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The cross-link reaction via sulfone bridges of sulfonated polyether ether ketone (SPEEK) by
thermal treatment at 180°C in presence of dimethylsulfoxide is discussed. The modifica-
tions of properties subsequent to the cross-linking are presented.The mechanical strength
as well as the hydrolytic stability increased with the thermal treatment time, i.e., with the
degree of cross-linking. The proton conductivity was determined as function of tempera-
ture, IEC, degree of cross-linking, and hydration number. The memory effect, which is the
membrane ability to “remember” the water uptake reached at high temperature also at
lower temperature, is exploited in order to achieve high values of conductivity. Membranes
swelled at 110°C can reach a conductivity of 0.14 S/cm at 80°C with a hydration number
(λ) of 73.
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INTRODUCTION
To work properly in electrochemical devices such as polymer
electrolyte membrane fuel cells (PEMFCs), ionomer membranes
must satisfy a whole list of requirements. The materials challenges
include high ionic conductivity and long lifetime, high chemical
and mechanical stability, low permeability, and low cost (Linkous
et al., 1998; Devanathan, 2008; Peighambardoust et al., 2010; Bose
et al., 2011; Chandan et al., 2013).

Sulfonated aromatic polymers (SAP) are proton-conducting
solid electrolytes that can meet many of these properties, espe-
cially in terms of good thermal stability, appropriate mechanical
strength, high proton conductivity, and they are inexpensive (Astill
et al., 2009; Iulianelli and Basile, 2012; Yee et al., 2012; Zuo et al.,
2012; Di Vona and Knauth, 2013). The conductivity of these
ionomers is water assisted: the higher is the content of water inside
the membrane, the higher is the proton transport (Kreuer, 2000;
Paddison and Paul, 2002; Di Vona et al., 2013). Unfortunately, a too
high water uptake (WU) causes a degradation of mechanical prop-
erties and the failure of the device (Iojoiu et al., 2005; Collier et al.,
2006; Borup et al., 2007; Paik et al., 2009; Takamuku and Jannasch,
2012). Different solutions were explored in the last years: compos-
ite membranes, hybrid polymers, co-block polymer membranes,
cross-linked polymers (Ghassemi et al., 2004; Hickner et al., 2004;
Alberti et al., 2007; Su et al., 2007; Premchand et al., 2008; Di Vona
et al., 2011; Subianto et al., 2013). The presence of cross-links (XL),
especially by covalent bonds, induces some changes in the physico-
chemical properties, such as good chemical and solvent resistance,
low fuel permeability, a high dimensional stability and an excel-
lent mechanical strength and it makes polymers more resistant to

harsh environment (Kerres, 2005; Mikhailenko et al., 2006; Zhong
et al., 2007; Feng et al., 2009; Han et al., 2010; Hou et al., 2012a).
The extent of the effect depends mainly on the XL degree (DXL)
or density. Recently, Di Vona et al. (Di Vona et al., 2009; Knauth
et al., 2013) showed that an annealing treatment performed on
cast SAP affords cross-linked membranes via sulfone bridges.

Among the various hydrocarbon polymers, polyether ether
ketone (PEEK) based membranes are well known (Xing et al., 2004;
Jiang et al., 2005; Fathima et al., 2007) due to their good thermal
stability, appropriate mechanical strength, and when sulfonated,
good proton conductivity, which increases with the degree of sul-
fonation (DS). However, these aromatic polymer electrolytes with
high IEC, which show high proton conductivity, have the problem
of weak mechanical behavior due to some water solubility, and
this is one of the main obstacles for application in PEMFCs (Dyck
et al., 2002; Roziere and Jones, 2003; Karlsson and Jannasch, 2005;
Parcero et al., 2006; Di Vona et al., 2010).

This paper presents the advantages of thermally treated mem-
branes based on sulfonated polyether ether ketone (SPEEK) in
terms of hydrolytic stability and mechanical properties.

EXPERIMENTAL
Polyether ether ketone (Victrex 450P, M = 38300, and Goodfellow
EK306010, abbreviated in the following SPEEK GF), was sul-
fonated following the procedure already reported (Kim et al., 2013;
Maranesi et al., 2013). Depending on the reaction time, sulfonated
PEEK (SPEEK) was obtained with different DS in the range 0.75–1.
The DS was evaluated by titration and NMR analysis (Mikhailenko
et al., 2000).
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PREPARATION OF MEMBRANES
The polymers were dissolved in dimethylsulfoxide (DMSO) at 80–
90°C. The ratio polymer/DMSO was about 1:10 (mg/mL). After
evaporation to around 1/3 of the original volume, the solution was
spread on a glass plate, using a doctor-blade type equipment, and
then put in the oven for the casting treatment at 120°C for 24 h.
After the casting, membranes were stored at ambient humidity and
peeled off (called in the following “first treatment”).

