated that mechanosensitive

calcium channels in the osteoblast membrane are involved in the

sensing of mechanical signals by osteocytes. Calcium influx is an

early response to mechanical stimulation of osteocytes both in vitro

and in vivo (94). The Ca2+ channel Piezo1 mediates mechanical

signaling in osteocytes. Fluid shear stress has been shown to

increase the expression of Piezo1 on the MLO-Y4 cell membrane

and elevate intracellular calcium concentration. Conditional
FIGURE 4

Calcium channels in osteocytes. Mechanical stimulation acting on osteocytes activates Piezo1 and TRPV4, influencing the activity of factors involved
in bone formation and resorption, thereby regulating bone remodeling. Additionally, calcium signaling plays a crucial role in this process. Upon
mechanical stimulation, an amplified positive feedback loop of Ca2+ signaling is established, further regulating bone remodeling.
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knockdown of Piezo1 in osteocytes leads to significant reductions in

bone mass and impaired bone structure and strength in mice (95).

Educed Piezo1 expression weakens the MLO-Y4 response to

external stress. Activation of the Piezo1 calcium channel by the

Piezo1-specific agonist Yoda1 produces effects similar to those

observed in mechanically stimulated osteocytes (96).

Moreover, YAP1/TAZ has been identified as key mediators of

sensory transmission to mechanical signals in various cell types.

Mechanical stimulation of Piezo1 on osteocyte membranes activates

YAP1 and TAZ, increasing Wnt1 production by osteoblasts (96).

Wnt1 production, in turn, activates the Wnt/b-catenin signaling

pathway, promoting bone formation (97). In vitro cell culture

studies have shown that Piezo1 can also regulate the biological

behavior of osteocytes through the Akt/Sost pathway. Sost is a key

of bone regulator produced by osteocytes, inhibits the classical Wnt

signaling pathway, thereby regulating bone formation. This

signaling pathway stimulates resorption (98). High expression of

Piezo1 in osteocytes, stimulated by mechanical stretching,

immediately induces calcium efflux and Akt phosphorylation,

which inhibits Sost expression, promotes bone formation, and

inhibits bone resorption (99).

TRPV4 calcium channels have also been shown to inhibit Sost

expression in vitro by mechanically stimulating osteocytes (100).

Mechanical stimulation can regulate the transcription of bone

cytokines through the NO-Ca2+ positive feedback signaling

pathway in osteocytes (101). NO is an important signaling

molecule secreted by osteocytes under mechanical loading. It

regulates the downstream cGMP signaling pathway, which

influences the transcription of cellular factors such as RANKL,

OPG, and DKK1, b-catenin, and causes intracellular Ca2+

oscillation through the NO-cGMP-cADPR-RyRs pathway. This

Ca2+ oscillation further promotes NO formation through a

positive feedback loop, thereby regulating bone remodeling and

promoting osteoblast angiogenesis (101–103).
Conclusions and prospects

Osteoporosis, a serious age-related disease, poses a global

challenge. Bone metabolism in osteoporosis is closely linked to

the expression of Ca2+ channels in osteocytes, making their

regulation crucial for managing the disease. TRP channels, known

for their high calcium permeability, have several members

significantly associated with osteoporosis. While research on

TRPM8 has largely focused on tumors, cardiovascular diseases

and pain (104, 105), its role in bone metabolism remains

underexplored, particularly its impact on osteoclasts. Developing

new therapeutic targets to address bone loss is essential, as current

osteoporosis treatments often have side effects such as constipation,

diarrhea, tumorigenesis, and cardiovascular disease. Further

understanding of calcium channels in osteocytes, especially

osteoclasts, could lead to healthier regulatory measures and new

treatment ideas for osteoporosis.

Postmenopausal osteoporosis is the most common form of the

disease, driven by significantly reduced estrogen levels, which lead

to decreased bone mass, damaged bone microstructure, and
Frontiers in Endocrinology 08
higher fracture risk. Estrogen decline promotes osteoclast

activity through mechanisms like upregulating RANKL and

regulating microRNA-21 biogenesis, while also inhibiting

osteogenic differentiation via increased TNF-a activity (106,

107). The specific interaction between estrogen and calcium ion

channels remains unclear, presenting a promising direction for

future research.
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