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The performance of primary and secondary electroactive biofilms grown on layered cor-
rugated carbon (LCC) electrodes was studied over a period of several months. With an
average projected current density of 6.7 mA cm−2, the studied secondary electroactive
biofilms outperformed the primary biofilms (3.0 mA cm−2) over the entire experimental
period. At the same time, both, primary and secondary biofilms, exhibited a constant
Coulomb efficiency of about 89%.The study further illustrates that three-dimensional elec-
trodes such as LCC allow a sustained long-term performance without significant decrease
in electrode performance.
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INTRODUCTION
The performance of bioelectrochemical systems (BES) in gen-
eral and of microbial fuel cells (MFC) in particular has increased
remarkably over the last decade (Schroeder, 2011; Oliveira et al.,
2013). The defining characteristic of biofilms formed by elec-
trochemically active bacteria is their ability to perform anode-
respiration (Lovley, 2006; Logan, 2008; Torres et al., 2008). The
activity of electroactive bacteria biofilms plays a major role in the
context of this study. In the development of high-performance
biofilm electrodes, two different approaches – a biological and a
materials approach – have been followed. The biological approach
is based on an improvement of the biofilm performance by means
of sophisticated biofilm growth procedures. Therefore, electroac-
tive biofilms can easily be grown using inoculi such as wastewater,
soil, compost, or sediments (Liu et al., 2008; Cercado et al.,
2013; Ketep et al., 2013), without any bacterial extraction steps.
Using these inoculi, primary electroactive biofilms are produced,
which already exhibit a good electrocatalytic activity. The bac-
teria of these biofilms can again serve as an inoculum for the
generation of secondary biofilms (see Figure 1), which usually
have a strongly enhanced electrocatalytic performance (Liu et al.,
2008).

A major materials approach is the surface modification (Cheng
and Logan, 2007; Scott et al., 2007), which focuses on improv-
ing colonization potential for bacteria at the electrode surface.
It has been suggested that surface modification can significantly
reduce the formation time of an electroactive biofilm; however,
the long-term performance of the biofilm remains unaffected by
the surface treatment (Kumar et al., 2013). The second materials

approach focuses on the development of tailored 3D electrode
structures. With strongly increased surface area, available for the
biofilm formation, these electrodes aim to increase biocatalyst den-
sity resulting in an increased electrocatalytic current. Numerous
3D structures (Wei et al., 2011) – based on graphite granule elec-
trodes (Sell et al., 1989), carbon felt/paper electrodes (Srikanth
et al., 2008; Liu et al., 2010), carbon brush electrodes (Cheng and
Logan, 2007), carbon fibers (Liu et al., 2010), foams (Zhao et al.,
2010), electrospun carbon fibers (Chen et al., 2011a,b; He et al.,
2011), or natural templates like carbonized plant stems (Chen
et al., 2012a) – have been proposed. With layered corrugated
carbon (LCC), a product from the carbonization of corrugated
cardboard, Chen et al. (2012b) proposed a promising 3D struc-
ture, providing surface area for biofilm growth and sufficiently
large channels for substrate supply and product removal. With
a projected current density of about 7 mA cm−2 per layer, this
stackable electrode material outperformed previous 3D electrode
structures.

Due to limited lab capacities, most authors (including our-
selves) focus their experimental studies on relatively short time
spans, i.e., over a few weeks (or a few semibatch cycles) of biofilm
operation. In this study, we investigated the behavior of biofilm
electrodes during a prolonged experimental period. The following
questions were studied in detail: Will a primary biofilm increase
its performance to eventually reach the current densities of a sec-
ondary biofilm after a longer period of time? Here, contradicting
results of previous studies show, depending on the experimen-
tal conditions, either leveling effects (Santoro et al., 2012) or a
sustained performance gain (Soussan et al., 2013).
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Furthermore, the question will be addressed if 3D electrodes
such as corrugated carbon sustain their high performance during
long-term applications, or if a continuous biofilm growth will lead
to clogging of the macrostructures, i.e., channels, layers, and will
therefore decrease the performance of the 3D electrode materials.
Thereby, in this study, we will focus on a purely electrochemi-
cal approach. A detailed biological investigation is currently in
progress.

