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Predictive value of bone
metabolism markers in the
progression of diabetic kidney
disease: a cross-sectional study
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Huijuan Zheng1,2, Danwen Li1,2, Weijing Liu1,2,
Yaoxian Wang1,2* and Jie Lv1,2*

1Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China, 2Renal Research
Institution of Beijing University of Chinese Medicine, Beijing, China, 3Graduate School of Beijing
University of Chinese Medicine, Beijing, China, 4Department of Traditional Chinese Medicine, Beijing
Puren Hospital, Beijing, China
Objective: This study aimed to investigate the relationship between bone

metabolism markers, including serum klotho, fibroblast growth factor 23

(FGF23), 25(OH)D3, iPTH, calcium (Ca), and PHOS and the progression of

diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus (T2DM).

Additionally, the predictive value of these markers for DKD progression

was evaluated.

Methods: This study involved 126 patients with T2DM between May 2021 and

March 2023. DKD staging was assessed based on urinary protein excretion rates

and estimated glomerular filtration rate (eGFR). The study evaluated serum

concentrations of klotho, FGF23, 25(OH)D3, iPTH, Ca and PHOS across various

stages and examined their relationships with clinical parameters. Receiver

operating characteristic (ROC) curve analysis was utilized to determine the

predictive accuracy of these bone metabolism markers for DKD. Multivariate

linear and logistic regression analyses identified risk factors linked to

DKD severity.

Results: Among the 126 participants, 30 had non-DKD with normal proteinuria,

while 96 had DKD, categorized as 31 with stage III DKD (microproteinuria), 34

with stage IV DKD, and 31 with stage V DKD (massive proteinuria). With advancing

DKD from stage III to V, levels of klotho, 25(OH)D3, and Ca decreased

significantly, whereas FGF23, iPTH and PHOS levels increased markedly. Klotho

is significantly positively correlated with eGFR (r = 0.285, P = 0.001.) and negative

correlations with serum creatinine (Scr) and UACR (r = -0.255, P = 0.004; r =

-0.260, P = 0.011). FGF23 was positively related to systolic blood pressure (SBP) (r

= 0.224, P = 0.012), but negatively with eGFR (r = -0.294, P = 0.001). Additionally,

25(OH)D3 exhibited significant negative correlations with several adverse clinical

biomarkers, and both iPTH, Ca and PHOS were strongly associated with DKD

progression (P<0.05). ROC analysis showed high predictive accuracy for DKD

using these bone metabolism markers, with a combined area under the curve

(AUC) of 0.846. Multivariate logistic regression analysis reinforced the

significance of these markers in DKD progression.
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Conclusion: Bone metabolism markers, such as klotho, FGF23, 25(OH)D3, iPTH,

Ca and PHOS are intricately linked to DKD progression and may function as

valuable predictive biomarkers.
KEYWORDS

type 2 diabetes mellitus, diabetic kidney disease, bone metabolism markers, predictive
value, progression
1 Introduction

Diabetic kidney disease (DKD) presents a substantial public

health concern due to its increasing prevalence and the absence of

effective interventions to prevent its progression. As a complication

arising from diabetes, DKD inflicts damage on various renal

components, including the glomeruli, tubules, interstitium, and

vasculature (1). Clinically, DKD manifests through a spectrum of

proteinuria and a continuous decline in renal function, eventually

progressing to end-stage renal disease (ESRD). Although renal biopsy

is the definitive diagnostic method for DKD, its invasive nature limits

its widespread application in clinical settings. Consequently,

clinicians rely on key indicators such as the urinary albumin

excretion rate and estimated glomerular filtration rate (eGFR) to

diagnose and monitor DKD progression. However, these parameters

are subject to numerous influencing factors, leading to insufficient

sensitivity in detecting renal injury. Therefore, the quest for more

reliable biomarkers for DKD screening and prediction remains

ongoing (2). Historically, DKD research has predominantly viewed

the kidney as an isolated organ, concentrating on its molecular

pathological mechanisms. However, emerging evidence underscores

the significance of inter-organ communication in disease

pathogenesis, with the “bone-kidney axis” becoming a pivotal

concept in DKD studies. Factors such as hyperglycemia,

accumulation of advanced glycation end products (AGEs), and the

progression of chronic kidney disease (CKD) contribute to

disruptions in calcium-phosphorus metabolism, abnormal

parathyroid hormone (PTH) levels, and impaired bone

mineralization, all of which can precipitate bone disease (3).

Diabetes is an independent risk factor for skeletal health (4). In the

context of DKD, the interactions among key bone regulatory factors

(FGF23, klotho, and iPTH) are further disrupted, accelerating the

progression of bone disease (5). The skeletal system, now recognized

as an endocrine organ, secretes bone-derived hormones that are

intricately involved in key pathogenic processes of DKD, such as

energy metabolism (6), insulin resistance (7), inflammation (8), and

epithelial-mesenchymal transition (9). Moreover, disruptions in bone

metabolism may further accelerate DKD progression (10).

