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Introduction: Post-COVID-19 syndrome (PCS) is a severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) infection-associated chronic condition

characterized by long-term violations of physical and mental health. People with

type 2 diabetes (T2D) are at high risk for severe COVID-19 and PCS.

Aim: The current study aimed to define the predictors of PCS development in people

with T2D for further planningof preventivemeasures and improving patient outcomes.

Materials and methods: The data were collected through the national survey

targeting persons with T2D concerning the history of COVID-19 course and signs

and symptoms that developed during or after COVID-19 and continued for more

than 12 weeks and were not explained by an alternative diagnosis. In total, 469

patients from different regions of Ukraine were enrolled in the study. Among

them, 227 patients reported PCS development (main group), while 242 patients

did not claim PCS symptoms (comparison group). Stepwise multivariate logistic

regression and probabilistic neural network (PNN) models were used to select

independent risk factors.

Results: Based on the survey data, 8 independent factors associated with the risk

of PCS development in T2D patients were selected: newly diagnosed T2D (OR

4.86; 95% CI 2.55–9.28; p<0.001), female sex (OR 1.29; 95% CI 0.86–1.94;

p=0.220), COVID-19 severity (OR 1.35 95% CI 1.05–1.70; p=0.018), myocardial

infarction (OR 2.42 95% CI 1.26–4.64; p=0.002) and stroke (OR 3.68 95% CI

1.70–7.96; p=0.001) in anamnesis, HbA1c above 9.2% (OR 2.17 95% CI 1.37–3.43;

p=0.001), and the use of insulin analogs (OR 2.28 95% CI 1.31–3.94; p=0.003) vs

human insulin (OR 0.67 95% CI 0.39–1.15; p=0.146). Although obesity aggravated

COVID-19 severity, it did not impact PCS development. In ROC analysis, the 8-

factor multilayer perceptron (MLP) model exhibited better performance (AUC

0.808; 95% CІ 0.770–0.843), allowing the prediction of the risk of PCS

development with a sensitivity of 71.4%, specificity of 76%, PPV of 73.6% and

NPV of 73.9%.
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Conclusions: Patients who were newly diagnosed with T2D, had HbA1c above

9.2%, had previous cardiovascular or cerebrovascular events, and had severe

COVID-19 associated with mechanical lung ventilation were at high risk for PCS.
KEYWORDS

post-COVID-19 Syndrome, long COVID-19, COVID-19 infection, SARS-CoV-2, type
2 diabetes
Introduction

Approximately 95% of people with diabetes worldwide have

type 2 diabetes (T2D). A 3% increase in age-standardized mortality

rates from diabetes was recorded from 2000 to 2019 (1). T2D is a

group of metabolic diseases caused by insulin resistance (IR) and

altered insulin secretion by b-cells of the pancreas (2, 3).
The 2019 coronavirus disease (COVID-19) pandemic caused by

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has

become a global concern (4–6). T2D is one of the most common

comorbidities in patients infected with the SARS-CoV-2 virus, with

a relatively high incidence of severe COVID-19 (7, 8). T2D has a

bidirectional relationship with COVID-19 (9). Poorly controlled,

decompensated T2D exacerbates the severity of COVID-19 and

leads to an increased risk of hospitalization and mortality (10, 11).

Potential mechanisms contributing to enhanced susceptibility to

SARS-CoV-2 infection and poorer prognosis in people with T2D

include a proinflammatory state, weakened innate immune

response, possibly elevated levels of angiotensin-converting

enzyme 2 (ACE2), vascular dysfunction and a prothrombotic

state (12–14). On the other hand, an extreme systemic immune

response (“cytokine storm”), direct attack of pancreatic b-cells by
SARS-CoV-2 by binding to ACE2, and an unbalanced immune

response can, in turn, lead to glycemic profile disorders,

uncontrolled hyperglycemia, and progression of IR in persons

with T2D (15, 16).

COVID-19 combined with T2D enhances the risk of

hospitalization and the need for mechanical ventilation,

increasing the probability of post-COVID-19 syndrome

development. Post-COVID-19 syndrome (PCS; long COVID-19,

post-acute COVID-19, long-term effects of COVID-19) has become

an emerging health problem in people recovering from COVID-19

infection (17–19). PCS condition occurs in individuals with a

history of probable or confirmed SARS- CoV-2 infection, usually

3 months from the onset of COVID-19 with symptoms that last for

at least 2 months and cannot be explained by an alternative

diagnosis (20). Common symptoms include rapid fatigue,

weakness, headaches, memory loss, distraction, depression,

prolonged cough or shortness of breath, insomnia, heart

palpitations, bone and joint aches, myalgias, gastrointestinal

disorders, and insensitivity to smells and tastes (20). Symptoms
02
may be new onset, following initial recovery from an acute COVID-

19 episode or persist from the initial illness. Symptoms may also

fluctuate or relapse over time (20).

One of the consequences of lung damage in patients with SARS-

CoV-2 infection, namely, pulmonary fibrosis, which can manifest as

persistent shortness of breath requiring oxygen supplementation in

the PCS period, is more common in people with poorly controlled

diabetes (18). Not surprisingly, the bidirectional association

between diabetes and PCS has been at the top of scientific

discussions (21, 22). Some evidence suggests that diabetes may be

a risk factor for the development of PCS (22, 23). Recent data also

indicate that new-onset diabetes might be a complication of

COVID-19 and represents the metabolic clinical phenotype of

PCS (18, 24). However, the particular links between T2D and

PCS are still under debate. Limited research exists on PCS

incidence and prevalence in low- and middle-income countries.

