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Non-intrusive load monitoring (NILM) is a technique used to monitor energy
consumption in buildings without requiring hardware installation on individual
appliances. This approach offers a cost-effective and scalable solution to enhance
energy efficiency and reduce energy usage. Recent advancements in NILM
primarily employ deep-learning algorithms for appliance identification.
However, the substantial number of parameters in deep learning models
presents challenges in quickly and effectively identifying appliances. An
effective technique for appliance identification is analyzing the appliances’
voltage-current (V-I) trajectory signature. This research introduces a novel
hashing method that learns compact binary codes to achieve highly efficient
appliance V-I trajectory identification. Specifically, this paper uses a profound
structure to acquire V-I trajectory image features by acquiring multi-level non-
linear transformations. Subsequently, we merge these intermediary traits with
high-level visual data from the uppermost layer to carry out the V-I trajectory
image retrieval process. These condensed codes are subjected to three distinct
standards: minimal loss in quantization, uniformly distributed binary components,
and autonomous bits that are not interdependent. As a result, the network easily
encodes newly acquired query V-I images for appliance identification by
propagating them through the network and quantizing the network’s outputs
into binary code representations. Through extensive experiments conducted on
the PLAID dataset, we demonstrate the promising performance of our approach
compared to state-of-the-art methods.
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1 Introduction

Smart grid has become a new strategy for global energy in the 21st centuryYu et al.
(2014). Electric energy has gradually become the most important form of terminal energy in
modern society Dennis (2015). In order to cope with the global energy and environmental
crisis, realize low-carbonization and improve power supply reliability and power utilization
efficiency, extensive and in-depth research on smart grids has been carried out worldwide.
And practice. The development of technology and the increased use of electrical appliances
and automated services have led to a steady growth in electric energy needs over the past
century. In the last decade alone, there has been an annual growth rate of approximately 3.4%
Yu et al. (2015). Currently, residential and commercial buildings account for approximately
36% of total electrical demand in the United States of America and 25% in the EU Elma and
Selamoğullar (2017). Studies have shown that detailed analysis and real-time feedback on
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energy consumption can result in energy savings of up to 20% by
detecting faulty devices and inefficient operational strategies He
et al. (2013); Lee and Cheng (2016). As a result, extensive research
has been conducted in the last few decades on smart grids, smart
systems, and energy demand management, leading to the
development of various optimization techniques aimed at
reducing residential energy consumption Çimen et al. (2020).
However, in order to effectively utilize these techniques, accurate
and detailed monitoring of electrical energy consumption is
necessary Chiş et al. (2016). A systematic review conducted by
Kelly and Knottenbelt (2016) indicates that even providing real-time
aggregated consumption data to households has a positive effect on
consumer behavior, while Meziane et al. (2015) suggests that the
greatest energy savings can be achieved by monitoring energy
consumption at the device level.

However, closely monitoring the energy consumption of
households at a detailed level can be expensive and intrusive, as
it necessitates the use of multiple dedicated metering devices.
Consequently, the research community has devised more efficient
techniques to achieve the same goal, utilizing a single metering point
known as Non-Intrusive Load Monitoring (NILM). The concept of
NILM was originally introduced by Hart in 1980 Hart (1992), and it
involves extracting information about the operation of appliances by
solely measuring electrical parameters at the mains. In energy
disaggregation, the objective is to directly estimate the individual
active powers of the appliances Zhang et al. (2018), while
classification entails determining their states and subsequently
estimating the active power by employing average power values
associated with each state Tabatabaei et al. (2016).

Since the publication of Hart’s influential paper Hart (1992),
numerous energy disaggregation algorithms have emerged in the
literature to enhance his findings. NILM techniques can be
categorized into event-based or state-based methods Balletti et al.
(2022). Based on the availability of ground truth data, NILM
algorithms can be classified as supervised or unsupervised or
semi-supervised Han et al. (2022). Event-based approaches
employ edge detection techniques to capture significant statistical
variations in the signal. The most common event-based methods
involve unsupervised event detection in the aggregate signal and
supervised or semi-supervised classification to assign known
appliances to the detected events. Classification tools mentioned
in the literature include Support Vector Machines (SVM) Hassan
et al. (2013), Decision Trees Chowdhury and Hasan (2019), and
combinations of various classification methods Lin and Tsai (2014).
Furthermore, clustering techniques based on Dynamic Time
Warping (DTW) are utilized to identify windows exhibiting
similar consumption patterns and to extract representative load
signatures Liu et al. (2017). Recent research in event-based NILM
has explored Graph Signal Processing (GSP) algorithms He et al.
(2016), both supervised and unsupervised, which identify spatio-
temporal correlations in the data by embedding signals onto a graph.