Previous research on mineral and bone disorders in CKD has

largely concentrated on the later stages, such as end-stage renal

disease (ESRD) and dialysis, where abnormalities in mineral and
02
bone metabolism are more pronounced (11). However, emerging

studies have highlighted that bone-derived hormone abnormalities

can occur early in CKD (12, 13). Identifying these abnormalities

early is vital for disease management. For example, a prospective

study involving T2DM patients found that elevated FGF23 levels

independently predict all-cause mortality and are closely linked

with an increased risk of progressing to ESRD (14–16). The

interaction between bone and kidney function is crucial, as

FGF23, secreted mainly by osteoblasts and osteocytes (17), relies

on renal Klotho protein for its biological effects (18). FGF23

regulates renal sodium, calcium, and phosphate balance, vitamin

D metabolism, immune-inflammatory responses, and the renin-

angiotensin-aldosterone system (RAAS), and affects Klotho,

angiotensin-converting enzyme 2, and erythropoietin expression

(19, 20). Klotho is also a potential biomarker for early DKD

detection (21). These insights suggest that bone metabolism

disturbances significantly impact DKD progression and renal

function. Investigating the communication between bone and

kidney may clarify DKD pathogenesis (22).FGF23 and klotho are

involved in phosphate and vitamin D metabolism and calcium-

phosphate balance in CKD patients. This study examines the

correlation between serum levels of klotho, FGF23, 25(OH)D3,

iPTH, calcium (Ca) and PHOS with DKD progression in clinical

patients, evaluating the predictive value of these bone metabolism

markers. By analyzing different DKD stages in T2DM patients, the

study aims to offer new reference markers for the early diagnosis

and intervention of DKD.
2 Methods

2.1 Study design and population

This study encompassed patients diagnosed with type 2 diabetes

mellitus (T2DM) and DKD who were admitted to Dongzhimen

Hospital, Dongcheng Campus, Beijing University of Chinese

Medicine, from May 2021 to March 2023. The study was

sanctioned by the Ethics Committee of Dongzhimen Hospital,

Beijing University of Chinese Medicine (2022DZMEC-062-03),

and all participants provided written informed consent. The

flowchart is depicted in Figure 1.
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2.2 Inclusion and exclusion criteria

The inclusion criteria were (1):age between 30 and 90 years (2);

diagnosis of T2DM conforms to the “Chinese Guidelines for the

Prevention and Treatment of Type 2 Diabetes” (2020 edition) (23);

diagnosis of DKD based on the 2007 National Kidney Foundation

(NKF-KD/OQI) guidelines (24); the 2020 Clinical Practice

Guideline for the Evaluation and Management of CKD by the

Kidney Disease: Improving Global Outcomes (KDIGO)

organization (25) and the 2021 Chinese Clinical Guidelines for

the Diagnosis and Treatment of Diabetic Kidney Disease (26).

Staging criteria followed the 2007 NKF-KD/OQI guidelines (24)

and the Mogensen staging criteria (27).

The DKD staging criteria are defined as follows: Stage III DKD:

Urinary albumin-to-creatinine ratio (UACR) consistently ranges

from 30-300 mg/g, with a eGFR remaining near normal or slightly

elevated. Stage IV DKD: UACR exceeds 300 mg/g, or 24-hour urine

protein levels are greater than 0.5 g, accompanied by a significant

reduction in eGFR; Stage V DKD (end-stage renal failure, uremia

stage): eGFR drops below 15 ml/min/1.73 m². Patients are classified

based on proteinuria as follows: Non-DKD patients have normal

proteinuria with UACR less than 30 mg/g; DKD patients are

divided into two groups: the microproteinuria group with UACR

ranging from 30-300 mg/g, and the massive proteinuria group with

UACR exceeding 300 mg/g.

Exclusion criteria included (1): patients who had usedmedications

such as active vitamin D, calcitonin, bisphosphonates, or other agents

affecting calcium and phosphorus metabolism within the past six

months; (2) patients who had undergone parathyroidectomy; (3)
Frontiers in Endocrinology 03
patients who had received dialysis treatment; (4) those with primary

or secondary kidney diseases; (5) patients with urinary tract infections

or other acute or chronic inflammatory conditions; (6) patients with

liver function abnormalities, autoimmune diseases, malignant tumors,

hematologic disorders, or mental illnesses; and (7) patients who had

experienced trauma, surgery, or psychological stress within the last

six months.
2.3 Data collection and measurement

2.3.1 Participant characteristics
Patient clinical data, including age, gender, height, weight,

systolic blood pressure, and diastolic blood pressure, were

collected. Body mass index (BMI) was calculated as height/weight².

2.3.2 Laboratory tests
Fasting venous blood samples were collected from all

participants on the second morning after hospital admission. The

samples were analyzed using a Mindray CL1000i automatic

chemiluminescence analyzer for 25(OH)D3 and iPTH.

Additionally, an AU680 automatic biochemical analyzer

(Beckman Coulter, USA) was used to measure serum Ca, PHOS,

glucose (GLU), total protein (TP), urea (UREA), serum creatinine

(CREA), uric acid (UA), 24-hour urine protein quantification (24-

UTP), high-density lipoprotein cholesterol (HDL-C), and low-

density lipoprotein cholesterol (LDL-C). The estimated

glomerular filtration rate (eGFR) was calculated using the CKD-

EPI formula.
FIGURE 1

Diagram of the study design.
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2.3.3 Detection of bone metabolism-
related biomarkers

On the second day of hospitalization, fasting venous blood

samples (2 mL) were collected from each participant in the

morning. After standing at room temperature for 30 minutes, the

samples were centrifuged at 3000 rpm for 10 minutes at 4°C. The

resulting serum was carefully separated, aliquoted into labeled EP

tubes, and stored at -80°C for future analysis. Intact FGF23 and

klotho levels were measured using enzyme-linked immunosorbent

assay (ELISA) kits provided by Elabscience (Hubei, China).
2.4 Statistical methods