The current study aimed to define the predictors of PCS

development in people with T2D for further planning of

preventive measures and improving patient outcomes.
Materials and methods

Ethics statement

The study protocol was approved by the Ethics Committee at

Bogomolets National Medical University (protocol number: 171/

2023) and was conducted according to the guidelines of the 1975

Declaration of Helsinki. Individuals with T2D were enrolled in the

study during visits to endocrinologists at outpatient clinics. The

purpose and methodology of the study were fully explained to the

participants by the researchers, and all patients were asked to

provide signed informed consent before data collection.
Study design

To gather data concerning the outcomes of COVID-19 in T2D

persons, a questionnaire was developed. The following clinical and

demographic data were collected: age, sex, anthropometric

indicators, T2D duration and age at onset, T2D complications,
frontiersin.org
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history of COVID-19, COVID-19 severity and treatment, PCS

symptoms, duration of PCS and hypoglycemic therapy.

According to the WHO classification, COVID-19 was categorized

as mild, moderate or severe. Mild COVID-19 was defined as

respiratory symptoms without evidence of pneumonia or hypoxia,

while moderate or severe infection required the presence of clinical

and radiological evidence of pneumonia. In moderate cases, SpO2

≥90% on room air, while one of the following was required to define

severe cases: respiratory rate >30 breaths/min or SpO2 <90% on

room air (25, 26). The data were collected and registered by a

professional endocrinologist during the follow-up visits of patients

to outpatient clinics. Medical data were also retrieved from the

medical records of the participants.

The inclusion criteria were as follows: age over 18 years and the

presence of T2D and COVID-19 confirmed by a positive RT−PCR

test. The exclusion criteria included type 1 diabetes or secondary

diabetes, autoimmune diseases, inflammatory diseases, other than

T2D metabolic diseases and active malignancy. The data from 469

patients who suffered from COVID-19 infection were collected in

different regions of Ukraine. According to the responses, patients

were divided into 2 groups depending on the outcomes for up to 6

months after COVID-19 infection: the PCS group (main group,

n=227) and patients who didn’t develop PCS (comparison

group, n=242).

Body mass index (BMI) was calculated as body weight in

kilograms divided by the square of the participant’s height in

meters (weight/height2). The waist (narrowest diameter between

the xiphoid process and iliac crest) circumference (WC) was

also measured.

As obesity itself is an immunometabolic disorder, facilitating

pro-inflammatory cytokines secretion, reducing insulin sensitivity

(27) and modulating SARS-Cov2 retention (28) we provided a sub-

analysis for assessing the effect of obesity on PCS development and

COVID-19 severity. Patients were divided into two sub-groups

including individuals with BMI<30kg/m2 (n=110) and patients with

obesity (BMI≥30kg/m2, n=117).

In addition, cases of new-onset T2D were assessed separately.

New-onset T2D in PCS group was defined when occur during or

after acute COVID-19 phase within 3 months (n=43). From

comparison group we included in sub analysis patients with onset

of T2D before 3 months to COVID-19 (n=17).
Statistical analysis

Statistical analysis was performed using MedCalc® Statistical

Software v. 22.026 (MedCalc Software Ltd., Ostend, Belgium;

https://www.medcalc.org; 2024) and STATISTICA Neural

Networks R.4.0 C (StatSoft. Inc. 1998-1999). To test the

normality of the distribution, the Shapiro−Wilk test was used.

Quantitative variables are presented as the median and

interquartile range (Me, QI – QIII), and qualitative variables are

presented as %. To estimate the difference in the incoming

qualitative data, the c2 test or Fisher’s exact test was used; for

quantitative data, the Mann−Whitney test was used. Univariate
Frontiers in Endocrinology 03
logistic regression analysis was applied to assess variables associated

with PCS development in patients with T2D.

Stepwise multivariate logistic regression and probabilistic neural

network (PNN) models were used to select independent risk factors

associated with PCS development. In the first stage, a minimal set of

variables associated with PCS risk was selected. To select independent

risk factors for multivariate logistic regression models, stepwise

inclusion/exclusion of variables (stepwise with penter <0.1 та

premove>0.2) was performed, and the genetic algorithm (GA)

method of selection was used for the PNN models. For the PNN

models, all patients were randomly (using a random number

generator) divided into 3 sets: training (which was used to build the

model and calculate weight coefficients of the neural network, n=369),

test (used to prevent overtraining of the mathematical model, n=60)

and verification (used to test the predictive ability of the mathematical

model on new data for controlling model retraining, n=40) sets.

The diagnostic performance of the models was evaluated using

receiver operating characteristic (ROC) curve analysis. The area

under the ROC curve (AUC) and its 95% confidence interval (CI)

were calculated. A p value < 0.05 was considered to indicate

statistical significance in all tests. Optimal cutoff values were

chosen to maximize the sum of sensitivity and specificity. Positive

predictive values (PPVs) and negative predictive values (NPVs)

were computed for these cutoff values (29).
Results

Patient characteristics

The baseline clinical parameters, COVID-19 and T2D histories

of the surveyed patients are presented in Table 1. Among the study

subjects, the ages in the main group were 61 (54 – 67) and 60 (54 –

68) years (p=0.900), respectively. The main group comprised more

patients over 60 years old (59% vs 53.7% in the comparison group),

although these differences were not significant (p=0.264) (Table 1).