Instead of using the traditional methods, state-based approaches
analyze each appliance as a finite-state machine and divide the total
power signal based on models of appliance load distribution. To
explore all the potential combinations of different appliance state
sequences, state-based approaches commonly employ
Combinatorial Optimization (CO) and Hidden Markov Models
(HMM) Kong et al. (2016); Bonfigli et al. (2017). However, as

the number of appliances increases, the number of state
combinations grows exponentially, making the problem more
complex. Additionally, these approaches have limitations when
dealing with unknown loads, often yielding unsatisfactory results.
In Parson et al. (2012), differential HMMs are utilized with the
expectation-maximization algorithm to generate state transition
models in an unsupervised manner. Makonin et al. (2015)
employs sub-metering measurements to construct super-state
HMMs, and inference is carried out using a sparse Viterbi
algorithm, resulting in an efficient estimation of energy
consumption. Finally, Rahimpour et al. (2017) applies a non-
negative matrix factorization technique to decompose the
aggregated signal into appliance signatures.

For appliance identification, the extraction of distinct features
from recorded data, such as current, voltage, power, or a
combination of these attributes, is crucial. The effectiveness of
any identification study depends on two main factors: the feature
sets and the classifiers used. The remarkable progress in the field of
Computer Vision (CV), coupled with the neural networks’ capacity
to extract precise features and the introduction of innovative image
encoding techniques, has empowered researchers to apply high-
performance CVmethods to various other tasks. When dealing with
time series data, it becomes necessary to convert them into 2-
dimensional representations by utilizing encoding techniques.
Numerous studies Wang and Oates (2015); Sezer and Ozbayoglu
(2018); Chen and Tsai (2020); Barra et al. (2020) have investigated
encoding techniques for transforming time series into images, and
three of them have gained widespread adoption: Gramian Angular
Summation/Difference Fields (GASF/GADF), Markov Transition
Fields (MTF), Recurrence Plot. While previous literature has
focused more on enhancing the feature set De Baets et al. (2018);
Liu et al. (2018); Chen et al. (2021); Heo and Kim, (2021); Han et al.
(2023), rather than the classifiers employed Ghosh et al. (2021),
Faustine et al. (2020), both aspects play a significant role in
improving appliance identification. Regarding the feature set,
initial approaches either considered images of voltage-current
(V-I) trajectories of loads De Baets et al. (2018) or extracted
statistical features directly from the load signature Liu et al.
(2019). However, these methods yielded low identification
accuracy De Baets et al. (2018), Liu et al. (2019), prompting
various strategic enhancements in previous studies. One
improvement was the implementation of color-encoded V-I
trajectory analysis Liu et al. (2018) to enhance V-I trajectory
images. Another approach involved generating weighted pixelated
images of V-I trajectories using particle swarm optimization to
determine thresholds Jia et al. (2021). In Chen et al. (2021), signal
disaggregation was performed instead of directly considering V-I
trajectories. This involved utilizing Fast Fourier transform (FFT) to
obtain spectral features, which were then fused with temporal
features and converted into images using recurrence graphs. The
GADF encoding technique was examined in Kyrkou et al. (2019) to
detect states in two residential datasets. This study marked the first
utilization of an encoding technique on active power consumption
data. Conversely, in Cavalca and Fernandes (2020), the Recurrence
Plot method was employed on the aggregate signal, and
comparisons were made with previously used techniques.