SPSS 26.0 was employed for statistical analysis. Quantitative data

following a normal distribution were presented as mean ± standard

deviation (x¯ ± s), whereas non-normally distributed data were shown

as median with interquartile range. Categorical variables were reported

as frequencies and percentages (%). For normally distributed

quantitative data, comparisons between groups were conducted using

one-way analysis of variance. For non-normally distributed

quantitative data, comparisons between groups were performed

using non-parametric tests, specifically the Kruskal-Wallis test. Chi-

square tests were used for categorical data analysis. The Bonferroni

correction was applied to adjust p-values for multiple comparisons

within groups. Pearson or Spearman rank correlation tests assessed

correlations. Multiple linear regression evaluated the independent
Frontiers in Endocrinology 04
associations of eGFR with serum levels of FGF23, klotho, 25(OH)D3,

iPTH, Ca and PHOS. Multinomial logistic regression was used to

examine the link between DKD severity and bone metabolism-related

markers. P<0.05 was deemed statistically significant.
3 Results

3.1 Clinical characteristics of
study participants

A total of 126 T2DM patients participated in this study,

including 80 males and 46 females, with a mean age of 59.50 ±

11.29 years. The cohort consisted of 30 patients with T2DM alone

(normal proteinuria [NP]) and 96 patients with DKD, divided into

31 with DKD stage III (microproteinuria [MP]), 34 with DKD stage

IV, and 31 with DKD stage V (massive proteinuria [MAP]). The

findings reveal no notable differences across the four groups

regarding age, gender, BMI, DBP, and lipid profiles. Conversely,

significant increases in SBP and UA levels were observed in the

DKD IV and V groups. Additionally, a marked decrease in TP levels

was noted. The DKD V group demonstrated a considerable

reduction in FPG levels. Analyses of Scr and eGFR indicated that

Scr levels were significantly elevated in both the DKD IV and V

groups. Simultaneously, eGFR exhibited a substantial decline (P <

0.001), pointing to a pronounced worsening of renal function.

Moreover, UACR and 24-UTP displayed a rise (P < 0.001),

suggesting a close association between disease progression and the

severity of proteinuria (Table 1).
3.2 Changes in bone metabolism markers
across different stages of DKD and T2DM

Compared with the T2DM group, klotho levels were

significantly lower in DKD stage IV (0.373 ± 0.177) and stage V

(0.321 ± 0.135) (P<0.05). Similarly, klotho levels in DKD stage V

showed a declining trend compared to stage III (0.451 ± 0.244)

(P<0.05) (Figure 2A). Compared with the T2DM group (219.95 ±

93.48) and DKD stage III (227.23 ± 100.45), FGF23 levels were
TABLE 1 Baseline Characteristics of Participants.

Variables T2DM (n = 30) DKD III(n=31) DKD IV
(n=34)BD268

DKD V(n=31) P

Normal
proteinuria

(n=30)

Microproteinuria
(n=31)

Massive proteinuria (n =65)

Age (years) 58.80 ± 11.62 58.87 ± 11.58 60.41 ± 11.57 59.81 ± 10.85 0.93

Male (%) 17 (56.67) 17 (54.84) 21 (61.76) 25 (80.65) 0.136

Female (%) 13 (43.33) 14 (45.16) 13 (38.23) 6 (19.35)

BMI (kg/m2) 24.6 (22.63,26.91) 25.54 (23.41,29.9) 25.56 (22.82,27.91) 26.05 (24.17,29.50) 0.922

SBP (mmHg) 134.80 ± 18.36 132.10 ± 18.85 141.38 ± 19.96# 146.90 ± 17.26*# 0.010

DBP (mmHg) 81.03 ± 14.37 78.13 ± 14.44 78.56 ± 10.90 75.81 ± 9.71 0.444

(Continued)
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TABLE 1 Continued

Variables T2DM (n = 30) DKD III(n=31) DKD IV
(n=34)BD268

DKD V(n=31) P

Normal
proteinuria

(n=30)

Microproteinuria
(n=31)

Massive proteinuria (n =65)

FPG (mmol/L) 10.83 (8.38,15.86) 10.07(7.06,14.49) 8.83 (6.97,12.20) 6.64 (6.00,9.15)* 0.002

TG (mmol/L) 1.70 (1.15,2.76) 1.59(1.05,2.53) 1.90 (1.24,3.38) 1.40 (1.05,2.00) 0.115

LDL-C (mmol/L) 2.56 (2.07,3.67) 2.78(1.99,4.04) 3.14 (2.02,3.74) 2.35 (1.66,3.06) 0.206

HDL-C (mmol/L) 1.18 ± 0.27 1.21 ± 0.30 1.28 ± 0.39 1.14 ± 0.35 0.379

TP (g/L) 71.35 (66.25,76.55) 73.30(65.80,75.30) 63.50 (59.25,66.35)** 60.50 (56.30,66.60)**## <0.001

ALP (U/L) 85.09 ± 18.54 77.17 ± 24.61 87.05 ± 31.80 85.14 ± 23.93 0.422

UA (mmol/L) 342.05 (284.35,410.48) 295.40(266.80,407.40) 396.00 (329.70,434.43) 451.80 (395.90,502.40)*## <0.001

Scr (mmol/L) 63.25 (53.40,83.15) 65.40(60.70,73.00) 138.00 (102.80,248.80)**## 488.50 (406.40,635.30)**##▴▴ <0.001

eGFR (ml/
min/1.73m2)

98.34 (83.83,106.88) 97.25(85.28,116.87) 39.73 (22.57,54.25)**## 9.86 (7.50,12.03)**##▴▴
<0.001

UACR (mg/g) 15.00 (10.00,16.25) 150.00(100.00,180.00)** 800.00 (800.00,1500.00)**## ————– <0.001

24h-UTP (mg)
87.00 (55.00,131.50) 174.00(143.00,246.00)*

3754.00
(1567.25,6861.00)**##

4466.00
(2831.00,6697.00)**##

<0.001
F
rontiers in Endocrinolo
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BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, Fasting Plasma Glucose; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-
density lipoprotein cholesterol; TP, total protein; ALP, alkaline phosphatase; UA, serum uric acid; Scr, serum Scrtinine; eGFR, estimated glomerular filtration rate; UACR, urine albumin to
Scrtinine ratio; 24h-UTP, 24-hour Urine Total Protein. Compared with the T2DM group, *p<0.05, **p<0.001; compared with the DKD III group, #p<0.05, ##p<0.001; compared with the DKD IV
group, ▲p<0.05, ▲▲p<0.001. Bold values indicate P<0.05.
FIGURE 2