MATERIALS AND METHODS
ELECTROCHEMICAL SETUP AND CONDITIONS
All chemicals used in this study were purchased from Sigma
Aldrich or Roth and were of analytical grade. All measurements
(including biofilm growth) were performed under strictly anaer-
obic conditions at a temperature of 35°C. The electrochemical
measurements were carried out in a half cell setup under poten-
tiostatic control (VMP2 or MPG 2, BioLogic, France). Five-necked
round-bottom flasks (250 mL) were used as electrochemical cells,
containing a working electrode, a counter electrode (graphite rod,
CP Graphite GmbH, Germany), and a Ag/AgCl (sat. KCl, 0.197 V

vs. SHE) reference electrode (Sensortechnik Meinsberg GmbH,
Germany) in a conventional three-electrode arrangement. For the
sake of an easier handling in the long-term experiments, we did
not shield the counter electrode from the bacterial solution by
means of an ion exchange membrane. However, we performed ref-
erence measurements with shielded counter electrodes to exclude
the potential impact of hydrogen, formed in the counter elec-
trode reaction. The flasks were sealed with silicone stoppers and
Parafilm® strips in order to assure anaerobic conditions.

The working electrodes were composed of LCC (Chen et al.,
2012b), each consisting of three corrugate layers (see Figure 2).
The projected surface area was in the range of 4–5 cm2 (for a pre-
cise overview, see Table 1). The electrode performance was studied
at a constant applied potential (chronoamperometry, CA) of 0.2 V.

All electrode potentials in this article refer to the silver/silver
chloride reference electrode.

ELECTRODE PREPARATION
The corrugated cardboard material was recycling paper based
and was sampled from the cardboard packaging of a BioLogic

FIGURE 1 | Schematic illustration of the electrochemical cultivation of primary and subsequent secondary electroactive biofilms.

FIGURE 2 | Schematic illustration of the electrode preparation starting
from the raw cardboard material (left), via carbonization (middle) to the
mounted electrode (right). The electrodes used in the experiments (right)

consisted of a graphite current collector (the back and the sides being isolated
with epoxy glue), stainless steel wire (covered with a silicone tube), and the
layered corrugated carbon material.

Table 1 | Summary of the geometric dimensions and the performance data of the LCC electrodes used for primary and secondary biofilm

experiments.

Length (cm) Width (cm) Height (cm) i max (ø) (mA) j max, proj. (ø) (mA cm−2) j max, volum. (ø)a (mA cm−3)

Primary BF 1 2.48 1.62 0.95 6.4±0.4 1.6±0.1 1.7±0.1

Primary BF 2 2.60 1.80 0.96 20.1±0.0 4.3±0.0 4.5±0.0

Secondary BF 1 2.53 1.64 0.99 23.2±3.7 5.6±0.9 5.7±0.9

Secondary BF 2 2.61 1.98 0.98 37.2±0.5 7.2±0.1 7.3±0.1

aThe volumetric current density refers to the volume of the corrugate carbon electrode, calculated from the dimensions provided in this table.
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potentiostat. It already consisted of three flute layers (flute height
of first layer 2.4 mm, and second and third 3.0 mm). The material
was carbonized at a temperature of 800°C in a batch type furnace
(N 11/H, Nabertherm, Germany) with an integrated gas chamber.
For this purpose, the head space of the gas chamber was purged
with nitrogen for 30 min at room temperature prior to carboniza-
tion. After that, the temperature was quickly increased up to the
final carbonization temperature (still under nitrogen atmosphere),
which was held for at least 2 h.

After carbonization, the corrugated carbon was glued onto
a graphite plate (polycrystalline graphite, 5 mm thickness, CP
graphite), serving as current collector. To produce a conduc-
tive glue, a two-component epoxy resin (“5 min Epoxy”, R & G
Faserverbundwerkstoffe, Germany) was mixed with graphite fibers
(Toolcraft, Germany). The glue was processed within 5 min and
was allowed to fully harden overnight. The total internal resistance
of the electrodes was less than 10 Ω.

CULTIVATION MEDIUM AND INOCULUM
This study is based on the use of “artificial wastewater,” con-
sisting of 10 mM acetate as the carbon source and a standard
cultivation medium as reported by Kim et al. (2005). It contained
NH4Cl (0.31 gL−1), KCl (0.13 g L−1), NaH2PO4·H2O (2.69 g L−1),
Na2HPO4 (4.33 g L−1), trace metal (12.5 mL L−1), and vitamin
(12.5 mL L−1) solutions (Balch et al., 1979).

Real wastewater, i.e., effluent after pre-treatment (EAPT) taken
from the wastewater treatment plant (WWTP) Steinhof (Braun-
schweig, Germany), served as the microbial source/inoculum.