In recent years, end-to-end Deep Neural Networks (DNN) Han
et al. (2022) have emerged as the leading approach among
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supervised methods, demonstrating state-of-the-art performance.
However, a significant limitation of DNNs is their heavy dependence
on a large number of training samples, encompassing both
aggregated and disaggregated data, and the implementation of
most DNN-based NILM approaches on commercial end-devices
weight calculation and storage hinder their implementation on
commercial end-devices. The study presented in reference
Gopinath and Kumar (2023) is dedicated to crafting an efficient
neural network tailored for edge computing, with its foundation
resting upon the seq2point CNN model. In pursuit of this objective,
the authors introduce an innovative multi-task learning-based
architectural framework. They also delve into the realms of filter
and neuron pruning techniques, meticulously fine-tuning the
network to diminish both memory and computational overhead.
Rigorous evaluation takes place against the REDD and UKDALE
datasets to gauge its precision. Reference Athanasiadis et al. (2021)
introduces a nimble and scalable approach to Non-Intrusive Load
Monitoring (NILM). In this methodology, transient sequences are
methodically segmented, primarily guided by the identification of
turn-ON events. A sophisticated blend of Convolutional Neural
Networks (CNN) and k-Nearest Neighbors (k-NN) algorithms is
harnessed to discern various electrical loads. However, it is worth
noting that the approach mandates high-rate measurements
sampled at 100 Hz for power sequence extraction. In reference
Ahmed and Bons (2020), an inventive MobileNet model is
proposed, accompanied by the deployment of TensorFlow Lite,
effectively optimizing its lightweight architecture for compression.
This strategic maneuver is directed at mitigating memory
consumption and reducing the training duration. Nonetheless, it
is crucial to acknowledge that this compression drive does introduce
a discernible performance drop in the system. Other works such as
Chen et al. (2023); Zhang et al. (2021) have also made certain
contributions to the lightweighting of NILM models. In this paper,
we propose a deep supervised hashing for fast load identification
based on V-I trajectory signature. We transform the problem of load
identification into the problem of V-I trajectory image retrieval. At
present, deep hash image retrieval is mainly applied in the field of
large-scale image retrieval Liu et al. (2016); Yan et al. (2020); Liu
et al. (2020); Zhai et al. (2020); Tian et al. (2023). In this paper, our
idea comes from the process of hash image retrieval. For a query
image, the result of hash image retrieval is the one or several images
most similar to it in the output image library. When the V-I
trajectory image is used for load identification, it is relatively easy
for the appliances with only on and off working states because the
V-I trajectory of these appliances is single and relatively stable. Each
running state is different for multi-state appliances, and the V-I
trajectory image corresponding to each state is also quite different.
In addition, due to the limited amount of data in NILM, it is difficult
for existing deep learning algorithms to identify these multi-state
appliances correctly Liu et al. (2018); Han et al. (2022); He et al.
(2023). Therefore, through the hash image retrieval algorithm, we
can identify the appliance by returning the label of the image most
similar to the queried image in the database. This method can
effectively improve the accuracy and speed of load identification.

This work is organised as follows. The process of V-I trajectory
extraction and the proposed algorithm are introduced in Section 2.
Section 3 showcases the experimental dataset, evaluation criteria,

results, discussion, and outlook of this work. Finally, section 4 draws
the conclusion.

2 Proposed method

Firstly, we introduce the approach to extract V-I trajectory
patterns from the merged data of terminal voltage and total
current pertaining to a specific appliance. Subsequently, we offer
a thorough elucidation of the suggested model structure.

2.1 V-I trajectory acquisition

Within the NILM framework, energy monitoring devices like
smart meters, smart plugs, current sensors, and voltage sensors are
used to acquire aggregated data on current, voltage, and power.
Assuming that only one load is switched at a time, analyzing the
variations in power and current allows us to detect and separate the
switched load. By utilizing the current of a single appliance, we can
extract its load signature and train a classifier to identify different
appliance loads. To obtain the V-I trajectory of a single appliance, we
initially divide the voltage and current waveforms into two
segments: one during the steady state before load switching
(denoted as Voff and Ioff) and another after load switching
(denoted as Von and Ion). To ensure that the current waveforms
Ioff and Ion can be directly subtracted in the time domain, it is
necessary for their initial phase angles to be the same Wang et al.
(2018). The phase angle of the fundamental voltage can be
determined through spectrum analysis methods like fast Fourier
transform, and the sampling point corresponding to a phase angle of
zero can be used as the initial sampling point. We can acquire the
voltage and current waveform of the switching appliance, and the
calculation formulas are as follows:

V � Von + Voff

2
(1)

I � Ioff − Ion (2)

A two-dimensional V-I trajectory image can be generated by
using the voltage V and current I values of an appliance. To enhance
the uniqueness information of each appliance in the V-I trajectory
image, the method described in the reference is applied in this study
to encode the color of the appliance’s V-I trajectory Liu et al. (2018).
Figure 1 visualizes the V-I trajectories of different appliances in the
PLAID dataset.