The levels of bone metabolism markers among different stages of DKD and T2DM group. (A) serum klotho. (B) serum FGF23. (C) serum 25(OH)D3.
(D) serum iPTH. (E) serum Ca. (F) serum PHOS. Compared with the T2DM group, *p<0.05, **p<0.001; compared with the DKD III group, #p<0.05,
##p<0.001; compared with the DKD IV group, ▲p<0.05, ▲▲p<0.001.
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significantly elevated in DKD stage V (319.54 ± 131.93) (P<0.05)

(Figure 2B). Compared with the T2DM group, 25(OH)D3 levels

were significantly lower in DKD stage IV (23.30 ± 15.80) and stage

V (21.54 ± 7.31) (P<0.05). A similar downward trend was observed

in DKD stages IV and V compared to stage III (40.58 ± 14.10)

(Figure 2C). Compared with the T2DM group (46.85 ± 22.08),

iPTH levels were significantly higher in DKD stage IV (82.06 ±

48.76) and stage V (244.05 ± 106.66) (P<0.05). Compared to DKD

stage III, iPTH levels also showed an increasing trend in DKD stages

IV and V, with stage V levels significantly higher than stage IV

(P<0.05) (Figure 2D). Compared with the T2DM group (2.38 ±

0.16), Ca levels were significantly lower in DKD stage IV (2.38 ±

0.16) and stage V (1.94 ± 0.24) (P<0.05). A similar decreasing trend

was observed in DKD stages IV and V compared to stage III (2.36 ±

0.19), with Ca levels in stage V significantly lower than in stage IV

(P<0.05) (Figure 2E). The PHOS level in the DKD V group (1.82 ±

0.40) was significantly higher compared to the T2DM group (1.19 ±

0.22), DKD III group (1.08 ± 0.17), and DKD IV group (1.31 ± 0.23)

(P < 0.05). Additionally, compared to the DKD III group, the PHOS

level in the DKD IV group showed an increasing trend (P <

0.05) (Figure 2F).
3.3 Changes in bone metabolism markers
among different proteinuria groups

Patients were categorized into NP, MP, and MAP groups based

on proteinuria levels. There were no significant differences in bone

metabolism markers between the NP and MP groups. However,

significant differences were observed in the MAP group compared

to both NP and MP groups, indicating that alterations in bone

metabolism occur predominantly in the later stages of DKD with
Frontiers in Endocrinology 06
massive proteinuria. klotho, 25(OH)D3, and Ca levels were lower,

while FGF23, iPTH and PHOS levels were higher in the MAP group

compared to the NP and MP groups (P<0.05) (Figures 3A–F).
3.4 Correlation analysis between bone
metabolism markers and clinical indicators
in DKD patients

A correlation analysis involving 126 patients identified significant

relationships between bone metabolism indicators and clinical

parameters. Klotho levels showed a positive correlation with eGFR

(r = 0.285, P < 0.001) and negative correlations with Scr and UACR

(r = -0.255, P = 0.004; r = -0.260, P = 0.011), suggesting that lower

klotho levels may link to worsening renal function (Figures 4A–C).

FGF23 levels positively correlated with SBP (r = 0.224, P = 0.012) and

negatively with eGFR (r = -0.294, P = 0.001), indicating that higher

FGF23 levels might be associated with increased blood pressure and

declining renal function (Figures 4D, E). The level of 25(OH)D3

negatively correlated with SBP, ALP, UA, Scr, UACR, and 24h-UTP

(P < 0.05), while positively correlating with TP and eGFR

(Figures 4F–I). iPTH levels positively correlated with UA, Scr,

UACR, and 24h-UTP (r = 0.328, P < 0.001; r = 0.788, P < 0.001;

r = 0.432, P < 0.001; r = 0.520, P < 0.001) and negatively with

eGFR (r = -0.708, P < 0.001), implying that elevated iPTH levels

are closely tied to renal function decline and metabolic issues

(Figures 4J–M). Ca levels exhibited positive correlations with eGFR

(r = 0.608, P < 0.001) and negative correlations with UA (r = -0.315,

P < 0.001), Scr (r = -0.663, P < 0.001), UACR (r = -0.430, P < 0.001),

and 24h-UTP (r = -0.589, P < 0.001), suggesting that fluctuations in

Ca levels may indicate the severity of renal impairment and
FIGURE 3

The levels of bone metabolism markers among different proteinuria groups. (A) serum klotho. (B) serum FGF23. (C) serum 25(OH)D3. (D) serum
iPTH. (E) serum Ca. (F) serum PHOS. Compared with the NP group, *p<0.05, **p<0.001; compared with the MP group, #p<0.05, ##p<0.001.
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proteinuria (Figures 4N–Q). PHOS levels were negatively

correlated with eGFR (r = -0.637, P < 0.001) and positively with

UA (r = 0.364, P < 0.001), Scr (r = 0.779, P < 0.001), UACR (r = 0.330,

P = 0.001), and 24h-UTP (r = 0.398, P < 0.001), indicating that

PHOS levels notably rise during renal function deterioration

(Figures 4R–U) (Table 2).
Frontiers in Endocrinology 07
3.5 Clinical predictive value of bone
metabolism indexes for DKD severity

The DKD group was merged into non-DKD (NDKD, n = 30) and

DKD (n = 96) groups. ROC curves were plotted to explore the clinical

predictive value of bone metabolism markers for DKD (Figure 5).
FIGURE 4

Correlation analysis of bone metabolism-related indexes and clinical biomarkers. (A-C) serum Klotho. (D, E) serum FGF23. (F-I) serum 25(OH)D3.
(J-M) serum iPTH. (N-Q) serum Ca. (R-U) serum PHOS.
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Klotho, FGF23, 25(OH)D3, iPTH, Ca and PHOS all showed predictive

value for DKD in T2DM patients, with AUCs greater than 0.7 for all

except FGF23 and PHOS (Figure 5A). The optimal cutoffs and

corresponding sensitivity and specificity for each marker are shown

in Table 3. The combined AUC for the six bone metabolism markers

predicting DKD was 0.846 (P<0.001) (Figure 5B). DKD stages IV and

V were combined into the MAP group based on proteinuria levels.