There were 124 females (54.6%) in the PCS group, while the

proportion of women was lower among patients with no PCS

(115 out of 242, 47,5); however, sex differences were not

significant between the groups (p=0.139). We also did not find

differences in patient weight (p=0.994) or BMI (p=0.881) (Table 1).

By assessing the clinical phenotypes of PCS among T2D

patients, we found that fatigue was the most often observed

manifestation of PCS (59.5%). It was followed by muscle aches

(49.3%), headache (44.1%), shortness of breath (39.2%), new or

persistent cough (31.7%), loss or change of smell (31.3%),

dyssomnia (28.8%), arrhythmia (23.3%), gastrointestinal disorders

(19.8%), and depression (16.7%) (Figure 1A).
Medical history of diabetes and beyond –
the links to PCS

The subjects who suffered from PCS reported a medical history

of poor glycemic control during anamnesis and had higher values of
frontiersin.o
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TABLE 1 Baseline clinical parameters and COVID-19 and T2D history in surveyed patients.

Parameter Comparison group (no PCS) (n=242) Main group (PCS) (n=227) p

Age, years 60 (54 – 68) 61 (54 – 67) 0.900

Age over 60 years, n (%) 130 (53.7) 134 (59) 0.264

Females, n (%) 115 (47.5) 124 (54.6) 0.139

T2D duration, years 11 (7 – 16) 10 (3 – 15) 0.015

Newly diagnosed diabetes, n (%) 17 (7.0) 43 (18.9) <0.001

Weight, kg 88 (80 – 98) 88 (78 – 100) 0.994

Height, cm 169 (165 – 176) 168 (163 – 177) 0.384

BMI, kg/m2 29.8 (27.500 – 33.8) 30.7 (26.925 – 34) 0.881

HbA1C before, % 7.9 (7 – 9) 8.2 (7.2 – 10) 0.005

Poor glycemic control (HbA1c>7.5), n (%) 154 (63.6) 160 (70.5) 0.118

T2D chronic complication

Diabetic nephropathy, n (%) 71 (29.3) 54 (23.8) 0.210

Diabetic neuropathy, n (%) 160 (66.1) 147 (64.8) 0.771

Diabetic retinopathy, n (%) 119 (49.2) 98 (43.2) 0.196

Diabetic foot, n (%) 43 (17.8) 26 (11.5) 0.067

Myocardial infarction, n (%) 19 (7.9) 31 (13.7) 0.051

Stroke, n (%) 11 (4.5) 27 (11.9) 0.004

No complication, n (%) 51 (21.1) 60 (26.4) 0.120

T2D treatment

No medical treatment, n (%) 8 (3.3) 18 (7.9) 0.042

Metformin, n (%) 161 (66.5) 156 (68.7) 0.623

Sulfonylureas, n (%) 86 (35.5) 68 (30) 0.203

DPP-4 inhibitors, n (%) 20 (8.3) 10 (4.4) 0.093

GLP-1 agonists, n (%) 9 (3.7) 13 (5.7) 0.383

SGLT-2 antagonists, n (%) 21 (8.7) 33 (14.5) 0.059

PPAR-g agonists, n (%) 3 (1.2) 0 (0) 0.249

Human insulin, n (%) 58 (24) 36 (15.9) 0.029

Insulin analogs, n (%) 30 (12.4) 53 (23.3) 0.002

COVID-19 history

COVID-19 severity (WHO), n (%)
Mild
Moderate without hospitalization
Moderate with hospitalization
Severe

107 (44.2)
91 (37.6)
40 (16.5)
4 (1.7)

85 (37.4)
55 (24.2)
65 (28.6)
22 (9.7)

<0.001

No treatment, n (%) 23 (9.5) 14 (6.2) 0.230

Supplements/NSAIDs, n (%) 203 (83.9) 190 (83.7) 0.999

Antibiotics, n (%) 157 (64.9) 152 (67) 0.697

O2 therapy, n (%) 61 (25.2) 71 (31.3) 0.152

Steroids, n (%) 61 (25.2) 97 (42.7) <0.001

Mechanical ventilation, n (%) 1 (0.4) 16 (7) <0.001
F
rontiers in Endocrinology
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The data are presented as the Me (QI - QIII) or n (%); BMI, body mass index; NSAIDs, nonsteroidal anti-inflammatory drugs; WHO, World Health Organization; PCS, post-COVID-
19 syndrome.
Bold values indicate significant changes.
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HbA1c than did those in the comparison group (8.2% (7.2 - 10) vs

7.9% (7 – 9); p=0.005) (Table 1). Surprisingly, the mean duration of

T2D was lower in the main group 10 (3–15) years as compared to

the comparison group - 11 (7 – 16) years (p=0.015) (Table 1). This

finding was explained by the increased incidence of newly

diagnosed T2D during the COVID-19 pandemic, representing

one of the clinical phenotypes of PCS. The number of patients

with newly developed T2D was 43 out of 224 patients in the main

group (18.9%), while only 17 individuals with newly diagnosed T2D

were identified in the comparison group (7.0%; p<0.001) (Table 1).