CULTIVATION OF PRIMARY AND SECONDARY ELECTROACTIVE
BIOFILMS
To ensure anaerobic conditions, the cultivation medium was
purged with nitrogen for at least 20 min before inoculation. For
primary biofilm growth, 10 mL of inoculum was added to 190 mL
artificial wastewater to yield a total volume of 200 mL. After purg-
ing with nitrogen for 20 min, the cell was operated at a constant
temperature of 35°C, with a constant working electrode potential
of 0.2 V. The biofilm growth was monitored by measuring the cur-
rent resulting from bioelectrocatalytic acetate oxidation. At least 25
batch cycles were performed, changing the whole substrate solu-
tion after a complete substrate consumption (indicated by zero
current). Addition of microbial inoculum was limited to the first
three cycles.

The method for the secondary biofilm cultivation was identi-
cal with that for primary biofilms, except for the used bacterial
source. For secondary biofilm cultivation, primary electroactive
biofilms (5 mL suspension of primary biofilm per 200 mL sub-
strate solution) served as the bacterial inocula (the blue path
shown in Figure 1). Primary biofilms grown on graphite rods
(CP Graphite GmbH, Germany) were scratched off with a sterile
spatula into a falcon tube filled with 5 mL buffer solution and dis-
persed with a vortex mixer (Vortex Genie 2, Scientific Industries,
NY, USA) for 2 min. Afterward, these suspensions were used as
inocula for fresh media solutions.

All experiments were carried out in duplicates.

FIGURE 3 | Current generation of a primary (black) and a secondary
(red) biofilm at LCC electrodes during the first three semibatches after
inoculation. The applied potential was 0.2V, the temperature was 35°C.

FIGURE 4 | An example showing the comparison of the cycle duration
of a primary (black) and secondary biofilm (red). The amount of charge
transferred during the bioelectrocatalytic substrate oxidation is indicated by
the curves’ areas.

RESULTS AND DISCUSSION
BIOFILM CULTIVATION
Figure 3 illustrates the electrocatalytic activity of a primary and a
secondary biofilm at a layered corrugate carbon during the initial
three semibatch cycles after inoculation of the system. The current
is gained from the complete electrocatalytic oxidation of acetate
by the electroactive biofilms (as shown in Eq. 1).

CH3COO− + 2H2O→ 2CO2 + 7H+ + 8e− (1)

After reaching the stationary phase of the biofilm growth, a
steady maximum current density level of 3.9 mA cm−2 is achieved
for primary biofilm and 8.3 mA cm−2 for secondary biofilm.
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A

B

FIGURE 5 | Maximum peak current density (A) and Coulombic
efficiency (B) data from long-term experiments generated by primary
(black) and secondary biofilms (red). The data shown represents the
arithmetic mean of two duplicates. The error bars indicate the standard
deviation.

The average current densities for the entire study are presented
in Table 1. With 89.6± 3.2% (primary biofilm electrodes) and
88.3± 7.3% (secondary biofilm electrodes), the Coulomb effi-
ciency (CE) for both biofilm generations was virtually identical.
The data is in accordance with previous publications illustrat-
ing the doubling of the performance from primary to secondary
biofilm (Liu et al., 2008).

Beside the high performance of secondary biofilms, their
growth seems to be considerably faster than that of primary
biofilms. As can be seen in Figure 3 the primary biofilm forma-
tion shows a lag phase of about 4 days. This time is required for
the adaptation and the selection of electroactive bacteria from the
original bacterial source (wastewater). After this lag phase, a con-
stant current production can be observed in the following batch
cycles. In contrast, secondary biofilm formation commences at a
significantly reduced lag phase about 1 day. The reasons for the

FIGURE 6 | 40 batch cycles (160 days) of a continuously monitored
secondary biofilm experiment. The applied potential was 0.2V, the
temperature was 35°C.

short lag time of the secondary biofilm formation as opposed to
the primary biofilm formation are not fully understood. Yet, one
explanation is the different abundance of electrochemically active
bacteria in the different inocula. As shown in our group’s previ-
ous paper (Harnisch et al., 2011) for the example of acetate grown
biofilms, Geobacter spec. are the clearly predominant species in
the electroactive biofilms, although in the primary inoculum they
are below detection limit for the used analytical method, flow
cytometry. Second, it can be speculated that in wastewater bacte-
ria like Geobacter are not adapted to extracellular electron transfer
but rather utilize dissolved electron acceptors. This requires an
adaptation toward electrode respiration. Once adapted, any col-
onization of a new electrode may proceed rapidly. Thus, using
primary biofilm biomass as inoculum is much more efficient than
using wastewater.