ROC curves for the MP group (n=31) and MAP group (n=65) were

plotted to analyze the AUC for predicting MP and MAP in DKD

patients. The AUC for predicting MP andMAP with bone metabolism

markers was 0.951 (P<0.001) (Figure 5C). Among these, 25(OH)D3,

iPTH, Ca and PHOS had AUCs greater than 0.85. The optimal cutoffs

and corresponding sensitivity and specificity for each marker are

detailed in Table 3. The combined AUC for predicting DKD was

0.951 (P<0.001) (Figure 5D).
3.6 Simple linear regression analysis of
eGFR with clinical and bone
metabolism indicators

The eGFR was used as the dependent variable, with Age,

Gender, BMI, SBP, DBP, FPG, TP, TG, LDL-C, HDL-C, ALP,

UA, Scr, klotho, FGF23, 25(OH)D3, iPTH, Ca and PHOS as
Frontiers in Endocrinology 08
independent variables (Table 4). Simple linear regression analysis

showed that eGFR was positively correlated with FPG, TP, Klotho,

25(OH)D3, and Ca, and negatively correlated with SBP, UA, Scr,

UACR, FGF23, iPTH and PHOS (P<0.05).
3.7 Multinomial logistic regression analysis
of disease severity and bone metabolism
markers in DKD patients

The multinomial logistic regression analysis was performed

with DKD severity as the dependent variable (DKD III=3, DKD

IV=4, DKD V=5), and SBP, FPG, ALP, TP, klotho, FGF23, 25(OH)

D3, iPTH, Ca and PHOS as independent variables. It is aimed to

assess the trends of bone metabolism markers across different DKD

severity groups. In comparison to the T2DM group, klotho levels

were significantly lower in patients with DKD IV and V group. Even

after adjusting for different models, particularly Model 2 and Model

3, the reduction in klotho levels remained strongly linked to DKD

progression, signifying that as DKD worsens, klotho levels notably

decrease. Similarly, FGF23 levels in the DKD V group were

significantly elevated compared to the T2DM group, with P <

0.05 across all models (Model 1, Model 2, and Model 3),

underscoring the marked rise in FGF23 levels in advanced DKD.
TABLE 2 Correlation analysis between bone metabolism markers and clinical indicators.

Variables
klotho FGF23 25 (OH)D3 iPTH Ca PHOS

r P r P r P r P r P r P

Age -0.016 0.862 0.010 0.914 0.048 0.591 0.039 0.666 -0.035 0.697 -0.213 0.017

Gender -0.018 0.838 -0.116 0.197 0.096 0.287 -0.245 0.006 0.258 0.003 -0.109 0.226

BMI(kg/m2) 0.026 0.775 -0.055 0.538 -0.122 0.174 0.159 0.076 -0.063 0.480 0.127 0.156

SBP(mmHg) -0.038 0.675 0.224 0.012 -0.308 <0.001 0.247 0.005 -0.172 0.054 0.242 0.006

DBP(mmHg) 0.058 0.516 0.075 0.401 -0.032 0.721 -0.100 0.263 0.128 0.155 0.020 0.826

FPG(mmol/L) 0.129 0.151 -0.045 0.616 0.083 0.357 -0.266 0.003 0.198 0.026 -0.331 <0.001

TG(mmol/L)) -0.064 0.483 -0.067 0.463 -0.110 0.228 -0.177 0.053 0.178 0.051 -0.088 0.339

LDL-C(mmol/L) 0.029 0.757 -0.136 0.143 -0.046 0.619 -0.134 0.148 0.158 0.087 -0.083 0.373

HDL-C(mmol/L) 0.027 0.765 -0.046 0.615 0.03 0.747 -0.033 0.716 0.16 0.079 0.011 0.904

TP(g/L) 0.107 0.234 -0.186 0.038 0.362 <0.001 -0.387 <0.001 0.673 <0.001 -0.287 0.001

ALP(U/L) -0.09 0.317 0.117 0.193 -0.178 0.046 0.082 0.359 0.024 0.792 0.067 0.457

UA(mmol/L) -0.102 0.258 0.181 0.043 -0.329 <0.001 0.328 <0.001 -0.315 <0.001 0.364 <0.001

Scr(mmol/L) -0.255 0.004 0.197 0.027 -0.424 <0.001 0.788 <0.001 -0.663 <0.001 0.779 <0.001

eGFR(ml/min/1.73m2) 0.285 0.001 -0.294 0.001 0.566 <0.001 -0.708 <0.001 0.608 <0.001 -0.637 <0.001

UACR(mg/g) -0.260 0.011 0.144 0.165 -0.405 <0.001 0.432 <0.001 -0.430 <0.001 0.330 0.001