In sub analysis patient with new-onset T2D from PCS group

characterized with more aggressive presentation as compared to

matched patient from comparison group (7.0 (6.5 – 8.8) vs 7.8%

(6.5 – 9.4); p=0.344). We did not find significant differences in the

age of patients with new T2D between groups (57.0 (47.5 – 69.0) vs

58.0 (45.0 – 64.0) years, p=0.582). Surprisingly, patients with new-

onset T2D in PCS group had lower weight (88.0 (80.0 – 96.0) vs 97.0

(85.0 – 109.0) kg; p=0.043) and BMI (28.4 (25.2 – 31.2) vs 31.5 (28.4

– 38.1) kg/m2; p=0.021) as compared to those with no PCS.

It is also worth noting that patients with PCS had a greater

incidence of diabetic macrovascular complications: 13.7% and

11.9% of PCS patients reported myocardial infarction and stroke,

respectively, during anamnesis (Table 1). In patients without PCS, a

significantly lower prevalence of cardiovascular events was reported

in their medical history: 7.9% for myocardial infarction (p=0.051)

and 4.5% for stroke (p=0.004). The incidence of microvascular T2D

complications did not differ significantly between the

groups (Table 1).

PCS was associated with a greater rate of hospitalization and a

more severe COVID-19 course. By comparing the COVID-19

course, we found that in the comparison group, most patients

demonstrated mild (107; 44.2%) or moderate COVID-19 without

hospitalization (91; 37.6%), and only a relatively small portion of

the group had a moderate course of hospitalization (40; 16.5%) or

suffered from severe COVID-19 (4; 1.7%) (Table 1). In contrast,

approximately 40% of the main group reported severe (22; 9.7%) or
Frontiers in Endocrinology 05
moderate disease, with hospitalization (65; 28.6%) impacting

further PCS development (p<0.001) (Table 1).
To what extent can treatment affect the
risk of PCS?

Importantly, PCS development was associated with a

higher rate of noncompliance with antidiabetic medications:

7.9% of patients in the main group didn’t follow treatment

recommendations, while the percentages were less than half in

the comparison group (3.3%; p=0.042) (Table 1). We also found a

difference in the rate of insulin and its analog administration

between the observed groups: patients without PCS were more

often administered human insulin than were those in the main

group (24% vs 15.9%; p=0.029), where insulin analogs were

used more often (23.3% vs 12.4%; p=0.002) (Table 1). In terms of

the treatment of T2D, we did not find significant differences

among the prescribed anti-diabetic drugs (ADDs) between the

groups (Table 1).

There were also peculiarities related to COVID-19 treatment.

Considering the increased rate of hospital admission and severe

COVID-19 history, the PCS group reported a significantly increased

rate of steroid prescription (42.7% vs 25.2%; p<0.001) and

mechanical ventilation (7% vs 0.4%; p<0.001) due to the severity

of COVID-19. At the same time, we did not find differences in the

prescription of NSAIDs, antibiotics or O2 therapy between the

groups (Table 1).
Is there a link between obesity and PCS?

Obese people with T2D were more frequently diagnosed with

moderate and severe forms of COVID-19 infection as compared to

patients with BMI<30 (46.1% vs 30.0%, p=0.011; Table 2). Besides,

glucocorticoid prescription was more frequent in obese patients
FIGURE 1

The distribution of PCS symptoms: (A) among persons with T2D (main group); (B) sub analysis depending on presence of obesity in patients among
PCS group.
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TABLE 2 The sub analysis for distribution of clinical parameters, COVID-19 and T2D history depending on presence of obesity in patients of
PCS group.