2.2 Proposed model architecture

In this segment, we will elaborate on the envisaged supervised
hashing methodology founded on a deep neural network. Our initial
step involves constructing a profound architecture utilizing the
renowned AlexNet and incorporating a hashing stratum within
this structure. The primary objective of this stratum is to acquire
hash codes that maintain similarity, thus enabling effective V-I
trajectory image retrieval. To ensure the efficacy of our approach,
these codes are required to encapsulate three key characteristics:
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Firstly, the V-I trajectory images of the same appliances must be
translated into analogous hash codes, and conversely, the V-I
trajectory images of different appliances should yield contrasting
codes. Secondly, the binary codes must be uniformly disseminated
across the spectrum. Lastly, we strive for maximal independence

among distinct bits, enhancing the discriminative power of the
codes.

Figure 2 displays the architectural configuration of our approach
using a deep neural network. In this arrangement, a hashing layer
(H), positioned between the second fully connected layer (F7) and

FIGURE 1
(A) Air Conditioner, (B) Compact Fluorescent Light, (C) Fan, (D) Refrigerator, (E) Hairdryer, (F) Heater, (G) Incandescent Light Bulb, (H) Laptop, (I)
Microwave (J) Vacuum Cleaner (K) Washing Machine on PLAID dataset. (The x-axis represents normalized current data, and the y-axis represents
normalized voltage data).

FIGURE 2
The fundamental structure of the proposed deep hashing technique.
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the uppermost classification layer (F9) in AlexNet, is employed to
produce concise feature representations. The inputs for this intricate
structure comprise the original V-I trajectory image pixels alongside
the corresponding appliance labels. During the training stage, our
methodology commences by initializing the network parameters
utilizing the pre-training model weights sourced from the extensive
ImageNet dataset [28]. Subsequently, we employ the stochastic
gradient descent (SGD) methodology to fine-tune the network
parameters, ensuring optimal convergence. Transitioning to the
retrieval phase, we harness the hashing layer’s representation in
conjunction with the information from the top layer to jointly
compute the degree of similarity.

2.3 Deep hashing functions

In broad terms, a hash function is designed to map input data of
D dimensions to a compressed vector of K dimensions. Consider
X � {xt}Tt�1 representing a collection of V-I trajectory images, and
Y � {yn ∈ {0, 1}N}T denoting their corresponding label arrays. Here,
T stands for the overall count of appliance categories. If a V-I
trajectory image xt pertains to the nth appliance category, the
associated value in label vector yn is set to 1; otherwise, it is 0.
Our objective encompasses mastering a set of hash functions H(x) =
[h1(x), h2(x), . . ., hk(x)]. These hash functions must be adept at
generating binary codes of K bits, where K is significantly smaller
than D. Meanwhile, the key aim is maintaining the inherent
semantic similarity among V-I trajectory images.

ConsiderWH ∈ Rd×k as the weight parameters connecting layer
F7 and the hashing layer (H). When we examine a V-I trajectory
image Vt containing the feature vector a7t ∈ R within F7, we can
compute the outputs of neurons in the hashing layer (H) using the
formula aHt � σ(a7tWH + bH). Here, aHt represents a vector with K
dimensions within the layer H, bH symbolizes the bias term, and σ(·)
refers to the logistic sigmoid function, defined as σ(z) = 1/(1 + exp
(−z)). Consequently, the hash function can be expressed as:

bt � sgn σ a7tW
H + bH( ) − 0.5( ) + 1
2

� sgn aHt − 0.5( ) + 1
2

(3)

where sgn(s) = 1 if s > 0 and −1 otherwise, and sgn (·) executes
element-wise operations on a vector or a matrix.

2.4 Classification loss and optimization

The middle strata comprise abundant and unique semantic
characteristics, capable of portraying V-I trajectory visual content
through amalgamations of features. In this context, we
predominantly employ V-I trajectory visual annotations as the
guiding data during the hash learning procedure. That implies we
can enhance a loss function established on classification inaccuracies to
transform images with similar meanings into corresponding hash
codes. Additionally, this approach allows us to broaden the scope of
semantically analogous images linked by comparable hash codes.