24h-UTP(mg) -0.170 0.062 0.111 0.225 -0.542 <0.001 0.520 <0.001 -0.589 <0.001 0.398 <0.001
front
BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, Fasting Plasma Glucose; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-
density lipoprotein cholesterol; TP, total protein; ALP, alkaline phosphatase; UA, serum uric acid; Scr, serum Scrtinine; eGFR, estimated glomerular filtration rate; UACR, urine albumin to
Scrtinine ratio; 24h-UTP, 24-hour Urine Total Protein. Bold values indicate P<0.05.
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In the DKD IV group, the levels of 25(OH)D3 were significantly

lower than those in the T2DM group in Model 1 and Model 2 (P <

0.05), suggesting that 25(OH)D3 levels decrease significantly

relative to the control group as DKD progresses to stage IV, while

DKD V did not show statistical significance. When comparing to

DKD s III group, iPTH levels in DKD V group were significantly

elevated across all models (P < 0.05), showing that iPTH levels

increase as DKD progresses. Ca levels were significantly reduced in

DKD IV and V group when compared to both the T2DM group and

DKD III group, highlighting a strong negative correlation between

Ca levels and DKD severity (P < 0.05). PHOS levels were

significantly higher in DKD III and V group compared to the

T2DM group and were also elevated in DKD IV and V group when

compared to DKD III group (P < 0.05). Notably, these bone

metabolism markers varied in their timing of changes, with

PHOS showing significant differences as early as DKD III group,

while FGF23 levels only differed significantly in DKD V group,

suggesting that disturbances in bone metabolism play a significant

role in the pathological progression of DKD (Table 5).
4 Discussion

This study examined changes in bone metabolism markers in

patients with T2DM and DKD, focusing on the association of

klotho, FGF23, 25(OH)D3, iPTH, Ca and PHOS levels with the
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severity of DKD. Furthermore, this study also assesses their

predictive value for the progression of DKD. It analyzes the

significance of bone metabolism markers both separately and in

combination for the DKD and NDKD groups, as well as for DKD

patients with microproteinuria and massive proteinuria. The results

indicate that as DKD advances from stage III to V, klotho, calcium,

and 25(OH)D3 levels show a significant decline, whereas FGF23,

iPTH, and PHOS levels experience a marked increase. Multiple

regression analyses further confirmed that these bone metabolism

markers are closely related to DKD progression, suggesting their

potential clinical utility in the diagnosis and prognosis of DKD.
4.1 Relationship between bone metabolism
dysregulation and DKD progression

The communication between bone and kidney is a complex

process involving mutual regulation among different molecules

(Figure 6). FGF23 is a phosphate-regulating hormone primarily

secreted by bone cells. As a crucial molecule in the communication

between bone and kidney, FGF23 collaborates with active vitamin D

and intact parathyroid hormone to regulate calcium and phosphate

homeostasis (18), and are involved in the pathological processes of

insulin resistance, inflammation, fibrosis, and podocyte injury in

DKD (8, 28–30). FGF23 levels increase significantly with DKD

progression, and elevated FGF23 levels during kidney function
FIGURE 5

ROC curves for predicting DKD using bone metabolism markers. (A, B) ROC curves for klotho, FGF23, 25(OH)D3, iPTH, Ca and PHOS predicting
NDKD and DKD groups. (C, D) ROC curves for klotho, FGF23, 25(OH)D3, iPTH, Ca and PHOS predicting MP and MAP groups.
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decline are a compensatory response to phosphate retention,

consistent with its known role in CKD (31). Chronic low-grade

inflammation is a major pathogenic mechanism of DKD (32), and

the inflammatory response can further increase the expression of

FGF23 (33). In addition, excessive elevation of FGF23 may also lead
Frontiers in Endocrinology 10
to complications such as left ventricular hypertrophy and

cardiovascular events (34). Thus, FGF23 serves not only as a

marker of bone metabolism dysregulation but also as a potential

predictor of cardiovascular risk. Our study found that FGF23 is

positively correlated with SBP, further suggesting that elevated

FGF23 levels may be associated with increased blood pressure

and worsening kidney function.

Klotho is a single-pass transmembrane protein predominantly

expressed in the kidneys and parathyroid glands (19, 35). Apart

from acting as a co-ligand for FGF23 to regulate PHOS, Ca, 1,25

(OH)2D3, and iPTH metabolism, klotho also protects the kidneys

through various mechanisms, including antioxidant stress

responses, anti-inflammatory effects, anti-fibrosis, induction of

autophagy, inhibition of apoptosis and aging, and maintaining

renal endothelial cell integrity (20, 36). The kidneys are the

primary organ for klotho gene expression (37). Our previous

studies have confirmed that in the context of DKD, renal aging is

accelerated, and factors such as hyperglycemia, inflammation,

oxidative stress, and hypertension can induce the downregulation

of klotho expression (38). Plasma klotho levels are reduced in DKD

patients, and klotho levels are negatively correlated with the annual

decline rate of eGFR and the occurrence of albuminuria (39, 40).

Klotho levels begin to decline early in CKD and decrease further as

the disease progresses (41), and considered biological markers that

aid in the early diagnosis of DKD (42). Our study observed a

significant decline in klotho levels with DKD progression, with

klotho levels in all DKD groups being lower than those in the

T2DM group, and decreasing further from stage III to stage V. We

found a significant positive correlation between klotho and eGFR,

which supports its role as a marker of worsening renal function.

1,25(OH)2D3 facilitates the absorption of Ca and PHOS in the

intestines and regulates Ca metabolism in bone tissue (43). 1,25

(OH)2D3 participates in renal protection in DKD through

pathways such as inducing autophagy, alleviating oxidative stress,

anti-inflammation, anti-fibrosis, and inhibiting RAS activation (44–

47). Previous studies have found that vitamin D deficiency is more
TABLE 4 Linear regression analysis of independent correlated factors.