Parameter BMI ≤ 30 kg/m2 (n=110) BMI>30 kg/m2 (n=117) p

Age, years 61.0 (53.0 – 66.3) 62.0 (55.0 – 68.0) 0.308

Age over 60 years, n (%) 61 (55.5) 73 (62.4) 0.288

Females, n (%) 63 (57.3) 61 (52.1) 0.437

T2D duration, years 8.5 (2.8 – 14.0) 11.0 (5.0 – 17.0) 0.013

Newly diagnosed diabetes, n (%) 27 (24.5) 16 (13.7) 0.037

Weight, kg 78.0 (68.0 – 87.0) 99.0 (89.5 – 110.0) <0.001

Height, cm 172.0 (165.0 – 179.0) 167.0 (162.5 – 176.0) 0.042

BMI, kg/m2 26.9 (24.0 – 28.0) 33.7 (32.0 – 37.1) <0.001

HbA1C before, % 8.2 (7.2 – 10.0) 8.3 (7.2 – 10.0) 0.991

T2D chronic complication

Diabetic nephropathy, n (%) 24 (21.8) 30 (25.6) 0.499

Diabetic neuropathy, n (%) 65 (59.1) 82 (70.1) 0.083

Diabetic retinopathy, n (%) 45 (40.9) 53 (45.3) 0.505

Diabetic foot, n (%) 11 (10.0) 15 (12.8) 0.505

Myocardial infarction, n (%) 13 (11.8) 18 (15.4) 0.434

Stroke, n (%) 16 (14.5) 11 (9.4) 0.232

No complication, n (%) 31 (28.2) 29 (24.8) 0.562

T2D treatment

No medical treatment, n (%) 9 (8.2) 9 (7.7) 0.891

Metformin, n (%) 68 (61.8) 87 (74.4) 0.090

Sulfonylureas, n (%) 31 (28.2) 37 (31.6) 0.572

DPP-4 inhibitors, n (%) 5 (4.5) 5 (4.3) 0.921

GLP-1 agonists, n (%) 3 (2.7) 10 (8.5) 0.059

SGLT-2 antagonists, n (%) 18 (16.4) 15 (12.8) 0.449

Human insulin, n (%) 14 (12.7) 22 (18.8) 0.210

Insulin analogs, n (%) 31 (28.2) 22 (18.8) 0.095

COVID-19 history

COVID-19 severity (WHO), n (%)
Mild
Moderate without hospitalization
Moderate with hospitalization
Severe

51 (46.4)
26 (23.6)
28 (25.5)
5 (4.5)

34 (29.1)
29 (24.8)
37 (31.6)
17 (14.5)

0.011

No treatment, n (%) 8 (7.3) 6 (5.1) 0.488

Supplements/NSAIDs, n (%) 94 (85.5) 96 (82.1) 0.502

Antibiotics, n (%) 70 (63.6) 82 (70.1) 0.302

O2 therapy, n (%) 28 (25.5) 43 (36.8) 0.067

Steroids, n (%) 34 (30.9) 63 (53.8) <0.001

Mechanical ventilation, n (%) 2 (1.8) 4 (3.4) 0.452
F
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The data are presented as the Me (QI - QIII) or n (%); BMI, body mass index; NSAIDs, nonsteroidal anti-inflammatory drugs; WHO, World Health Organization; PCS, post-COVID-
19 syndrome.
Bold values indicate significant changes.
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with T2D (53.8% vs 30.9%; p<0.001; Table 2) during the COVID-19

course. The data representing clinical parameters, COVID-19 and

T2D history in PCS group with respect to obesity are presented in

Table 2. Important that T2D duration in normal/overweight

patients was significantly shorter as compared to obese (8.5 (2.8 –

14.0) vs 11.0 (5.0 – 17.0) years, p=0.013). This finding can be

explained by the higher occurrence of newly onset T2D in PCS

group (Table 2). The profile of T2D complication and anti-diabetic

treatment didn`t differ significantly between subgroups (Table 2).

Moreover, there were no significant differences in PCS symptoms in

T2D patients regarding obesity (Figure 1B).

It is worth noting that patients with and without PCS did not

differ in BMI (Table 1). Similarly, there were no differences in the

incidence of obesity between PCS and comparison groups. The

shares of people with obesity comprised 51.5% (117 of 227) among

the PCS group being comparable with the value in the comparison

group (116 of 242; 47.8%; p=0.435). Finally, among 233 T2D

patients with comorbid obesity, about half (117; 50.2%) reported

PCS symptoms while the rest – no, demonstrating no impact of

obesity on PCS development in the observed cohort.

Thus, comorbid obesity aggravated COVID-19 severity but did

not impact PCS development in patients with T2D.
Uncovering the prognostic factors
contributing to PCS

Univariate logistic regression analysis revealed the following

independent predictors of PCS development in patients with T2D:

newly diagnosed T2D (p<0.001), poor glycemic control with an

HbA1c above 9.2% (p<0.001), history of myocardial infarction

(p=0.044) or stroke (p=0.005), treatment of T2D with insulin

analogs (p=0.002), moderate-to-severe COVID-19 course

(p<0.001), history of treating COVID-19 with glucocorticoids

(p<0.001) and mechanical ventilation (p=0.005). In contrast, the

use of human insulin (OR 0.598; 95% CI 0.377-0.950; p=0.029) had

a protective effect on PCS development (Table 3).

To select the most informative risk factors, multifactorial

logistic regression analysis was applied. As a result of the

selection, the following 8 independent factors associated with the

risk of PCS development in T2D patients were selected: newly

diagnosed T2D (OR 4.86; 95% CI 2.55 – 9.28; p<0.001), female sex

(OR 1.29; 95% CI 0.86 – 1.94; p=0.220), COVID-19 severity (OR

1.35 95% CI 1.05 – 1.70; p=0.018), presence of myocardial

infarction (OR 2.42 95% CI 1.26 – 4.64; p=0.002) and stroke (OR

3.68 95% CI 1.70 – 7.96; p=0.001) in anamnesis, HbA1c above 9.2%

(OR 2.17 95% CI 1.37 – 3.43; p=0.001), use of insulin analogs (OR

2.28 95% CI 1.31 – 3.94; p=0.003) vs human insulin (OR 0.67 95%

CI 0.39 – 1.15; p=0.146), as specified in Table 4. The AUROC of the

model was 0.74 (95% CI 0.697 - 0.779; p<0.001) (Figure 2A). This

model demonstrated modest accuracy, as presented in Table 5.

In the second stage, we built PNN models based on nonlinear

relationships between variables and outcomes. We used a multilayer

perceptron (MLP) with one hidden layer. The architecture of the
Frontiers in Endocrinology 07
hidden layer had 3 neurons with a logistic activation function.