Suppose that WC ∈ RK×N signifies the transformation matrix
linking the units in the hashing layer to those in the highest layer.
Consider vector ŷ{t} as indicative of the forecast generated by input
V-I trajectory image x{t} at the uppermost stratum of the intricate

neural network. Enhancing the ensuing target function can diminish
the classification discrepancy and derive the optimal configuration
for WC.

L1 � arg min
W

∑
T

t�1
f yt, ŷt( ) + λ‖W‖2 (4)

where f (·) represents the loss function aimed at mitigating
classification errors, W embodies the weight matrix of the
profound neural network, and λ assumes the role of a hyper
parameter governing the significance of the regularization
component.

2.5 High quality hash code

Utilizing the previously mentioned loss functions, our profound
framework will produce outcomes that bear a semantic resemblance.
As expounded in reference (1), the neural units within the hashing
layer (H) are set in motion by sigmoidal functions, consequently
yielding continuous outputs spanning the interval [0, 1]. To achieve
enhanced binary encodings, our aspiration revolves around
minimizing the disparity between each activation value within
the hash layer and the extremes of 0 or 1. In essence, we harbor
the desire for the hash layer’s outputs to exclusively inhabit the set
{0, 1}. To actualize this objective, we impose a restriction denoted as
∑T

t�1|aHt − 0.5e|2 at the hash layer (H), where the vector e embodies a
unitary construct spanning K elements. This imposition engenders a
scenario wherein the hash layer is predisposed to yield outputs close
to binary values.

Furthermore, drawing from information theory principles,
heightened entropy can encapsulate more information. Hence, we
aim to ensure an equiprobable assignment of 0 or 1 to every unit
within the hashing layer. In simpler terms, we seek to evenly
distribute compact codes evenly, thereby maximizing the entropy
of the discrete distribution.

To accomplish this objective, we can execute the expression
∑T

t�1(mean(aHn ) − 0.5)2 on each bit of the hash codes, where the
functionmean (·) signifies the average value of the elements within a
vector. By adhering to the aforementioned dual constraints, we are
poised to optimize the subsequent objective function to generate the
intended hash codes:

Lh � arg min
W

− 1
K

∑
T

t�1
‖aHt − 0.5e‖22 +∑

T

t�1
|mean aHt( ) − 0.5|2

� arg min
W

−L2 W( ) + L3 W( ) (5)

where K represents the length of hash codes, the initial component
ensures that every outcome from the hash layer approaches either
0 or 1. Simultaneously, the subsequent element empowers every
activation within the hash layer modules to exhibit a probability
distribution equally balanced between 0 and 1.

2.6 Overall objective and implementation

As mentioned earlier, the overall objective function for learning
efficient hash codes is given as follow:
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L � arg min
W

αL1 W( ) − βL2 W( ) + γL3 W( ) (6)

where α, β, γ are hyper parameters that control importance of
each term.

Take note that L1, L2, L3 stand for three channels of the profound
architecture, correspondingly, as is visually depicted in Figure 2. We
employ model coefficients pre-learnedfrom the ImageNet to
initialize the parameters in the convolutional sub-networks and
the initial two fully connected strata (F6-F7). The residual layers are
set in motion with random initialization. The network parameters
are then updated through stochastic gradient descent (SGD) coupled
with the backpropagation mechanism.

Alternative settings are configured subsequently. The V-I trajectory
images are adjusted to 32 × 32 × 3. The fundamental learning rate is
established at 0.001, while themomentum is defined as 0.9. Employing a
‘step’ protocol, the learning rate undergoes reduction after completing
25,000 iterations. The upper limit for iterations is capped at 50,000.
Furthermore, as a precaution against overfitting, the dropout
methodology with a 0.5 probability is integrated. Our approach
constitutes an enhanced rendition of an existing technique.
Consequently, the parameters α, β, γ are uniformly configured to 1.

2.7 Hash codes for retrieval

Most prevailing deep hashing techniques initially capture the
characteristics of the hash layer for all V-I trajectory images within
the database. Subsequently, these feature representations are
discretized into binary, commonly called hash codes. Ultimately,
a provided query V-I trajectory image undergoes identical
processing, yielding the appliance labels of similar V-I trajectory
images through the computation of the Hamming distance amidst
the query V-I trajectory images and the V-I trajectory images within
the database. This method effectively establishes a means to retrieve
resemblant V-I trajectory images based on their binary encodings.