Index B (95%CI) t P

Age -0.461(-1.104,0.182) -1.419 0.158

Gender(Male=1,Female=2) 0.068

BMI 0.103(-1.885,2.091) 0.103 0.918

SBP -0.698(-1.056,-0.34) -3.86 <0.001

DBP 0.554(-0.024,1.133) 1.896 0.060

FPG 2.073(0.767,3.38) 3.141 0.002

TP 2.596(1.831,3.36) 6.72 <0.001

TG 2.177(-1.793,6.148) 1.086 0.280

LDL-C 6.886(-0.27,14.042) 1.906 0.059

HDL-C -4.283(-26.383,17.817) -0.384 0.702

ALP -0.133(-0.42,0.154) -0.916 0.361

UA -0.216(-0.281,-0.152) -6.625 <0.001

Scr -0.148(-0.168,-0.128) -14.561 <0.001

UACR -0.046(-0.056,-0.036) -8.974 <0.001

klotho 61.165(24.65,97.68) 3.315 0.001

FGF23 -0.109(-0.172,-0.046) -3.427 0.001

25(OH)D3 1.37(1.015,1.724) 7.653 <0.001

iPTH -0.289(-0.34,-0.237) -11.163 <0.001

Ca 99.713(76.539,122.886) 8.517 <0.001

PHOS -67.388(-81.9, -52.877) -9.191 <0.001
TABLE 3 Predictive value of bone metabolism markers for DKD.

Variables AUC Cut-off Sensitivity Specificity

NDKD group VS DKD group klotho 0.731 < 0.331 0.458 1.000

FGF23 0.644 > 236.6 0.625 0.700

25(OH)D3 0.753 < 26.62 0.531 0.867

iPTH 0.733 > 78.78 0.510 0.967

Ca 0.777 < 2.215 0.552 0.900

PHOS 0.649 >1.245 0.594 0.700

MP group VS MAP group klotho 0.613 < 0.525 0.877 0.419

FGF23 0.666 > 267.2 0.615 0.677

25(OH)D3 0.872 < 26.16 0.723 0.936

iPTH 0.851 > 69.35 0.723 0.903

Ca 0.855 < 2.205 0.662 0.903

PHOS 0.879 >1.210 0.846 0.806
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pronounced in diabetic patients compared to healthy controls and

is more likely to lead to diabetic microvascular complications (48–

51). Vitamin D deficiency is a significant risk factor for DKD

compared to diabetic patients without renal impairment (52–54). A

retrospective cohort study involving 161 patients diagnosed with

DKD via biopsy further confirmed that patients with lower serum

25(OH)D3 levels had more severe glomerular lesions and higher
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scores of tubular atrophy and interstitial fibrosis (55). Our study

also observed a progressive decline in 25(OH)D3 levels with DKD

progression, particularly marked in DKD stages IV and V.

According to the diagnostic criteria for vitamin D deficiency (<75

nmol/L) set by the Italian Society of Clinical Endocrinology and the

American Association of Clinical Endocrinologists (56), vitamin D

deficiency was already present in stage III DKD patients. As the
TABLE 5 Multiple logistic regression analysis of the relationship between DKD severity and bone metabolism.

Dependent
variables

Independent
variables

Model 1 Model 2 Model 3

b Wald P b Wald P b Wald P

T2DM group* klotho -2.113 2.216 0.137 -2.104 2.079 0.149 -2.807 3.119 0.077

DKD III group FGF23 0.001 0.206 0.650 0.003 0.727 0.394 0.004 1.196 0.274

25(OH)D3 -0.021 1.32 0.251 -0.025 1.818 0.178 -0.029 2.05 0.152

iPTH -0.016 1.246 0.264 -0.024 2.366 0.124 -0.024 1.915 0.166

Ca -0.202 0.013 0.911 0.179 0.009 0.925 0.712 0.076 0.783

PHOS -3.800 5.299 0.021 -4.462 6.139 0.013 -4.815 6.586 0.010

T2DM group* klotho -4.053 4.506 0.034 -4.105 4.558 0.033 -4.082 4.157 0.041

DKD IV group FGF23 0.004 1.240 0.265 0.005 1.6 0.206 0.005 1.352 0.245

25(OH)D3 -0.068 4.915 0.027 -0.066 4.509 0.034 -0.062 3.443 0.064

iPTH 0.003 0.061 0.804 0.002 0.026 0.871 0.006 0.149 0.700

Ca -8.247 7.299 0.007 -8.821 7.342 0.007 -6.590 2.736 0.098

PHOS 2.606 1.685 0.194 2.936 1.751 0.186 2.880 1.541 0.214

T2DM group* klotho -12.68 3.963 0.047 -17.052 3.962 0.047 -21.163 3.119 0.077

DKD V group FGF23 0.018 5.005 0.025 0.021 4.97 0.026 0.024 4.088 0.043

25(OH)D3 0.113 1.771 0.183 0.139 2.003 0.157 0.247 2.153 0.142

iPTH 0.035 3.214 0.073 0.044 3.034 0.082 0.060 3.263 0.071

Ca -19.48 7.213 0.007 -21.886 6.091 0.014 -20.49 4.77 0.029

PHOS 7.146 5.460 0.019 7.893 5.785 0.016 12.796 4.057 0.044

DKD III group* klotho -1.940 1.074 0.300 -2.001 1.087 0.297 -1.275 0.374 0.541

DKD IV group FGF23 0.003 0.587 0.444 0.002 0.335 0.563 0.001 0.068 0.795

25(OH)D3 -0.047 2.415 0.120 -0.041 1.753 0.185 -0.034 0.981 0.322

iPTH 0.019 1.420 0.233 0.027 2.212 0.137 0.029 2.366 0.124

Ca -8.045 6.922 0.009 -9.00 7.351 0.007 -7.302 3.498 0.061

PHOS 6.406 8.818 0.003 7.398 9.458 0.002 7.695 9.081 0.003

DKD III group* klotho -10.567 2.765 0.096 -14.949 3.048 0.081 -18.355 2.341 0.126