According to the ROC analysis, the AUC for the MLP model was

0.808 (95% CІ 0.770 - 0.843, p<0.001) (Figure 2B). The cutoff value

for this model was chosen based on the Youden index (>0.490).

When applying the optimal threshold, the following characteristics

of the model were detected: sensitivity, 71.4% (95% CІ 65.0 - 77.2%);

specificity, 76.0% (95% CІ 70.1 - 81.3%); PPV, 73.6% (95% CІ 68.7 -

78.0%); and NPV, 73.9% (95% CІ 69.5 - 77.9%) (Table 5). The

forecasting results using neural networks were significantly better

than those of the logistic model (p<0.001). The results of pairwise

comparisons of the ROC curves are presented in Figure 2C. This

indicates the presence of nonlinearity in the relationship between

PCS risk and factor attributes that cannot be taken into account in a

simple regression model.
Discussion

Although high BMI and diabetes have been recognized as risk

factors for developing severe COVID-19 and PCS, there are still no

clearly articulated predictors of PCS development in T2D patients

who restrict preventive measures for improving patient outcomes

and quality of life (30). This study revealed the key risk factors

associated with the risk of PCS development in T2D patients.

By applying various types of logistic regression analysis and

PNN, we identified risk factors, including female sex, COVID-19

severity and corresponding mechanical ventilation experience,

newly diagnosed during COVID-19 diabetes and an HbA1c

higher than 9.2%, as well as myocardial infarction or stroke in

medical history, as key risk factors for PCS prediction. Various

studies of PCS prognosis have also revealed the prognostic role of

different factors. Despite the variability of the results, the ability of

core factors, including female sex and COVID-19 severity, to

predict PCS has been underscored in different studies. Maglietta

et al. in systematic review demonstrated the role of female sex

and acute disease severity (31). Lemhöfer et al. reported that female

sex, preexisting coagulation disorders and coronary artery disease

were associated with a higher PCS rate (32). Similarly, in

multivariate analysis, Zemni et al. showed that female sex,

preexisting comorbidities, duration of acute COVID-19 illness,

hospitalization, number of COVID-19 episodes and vaccination

against SARS-CoV-2 are important in defining the risk of PCS

development (33). These data obtained from the whole population

analysis are consistent with our findings supporting the role of sex

and acute viral infection severity. In this study, involving exclusively

T2D patients, additional factors, including T2D severity and insulin

treatment, were found to be essential for estimating the probability

of PSC.

Diabetes is associated with a high risk of adverse outcomes of

COVID-19 infection and PCS (30). On the other hand, the current

study did not confirm that the presence of T2D was a risk factor for

long-term symptoms of PCS (34). According to the obtained results,

patients with and without T2D who recovered from COVID-19 at

7.2 (SD 0.6) months after hospital discharge had similar incidence
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TABLE 3 Univariate logistic regression analysis.

Variables Event/Total Odds ratio 95% CI p

Diab foot
No 201/400

0.599 0.354-1.012 0.055
Yes 26/69

Diabetic nephropathy
No 173/344

0.752 0.498-1.135 0.175
Yes 54/125

Diabetic retinopathy
No 129/252

0.785 0.546-1.130 0.193
Yes 98/217

Diabetic neuropathy
No 80/162

0.942 0.643-1.378 0.757
Yes 147/307

Age
<=60 Y 93/205

1.241 0.861-1.790 0.247
>60 Y 134/264

T2D duration
Long-term 184/409

3.093 1.707-5.604 <0.001
New onset 43/60

Gender
Male 103/230

1.33 0.925-1.912 0.124
Female 124/239

No complication
No 167/358

1.346 0.878-2.063 0.173
Yes 60/111

Myocardial infarction
No 196/419

1.856 1.016-3.391 0.044
Yes 31/50

HbA1c
>9.2 148/342

2.157 1.421-3.276 <0.001
<=9.2 79/127

Stroke
No 200/431

2.835 1.371-5.860 0.005
Yes 27/38

T2D treatment

PPAR-g agonists
No 227/466

0.15 0.0077-2.928 0.191
Yes 0/3

DPP-4 inhibitors
No 217/439

0.512 0.234-1.118 0.093
Yes 10/30

Human insulin
No 191/375

0.598 0.377-0.950 0.029
Yes 36/94

Sulfonylureas
No 159/315

0.776 0.527-1.143 0.199
Yes 68/154

Metformin
No 71/152

1.098 0.745-1.618 0.635
Yes 155/316

GLP-1 agonists
No 214/447

1.573 0.659-3.754 0.308
Yes 13/22

SGLT-2 inhibitors
No 194/415

1.79 1.002-3.198 0.051
Yes 33/54

Insulin analogs
No 174/386

2.152 1.318-3.516 0.002
Yes 53/83

(Continued)
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rates of PCS symptoms (1.06, 95% CI 0.92-1.24; p=0.372) (34).

Therefore, additional factors influencing the outcome of COVID-19

infection should be investigated.

Another challenge which is actively debated is assessment of

preadmission use of different ADD for on COVID-19 adverse
Frontiers in Endocrinology 09
outcomes, mortality as well PCS development and severity.