Due to the high performance (twice as high current den-
sity) of secondary biofilms in comparison to primary biofilms,
the time necessary for complete substrate conversion decreases
significantly. This becomes visible in the decreased duration of
the individual batch cycles at identical gained electric charge
(Figure 4). This performance gain would lead to a significant
reduction in the required hydraulic retention time (HRT) of a
bioelectrochemical reactor, which is an important parameter for
a technical process. In this case, a reduction of HRT by 33% was
achieved.

Compared to our previous study (Chen et al., 2012b), the over-
all current densities (Table 1) in this study are significantly lower.
This can be attributed to the lowered substrate concentration
(10 mM, instead of 20 mM in our previous study), which we chose
to better reflect the soluble COD fraction found in real waste-
waters. Further, the electrode size in this study is larger than in the
previous study (projected. surface areas of 4–5 cm2 vs. 1 cm2), at
the same batch reactor volume. Combined with the lower initial
substrate level, the faster substrate consumption does not allow
significantly higher current densities.
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FIGURE 7 | Digital photographs of primary (A) and secondary biofilms (B) grown on LCC electrodes for at least 25 batch cycles.

LONG-TERM STUDIES
The major intent of this study was to explore the effect of the
biofilm-generation on the produced current over a period of at
least 25 batch cycles (primary biofilm≈ 75 days, secondary biofilm
≈ 50 days). Since it is known that secondary biofilms generally
produce higher current densities than primary biofilms (Rabaey
et al., 2003; Kim et al., 2005; Liu et al., 2008), the question was if
the difference in performance would sustain in the long term, or
if the performance of primary biofilms would slowly increase to
finally reach the performance of secondary biofilms.

The second question concerns LCC as a high-performance 3D
electrode material. LCC electrodes outperformed previous elec-
trode systems but is the performance sustainable over a longer
period of operation?

Figure 5A shows the average maximum current density for two
duplicates during 25 cycles of operation of primary and secondary
biofilms and the corresponding Coulomb efficiencies (Figure 5B).

The performance of the secondary biofilms (Figure 5, red trace)
was – in average – at least two times higher than that of the pri-
mary biofilms (black trace). Even after the presented time segment,
no significant increase in current production was observed for
primary biofilms. On the other hand, even after 40 cycles, the
performance of the secondary biofilms decreased only slightly,
after about 100 days of operation (Figure 6). This decrease may be
attributed to the fact that after the initial inoculation, the system
was fed with sterile substrate solution, which may lead to a slow
genetic deterioration of the electroactive bacteria biofilm. Under
non-sterile conditions in a MFC, e.g., treating real wastewater,
where the biofilm is in steady contact with wastewater bacte-
ria would promote self-regeneration and therefore improve the
long-term stability.

Over the entire experimental period, the CE of both biofilms
is in the order of about 90% on average. This situation can be
explained by the fact that in the used artificial wastewater (with
acetate as the substrate), there are no competing (scavenging)
biological processes that may lower the CE.

Although accidental oxygen intrusion occurred in one of the
secondary biofilm experiments during cycle 11 (depicted by the
temporary current decrease between cycle 11 and 13 in Figure 5),
the performance recovered to its previous level.

It is also noteworthy that the carbonized cardboard material
was mechanically stable under the chosen experimental condi-
tions. Further, the electrode channels did not clog due to biomass
accumulation (see Figure 7). After at least 25 batch cycles, the
secondary biofilms (Figure 7B) were denser than the primary
biofilms (Figure 7A); however, in both cases, the channels of the
LCC electrode were clearly not blocked.

CONCLUSION
In this study, we have investigated the performance of primary and
secondary electroactive biofilms grown on LCC electrodes. The
study illustrates that corrugated layered carbon allows a sustained
long-term performance without significant decrease in electrode
performance. Furthermore, the study showed that the bioelectro-
catalytic activity of secondary biofilms is about two times higher
than of primary biofilms. This performance ratio is still sustain-
able after a long-time span, indicating a high stability of the
biofilm properties after the initial biofilm formation. The bio-
logical background of the long-lasting performance increase of
secondary biofilms has to be clarified in a respective biologic
study.
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