DKD V group FGF23 0.017 4.290 0.038 0.018 3.747 0.053 0.020 2.912 0.088

25(OH)D3 0.134 2.495 0.114 0.165 2.799 0.094 0.276 2.679 0.102

iPTH 0.051 5.688 0.017 0.068 6.198 0.013 0.084 5.616 0.018

Ca -19.278 7.064 0.008 -22.065 6.158 0.013 -21.202 5.125 0.024

PHOS 10.945 11.987 0.001 12.356 13.059 0.000 17.611 7.463 0.006
fron
*reference group.
Model 1, not adjusted; Model 2, adjusted Model 1+SBP and FPG; Model 3, adjusted Model 2+ALP and TP. Bold values indicate P<0.05.
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main circulating form of vitamin D, a decrease in 25(OH)D3 levels

may reflect a decline in renal synthetic function. Low levels of 25

(OH)D3 were significantly negatively correlated with several

adverse clinical biomarkers, further supporting its protective role

in DKD.

iPTH, as a key regulator of calcium-phosphate metabolism,

directly affects blood calcium levels and enhances calcium

absorption by influencing 1,25(OH)2D3 conversion. Our study

found that iPTH levels significantly increase with DKD

progression, particularly in stage V. Elevated iPTH often reflects

the presence of CKD-MBD, which may be more common in DKD

patients (57). Increased iPTH could be a compensatory response to

hypocalcemia and hyperphosphatemia, but may also lead to

excessive bone turnover and cardiovascular calcification (58).

The changes in serum Ca and PHOS levels also exhibited

significant trends in this study. As DKD progresses from stage III

to stage V, Ca levels gradually decrease while serum PHOS levels

gradually increase, particularly in stage V of DKD. Hypocalcemia

and hyperphosphatemia may result from hyperparathyroidism,

vitamin D deficiency, and disturbances in calcium-phosphorus

metabolism. Changes in serum Ca and PHOS can also feedback-

regulate the levels of FGF23, klotho, 1,25(OH)2D3, and iPTH (59).

1,25(OH)2D3, FGF23, and klotho may also interactively participate

in the pathogenesis of DKD. Macrophage infiltration is a significant

pathological feature of DKD and is closely related to the degree of

kidney injury and interstitial fibrosis (60). FGF23 promotes the

polarization of macrophages to the pro-inflammatory phenotype

(M1), and klotho expression is significantly upregulated in M1

macrophages. In contrast, 1,25(OH)2D3 can stimulate M2

macrophages to increase Arg-1 expression, inhibiting FGF23-
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induced TNF-a upregulation, and participating in anti-

inflammatory and anti-fibrotic responses. The balance of

opposing effects between vitamin D and FGF23 may influence the

trends of inflammation and fibrosis in DKD (61). Zou XR et al.

discovered that Shenyuan granules can modulate vitamin D levels

and improve kidney injury and calcium-phosphorus metabolism

abnormalities in DKD mice by intervening in the synthesis of renal

24-hydroxylase and 1a-hydroxylase through the klotho/FGF23/

Egr1 signaling pathway (62).
4.2 Clinical significance of bone
metabolism markers

The results suggest that bone metabolism markers play a crucial

role in DKD progression and may have significant clinical

predictive value. ROC curve analysis shows that klotho, FGF23,

25(OH)D3, iPTH, Ca and PHOS each have predictive value for

DKD occurrence, with potential applications in DKD diagnosis.

The combined predictive model achieved an AUC of 0.846,

highlighting the potential of these markers for improving

prediction accuracy. Additionally, the AUC values for 25(OH)D3,

iPTH, Ca and PHOS in predicting DKD severity were >0.85,

showing high sensitivity and specificity. The combined model

reached an AUC of 0.951, confirming its potential clinical utility.

Previous studies have suggested that bone metabolism is closely

related to women, but it is also a significant health issue for men

(63). The gender differences in bone metabolism warrant

further investigation.
FIGURE 6

FGF23/Klotho Axis in Bone-Kidney Communication. FGF23, secreted by bones, primarily binds to the Klotho/FGFR complex in the kidneys and
parathyroid glands to inhibit the secretion of 1,25(OH)2D3 and PTH, and regulate renal phosphate excretion. Klotho, acting as a co-receptor for
FGF23, modulates phosphate metabolism by suppressing 1,25(OH)2D3 synthesis and promoting phosphate excretion. In the kidneys, 25(OH)D3 is
converted to 1,25(OH)2D3, which enhances intestinal calcium absorption and inhibits PTH secretion through negative feedback. PTH, secreted by
the parathyroid glands, acts on bones and kidneys to stimulate bone resorption and renal calcium reabsorption. These factors maintain calcium-
phosphate balance and bone mineral metabolism through complex feedback and feedforward mechanisms.
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4.3 Clinical applications and future
research directions

These findings provide a valuable reference for managing bone

metabolism in DKD patients. Monitoring klotho, FGF23, 25(OH)

D3, iPTH, Ca and PHOS levels is crucial for early detection of DKD

progression and assessing disease severity. The combined use of

these markers could improve diagnostic accuracy and support

personalized treatment. Future research should further explore

the mechanisms of bone metabolism markers in DKD, especially

their association with cardiovascular complications. Additionally,

the impact of interventions targeting these markers on DKD

progression needs further investigation. Such research could lead

to new treatment strategies to improve DKD patient outcomes.
5 Limitations

This study has limitations including a small sample size, cross-

sectional design restricting causal inference, insufficient

consideration of all potential confounders, single-point

measurement of bone metabolism markers, limited external

validity, and lack of in-depth mechanistic studies. The study

explored only certain bone metabolism indicators and did not

include imaging assessments like bone density. Future research

should expand the scope, validate results in larger and more diverse

populations, and comprehensively evaluate the role of bone

metabolism dysregulation in DKD progression.
6 Conclusion

The study indicates that changes in Klotho, FGF23, 25(OH)D3,

iPTH, and Ca levels are closely related to DKD progression. These

markers are significant for DKD diagnosis and prognosis and may

serve as potential therapeutic targets. Further research should

continue to explore the mechanisms and clinical applications of

these markers to improve treatment outcomes and quality of life for

DKD patients.
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