Recent studies revealed that pretreatment with metformin, GLP-

1RA, and SGLT-2i was associated with a lower mortality rate, main

adverse outcomes and hospitalization in patients with COVID-19

and T2D (35, 36). DPP-4i use was associated with a statistically
TABLE 3 Continued

Variables Event/Total Odds ratio 95% CI p

T2D treatment

No treatment
No 209/443

2.519 1.073-5.914 0.034
Yes 18/26

COVID-19 history

No treatment
No 213/432

0.626 0.314-1.249 0.184
Yes 14/37

Supplements/NSAIDs
No 37/76

0.987 0.604-1.613 0.957
Yes 190/393

Antibiotics
No 75/160

1.097 0.749-1.608 0.476
Yes 152/309

O2 therapy
No 156/337

1.35 0.902-2.022 0.145
Yes 71/132

Steroids
No 130/311

2.214 1.497-3.275 <0.001
Yes 97/158

COVID severity
<=2 140/338

2.796 1.833-4.266 <0.001
>2 87/131

Mechanical ventilation
No 211/452

18.275 2.403-138.973 0.005
Yes 16/17
Bold values indicate significant changes.
TABLE 4 Coefficients of the 8-factor logistic regression model for PCS risk prediction.

Factor b ± m p OR (95% CI)

COVID severity 0.29 ± 0.12 0.018 1.35 (1.05 – 1.70)

Mechanical ventilation 2.85 ± 1.08 0.008 17.4 (2.11 – 143)

Myocardial infarction 0.88 ± 0.33 0.008 2.42 (1.26 – 4.64)

Gender (female vs male) 0.25 ± 0.21 0.220 1.29 (0.86 – 1.94)

Stroke 1.30 ± 0.39 0.001 3.68 (1.70 – 7.96)

HbA1c (>9.2 vs<=9.2) 0.77 ± 0.23 0.001 2.17 (1.37 – 3.43)

T2D duration
Long-term Reference

New onset 1.58 ± 0.33 <0.001 4.86 (2.55 – 9.28)

Insulin

No insulin Reference

Human insulin -0.40 ± 0.28 0.146 0.67 (0.39 – 1.15)

Insulin analogs 0.82 ± 0.28 0.003 2.28 (1.31 – 3.94)
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significant increase in the risk of hospitalization, admission (35) to

the ICU and mortality (36). Treatment with insulin is a risk factor

for hospitalization and increased mortality (36, 37). The effects of

sulfonylurea, thiazolidinedione, and alpha-glucosidase inhibitors on

mortality are neutral (36). In contrast, the current study did not find

a significant association between at-home ADD administration and

mortality or adverse outcomes in patients with T2D admitted for

COVID-19 (38). Recent data regarding the association between

common T2D treatments and PCS development are scarce and

limited to several reports on the protective effects of metformin

(39–41). For instance, a recent multicenter, randomized, quadruple-

blind, parallel-group, phase 3 trial demonstrated that outpatient

treatment with metformin reduced the PCS incidence by

approximately 41% (42). In our study, we noticed that insulin

analogs significantly increased the risk of PCS development; in

contrast, the use of human insulin had a protective effect. The other

types of ADDs were neutral.
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A close association between T2D and COVID-19 emerged early

during the pandemic and is still active (43–45). A history of diabetes

in subjects with acute SARS-CoV-2 infections was shown to worsen

all outcomes and increase mortality (46). Although the respiratory

system is the primary target of SARS-CoV-2, many other organs and

cells can be affected by the virus, including the endothelium,

cardiomyocytes, immune cells and b-cells of the pancreas. In fact,

diabetes and SARS-CoV-2 infection share two essential

commonalities - inflammatory pathway activation and multiorgan

involvement in pathological processes (47, 48). This can result in

manifestations of various severe pathologies, including acute

cardiovascular dysfunction, digestive system disorders, neurological

complications and metabolic disturbances.

Both severe COVID-19 and inefficient glucose control

aggravated PCS development in T2D patients. However, there is a

bidirectional interplay between COVID-19 and T2D (43),

establishing a vicious cycle that facilitates the development of

complications (49). SARS-CoV-2 infection and diabetes share two

fundamental features: an inflammatory state and multiorgan

involvement and damage (50). Notably, the close relationship

between immunity and the endocrine system impacts immune

cell functionality and the response to viruses. For instance, insulin

can directly regulate immune cells, including T-lymphocytes, which

are responsible for antiviral immunity (51). Both CD4+ and CD8+

T cells express insulin receptors, which are involved in facilitating

glucose uptake and promoting glycolytic metabolism during T-cell

activation (52). Moreover, an acute decrease in insulin levels

impairs CD8+ T-cell responses to infection, whereas the injection

of basal insulin increases the antiviral potential of these cells (53).

Hyperglycemia directly undermines the key function of immune

cells (54). High blood glucose is related to impaired cytotoxicity of

CD8+ and NK cells, as well as abnormal cytokine production by

CD4+ T cells, in patients with T2D following infection (55). In

addition, HbA1c was shown to positively correlate with the course

of infections induced by different pathogens, impacting both disease

duration and severity (51). This mechanism could be related to the

stimulatory effect of hyperglycemia on the replication of several

pathogens (54), impeding the ability of the immune system to fight

infectious agents. Thus, our findings showed that poor glycemic
A B C

FIGURE 2

ROC analysis for predicting PCS in patients with T2D. (A) logistic regression model; (B) MLP model; (C) pairwise comparison between models.
TABLE 5 Diagnostic accuracy of the proposed models for
predicting PCS.