Nonetheless, these strategies might achieve limited search
precision as they solely rely on hash layer characteristics.
Consequently, we introduced an innovative approach to
measuring similarity. In this regard, we incorporate the insights
from the classification layer as an ameliorative component,
augmenting the computation of similarity distances. The ultimate
computation of similarity is illustrated as follows:

D Vi, Vj( ) � DH Vi, Vj( ) − μDC Vi, Vj( ) (7)

where D (·) signifies the disparity existing between the query V-I
trajectory image, denoted as Vi, and the V-I trajectory image pertaining
to the ith entry within the database. Furthermore, DH (·) and DC (·)
stand for the dissimilaritymeasures corresponding to the hash layer and
the classification layer, respectively. It is important to note that μ serves
as a hyper parameter that plays a crucial role in regulating the
significance attributed to the second term.

3 Experiments and results

This chapter begins with a description of the experimental data
and evaluation indicators, followed by a detailed analysis and

discussion of the experimental results. The experiments were
conducted on a machine equipped with an Intel(R) Core(TM) i7-
6700 CPU, 16.00 GB RAM, and NVIDIA Quadro P2000, using
Python 3.6 as the programming language and Pytorch 1.8 as the
basis for constructing the network architecture.

3.1 Data preparation and metrics

In order to verify the performance of the algorithm, we choose
the PLAID dataset. The PLAID data set is a data set released by
Carnegie Mellon University specifically for NILM research work. It
collects the instantaneous voltage and current data of 11 electrical
appliances in 56 households in Pittsburgh, Pennsylvania,
United States within a few seconds before the switching event.
The data sampling frequency is 30 kHZ. The PLAID data set
used in this paper is the version released in 2017 De Baets et al.
(2017). The data set includes the original voltage and current
instantaneous values of 1793 devices, of which numbers
1–1,074 are data collected in June 2013, and numbers
1075–1793 are data collected in November 2014. The data
collected in the month, the name of each electrical category in
the data set and its abbreviation in this paper, and the sample data
are shown in Table 1.

To ensure the deep learning model avoids overfitting and
produces reliable results, we employ the repeated 5-fold cross-
validation technique and establish appropriate stopping criteria
prior to training. Cross-validation serves as a model validation
method, assessing how statistical analysis outcomes will
generalize to independent datasets. In K-fold cross-validation, the
original dataset is randomly divided into K equally-sized subsets.
One subset is used as the validation data for testing the model, while
the remaining K-1 subsets are employed as the training data. This
cross-validation process is repeated K times, with each subset used
once as the validation data. Ultimately, the K results from the folds
are averaged to obtain the K-fold cross-validation result. It is
recommended to use 5 folds Kohavi et al. (1995), as altering this
number can increase variance due to the inherent instability of the
training sets themselves.

In order to evaluate the performance of the experimental results,
we use Fscore as the evaluation index, and the specific calculation is as
follows:

Fscore � 2 × Precision × Recall

Recall + Precision
(8)

Precision � TP

TP + FP
(9)

Recall � TP

TP + FN
(10)

Fmacro � 1
N

∑
N

i

Fscore,i (11)

Where TP is true positive, FN is false negative, FP is false
positive, TN is true negative. The larger the value of Fscore, the
higher the accuracy of appliance identification and the better the
identification effect. Fmacro is the mean of Fscore of all appliances,
where N is the number of appliances in the data set, Fscore,i is the
Fscore of the ith appliance.
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3.2 Experiment results and discussions

To verify the effectiveness of the model, we compared the
load identification results with state-of-the-art algorithms. Ref
Han et al. (2021) is a V–I trajectory enabled asymmetric deep
supervised hashing (ADSH) method, and De Baets et al. (2018) is
a load identification method based on convolutional neural
network. To verify the identification of the model. To enable
a more comprehensive analysis beyond simple accuracy, a
specialized table layout known as a confusion matrix
Sadeghianpourhamami et al. (2017) is utilized to visualize the
performance of the classification problem. As depicted in

Figures 3–5, each row of the matrix represents the instances
assigned to a predicted class, while each column represents the
instances belonging to a true class. The diagonal cells display the
number of correct predictions for each class, indicating how
many instances match both the true and predicted classes.
Values outside the diagonal indicate the classifier’s errors,
allowing for visual inspection of prediction mistakes. The
rightmost column of the plot represents the precision,
indicating the accuracy for each predicted class, while the
bottom row represents the recall, denoting the accuracy for
each true class. The cell at the bottom right of the plot
represents the overall accuracy.