Parameter 8-factors logistic 8-factors MLP

Cutoff value >0.4989 >0.4792

Sensitivity, % (95% CI) 63.0 (56.4 - 69.3) 71.4 (65.0 - 77.2)

Specificity, % (95% CI) 76.8 (70.9 - 81.9) 76.0 (70.1 - 81.3)

NPV, % (95% CI) 68.8 (64.7 - 72.6) 73.9 (69.5 - 77.9)

PPV, % (95% CI) 71.9 (66.5 - 76.6) 73.6 (68.7 - 78.0)

-LR, (95% CI) 0.48 (0.40 - 0.58) 0.38 (0.30 - 0.47)

+LR, % (95% CI) 2.71 (2.11 - 3.48) 2.98 (2.34 - 3.78)

AUC 0.740 0.808

95% CІ 0.697 - 0.779 0.770 - 0.843

p (AUC) <0.001 <0.001
NPV, negative predictive value; РPV, positive predictive value; LR, likelihood ratio; AUC, area
under the ROC curve; 95% CІ, 95% confidence interval for the AUC.
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control or the use of insulin analogs instead of human insulin

increased the risk of PCS development in T2D patients after

COVID-19.

We also found that a history of myocardial infarction or stroke

can significantly increase the risk of PCS. This finding is consistent

with previous findings demonstrating the impact of coronary artery

disease on increasing the rate of PCS. Similarly, cardiovascular

comorbidities and cerebrovascular events were also shown to

enhance the probability of PCS (56). Both myocardial infarction

and stroke have common mechanisms in their pathogenesis based

on the compromised regulation of the blood clotting system

(platelet aggregation and coagulation cascades), endothelial

dysfunction, mild long-term inflammation and oxidative stress

(57). Importantly, most of these pathophysiological processes

interact with theories about the mechanisms underlying PCS

development. In addition to persisting viral reservoirs and

sustained inflammation, with autoimmune components,

dysfunction of the endothelium and corresponding alterations in

blood clotting have been underscored in PCS pathogenesis (58, 59).

Notably, endothelial dysfunction, inflammation and blood clotting

are closely related to myocardial infarction and stroke. These

mechanisms are also main players in diabetic progression and

complication development. Therefore, patients who experience

myocardial infarction and stroke are at high risk for PCS and

should be considered for preventing PCS complications. Thus,

patients who experience severe COVID-19, especially those on

mechanical ventilation, are at greater risk for long-term PCS,

which can affect both their physical and mental health.

Finally, we found that patients with T2Dmanifested during acute

COVID-19 infections more frequently observed in normal/

overweight persons and characterized with more aggressive

presentation as compared to matched patient with onset of T2D

before COVID-19. This finding addresses recent scientific discussions

of a new specific type of diabetes. It’s still debatable if this

phenomenon represents abrupt onset of classical type 1 and type 2

diabetes or a new type of diabetes? Preliminary studies have provided

evidence that b-cell infection may be involved in COVID-19

pathogenesis or, alternatively, that pancreatic infection may impact

b cells by changing their local microenvironment. The precise

underlying mechanisms are not clearly defined, the existing

research studies suggests that the pathogenesis of new-onset

diabetes due to COVID-19 might be linked to direct viral effects on

pancreatic islets as well as systemic inflammatory responses that

disrupt glucose metabolism (60). SARSCoV-2 uses ACE2 to enter

human cells and TMPRSS2 for ‘priming’ (61). Both proteins are

highly expressed in gastrointestinal epithelial cells, pancreatic ductal,

acinar and islet cells (62). SARS-CoV-2 is also able to cause diffuse

severe endotheliitis of the submucosal vessels in several anatomical

sites, and these changes, in turn, cause diffuse microischemic disease

(63). Similar ischemic damage could occur in the pancreas due to

expression of ACE2 isoform in pancreatic microvasculature (64).

Infected pancreatic islets demonstrated reduced glucose-stimulated

insulin secretion, fewer insulin granules (65, 66) and characterized

with increased islet-cell apoptosis hat may be due to the viral spike
Frontiers in Endocrinology 11
protein (60). Müller et al. also suggested that infected cells may lose

their hormone content via de-differentiation (65). Data from current

studies at least partly could give the background for more aggressive

presentation of T2D obtained by our results.
Limitations

The study was based on questionnaire results that can impact

the accuracy of the data and details concerning treatment regimens.

When recording the COVID-19 history, there were no data

documenting the test systems used for the diagnostics, viral load

and vaccination against SARS-CoV-2.
Conclusion

This study revealed several risk factors facilitating PCS

development in T2D patients in Ukraine. We found that patients

who were newly diagnosed with T2D, had an HbA1c above 9.2%,

had previous cardiovascular or cerebrovascular events, and had

severe COVID-19 associated with mechanical lung ventilation were

at high risk for PCS development. The developed predictive PNN

model allows us to assess the probability of PCS in T2D patients and

identify high-risk groups for tailoring their treatment during

viral infection.

New-onset T2D which occur during or after acute COVID-19

phase more frequently observed in normal/overweight persons and

characterized with more aggressive presentation as compared to

matched patient with onset of T2D before COVID-19.
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