TABLE 1 Each load name abbreviation and its sample number in the PLAID dataset.

Appliance ID Appliance name Abbreviation 1–1,074 number of samples 1,075–1793 number of samples

1 Air Conditioner AC 66 142

2 Compact Fluorescent Light CFL 175 45

3 Fan - 115 95

4 Fridge - 38 52

5 Hairdryer HD 156 92

6 Heater - 35 50

7 Incandescent Light Bulb ILB 114 34

8 Laptop - 172 35

9 Microwave MW 139 90

10 Vacuum - 38 35

11 Washing Machine WM 26 49

FIGURE 3
The confusion matrix for appliance loads using SPDmethod with
16-bit encoding results.

FIGURE 4
The confusion matrix for appliance loads using ADSH method
with 16-bit encoding results.

Frontiers in Energy Efficiency frontiersin.org07

Liu et al. 10.3389/fenef.2023.1302121

https://www.frontiersin.org/journals/energy-efficiency
https://www.frontiersin.org
https://doi.org/10.3389/fenef.2023.1302121


From Figures 3–5, it can be seen that the average accuracy of
the proposed algorithm using 16-bit encoding results is 96.8%,
the average accuracy of the ADSH algorithm using 16-bit
encoding results is 95.4%, and the average accuracy of the
CNN algorithm is 93.6%, the proposed algorithm has the best
load identification results. Based on the confusion matrix
presented in Figure 3, it is evident that the prediction results
for fridge, air conditioners, and washing machines are prone to
confusion with other electrical loads. Additionally, Figure 6
illustrates that only these three loads exhibit F1_scores lower
than the F_macro (the average of f-scores for all appliances). It is
worth noting that all three loads belong to the Type II category.
As per the proposal outlined in Hart (1992) and the definition
provided by Zoha et al. (2012), Type I loads typically have two
working states, on and off, making them suitable for most
household appliances like light bulbs, toasters, and water
pumps. Conversely, Type II loads encompass multi-state
equipment with a limited number of operating states,
encompassing washing machines, stove burners, and others.
Air conditioners, for instance, have multiple working states
such as heating mode and ventilation mode, which can easily
be mistaken for hair dryers and fans. Refrigerators consist of a
cooling fan, compressor motor, and electronic circuits, making
them susceptible to misprediction. Washing machines, on the
other hand, have multiple working states such as washing and
drying. Effectively representing these three appliances through a
multi-state model remains an open problem in the field He et al.
(2016). Therefore, our method is more suitable for Type I loads.
In Figure 6, the F1_macro of the proposed algorithm is 0.9603,
the ADSH is 0.9413, and the CNN is 0.9214. The proposed
method has state-of-the-art load identification results.

The results of the proposed method on the PLAID dataset,
utilizing a 16-bit encoding scheme, are presented in Table 2. The
table showcases the appliance labels alongside their
corresponding 16-bit encoded outcomes, arranged from left to
right. Each distinct appliance is transformed into a unique binary
hash code, which serves as a crucial foundation for appliance
identification. By evaluating the Hamming distance between
these hash codes, we can ascertain the appliance’s class. The
Table demonstrates that the Hamming distance between
different appliance codes is maximized, indicating a
substantial number of differing bits in the hash code for
distinct appliances. Conversely, the encoding results for the
same appliance are either identical or exhibit only a few
differing bits. This characteristic is also reflected in the color
of the encoded bits. However, it should be noted that a single
appliance label does not necessarily correspond to a sole
encoding result. Notably, “fridge,” “air conditioners” and
“washing machines” have multiple hash codes, as the
trajectory shape of a load may fluctuate due to noise or other
factors. In other words, a load does not exclusively correspond to
one V-I trajectory. The encoding of such appliances into multiple
similar hash codes effectively prevents identification errors. In
conclusion, this approach resolves the curse of dimensionality
issue associated with high-dimensional features, enhancing the
method’s stability. Consequently, even when the V-I trajectory
image of an appliance deviates due to fluctuations, the algorithm
maintains a high level of accuracy in recognizing the appliance.

In order to verify the identification results of the load when the
model uses different hash code lengths, we use 8-bit, 16-bit, 32-bit,
64-bit, and 128-bit hash codes to identify the load, and compare it
with the ADSH method. The experimental results are shown in
Table 3, using different editing digits, the load identification
results of the proposed method are all higher than the ADSH
method. Longer encoding lengths generally provide better
representations of V-I trajectory images, as they capture the
details and features of V-I trajectory images more accurately.
However, increasing the encoding length leads to increased
computational and storage requirements, and also increases the
computational complexity of image retrieval for V-I trajectories.
The choice of encoding length requires a trade-off between
accuracy, computational efficiency, and storage overhead. A
shorter encoding length can provide higher computational and
storage efficiency, but may result in information loss and lower
retrieval accuracy of V-I trajectory image representation. Longer
encoding lengths can provide more accurate image
representations of V-I trajectories, but may increase
computational and storage overhead. It can be seen from the
table that as the code length increases, the load identification
results will increase. When the code length is greater than 16 bits,
the load identification effect does not increase significantly.
Considering the balance between computational complexity
and load identification results, We can actually use 16-bit
encoding length to identify the V-I trajectory of the load. All
in all, the longer the encoding length is not necessarily the better,
the selection of encoding length needs to consider the accuracy,
computing efficiency and storage overhead and other factors
according to the specific situation.

FIGURE 5
The confusion matrix for appliance loads using CNN method.
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FIGURE 6
The F1-score (%) for appliances of the PLAID dataset.

TABLE 2 The 16-bits hash code of different appliances.

Appliance 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

AC 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1

CFL 1 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0

Fan 1 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0

Fridge 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1

Hairdryer 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1

Heater 0 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0

ILB 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0

Laptop 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0

Microwave 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0 1

Vacuum 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0

WM 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0

TABLE 3 The appliance identification performance of the proposed method is compared with that of ADSH method under different hash coding lengths.

Encoding (bit) Methods Ac CFL Fan Fridge HD Heater ILB Laptop MW Vacuum WM F_macro

8 Proposed 0.9272 0.9932 0.9582 0.7674 0.9798 0.9704 0.9799 0.9713 0.9935 0.9660 0.8333 0.94

ADSH 0.9336 0.9954 0.9671 0.4628 0.9818 0.8576 0.9511 0.9691 0.9762 0.9793 0.4867 0.8692

16 Proposed 0.9435 0.9955 0.9621 0.8571 0.9899 1 0.9703 0.9738 0.9891 1 0.8816 0.9603

ADSH 0.9185 0.9932 0.9504 0.7929 0.9778 0.9942 0.9637 0.9668 0.9870 0.9863 0.8235 0.9413

32 Proposed 0.9515 0.9977 0.9763 0.8324 0.9879 0.9827 0.9932 0.9761 0.9892 0.9799 0.8844 0.9592

ADSH 0.9375 0.9977 0.9667 0.7738 0.9798 0.9827 0.9799 0.9761 0.9870 0.9730 0.8667 0.9473

64 Proposed 0.9320 0.9977 0.9810 0.8571 0.9778 0.9822 0.9865 0.9809 0.9701 0.9863 0.9041 0.9596

ADSH 0.9012 0.9954 0.9668 0.7929 0.9778 0.9822 0.9764 0.9693 0.9660 0.9863 0.8592 0.9431

128 Proposed 0.9381 0.9977 0.9835 0.8304 0.9878 0.9884 0.9832 0.9810 0.9848 0.9865 0.9231 0.9622

ADSH 0.9212 0.9977 0.9718 0.7784 0.9837 0.9825 0.9733 0.9763 0.9827 0.9796 0.8794 0.9479
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4 Conclusion and future work

In this paper, we introduce a novel hash technique for
retrieving V-I trajectory images employing deep learning.
The deep learning architecture acquires effective image
depiction through point supervision. Moreover, the V-I
trajectory image remains steady during appliance stable
operation, rendering it suitable for substantial-scale image
retrieval approaches for appliance identification.
Furthermore, we incorporate a fresh similarity metric that
integrates top-level data into the distance computation to
retrieve similar instances of the queried V-I images.
Empirical findings validate the superiority of our approach
over the cutting-edge methodologies, affirming its swift and
precise appliance identification capabilities.
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