Second treatment
Some membranes were placed on a Teflon substrate for the sec-
ond treatment. The membranes were put in the oven at 180°C for
a time in the range 2–33 h (180/h) depending on the desired cross-
linking degree (DXL). After the preparation, the membranes were
immersed at room temperature in a solution of H2O2 3% for 1 h,
then in H2SO4 5 M for 1 h, and washed with water.

CHARACTERIZATION OF SPEEK MEMBRANES
Ion exchange capacity measurements
Ion exchange capacity (IEC in milliequivalent/gram) was mea-
sured as reported previously (Di Vona et al., 2009). In order
to eliminate DMSO and its decomposition products, which can
affect IEC, membranes were swelled in water at 100°C for 5 h. This
procedure was insufficient to remove by-products; therefore, after
swelling in water at 100°C for 5 h, the samples were treated with
H2SO4 5 M at room temperature for 2 h and then washed until
neutral pH before the titration.

Water uptake
Samples dried over P2O5 for 3 days were weighed (mdry) and were
then immersed 24 h in liquid water in a closed Teflon vessel at a
constant temperature. After the immersion, the membranes were
equilibrated at 25°C for 24 h. The excess of water was carefully
wiped off and the membrane mass was determined (mwet):

WU =
(
mwet −mdry

)
/mdry (1)

The hydration number was calculated as:

λ =
n (H2O)

n (SO3H)
=

WU × 1000

IEC×M(H2O)
(2)

The uncertainty is about 0.5.

Mechanical properties
The stress–strain properties were investigated using an ADAMEL
Lhomargy DY30 test machine at room temperature at a constant
crosshead speed of 5 mm min-1 with aluminum sample holders.
The clamping pressure was determined according to a preliminary
tensile stress–strain test; it was about 40% of the apparent elasticity
limit, corresponding to the linear part of the tensile curve.

Prior to the measurements, the polymer samples were stabilized
at ambient temperature and humidity, which was (50± 10)% RH.
The measurement time was below 5 min (Sgreccia et al., 2010).

Dynamic mechanical analysis (DMA) was performed from 30
to 250°C in air on a DMA 2980 dynamic analyzer (TA Instru-
ments). Measurements were operated in air at a fixed frequency

of 1 Hz with 0.05 N initial static force and oscillation amplitude of
10 µm. This last value was chosen to keep the linear viscoelastic
response of samples during experiments. The storage (E ′) and loss
modulus (E ′′) spectra vs. temperature were obtained at 3 K/min
between 30 and 250°C. DMA analysis allows deriving the glass
transition temperature of the samples treated for different times
at 180°C (Sgreccia et al., 2008).

Proton conductivity
The proton conductivity was measured by impedance spec-
troscopy (EG&G 6310 and Solartron 1260) in through-plane
two-point configuration. The amplitude of the applied voltage was
20 mV and the frequency range was between 10 Hz and 1 MHz.

The measurements at full humidification were made in a
Swagelok cell in presence of liquid water. Before the conductivity
measurements, the membranes were immersed in water for 24 h
at a fixed temperature (Di Vona et al., 2013). The conductivity
measurements as function of temperature between 80 and 140°C
or relative humidity (RH= 30–95%) were done in a home-made
apparatus (Donnadio et al., 2012).

RESULTS AND DISCUSSION
The cross-linking reaction occurs during the treatment process
directly in situ on membranes cast from DMSO. The study
of the mechanism (Maranesi et al., 2013) led to the following
conclusions:

(a) Membranes cast from dimethylacetamide, N -methyl-2-
pyrrolidone, acetone, and acetone/water did not undergo XL,
while DMSO was essential to achieve the reaction.

(b) The combination of elemental analysis and FT-IR spec-
troscopy demonstrated that sulfone linkages, which form by
transformation of sulfonic acid groups, were responsible for
covalent cross-linking.

(c) The NMR analysis of the by-products showed that DMSO pro-
motes the formation of the electrophilic−SO2

+ intermediate
either through the formation of a direct interaction with the
solvent or by the formation of an anhydride moiety (Maranesi
et al., 2013).

(d) A two-step thermal treatment was necessary for a success-
ful XL process; the first step is an evaporation treatment that
leaves the “optimal” quantity of residual DMSO inside the
membrane. The second step is the effective treatment that
allows running the XL reaction in the presence of a suitable
amount of residual DMSO (Maranesi et al., 2013).

(e) The temperature selected for the second treatment was 180°C
to achieve relatively short times. When the reaction was carried
out at 160°C, a sufficiently large amount of XL is obtained only
for times around 64 h, while a temperature higher than 180°C
can lead to desulfonation reactions. Therefore, it is important
to find the best compromise between time and temperature
of treatment in order to facilitate the industrial scale-up.

Figure 1 shows the XL reaction. Table 1 reports the residue quan-
tity of DMSO in the membrane after the treatment. A quantity
around 5% at the beginning of the process is sufficient to achieve
reticulated products; the DMSO percentage decreased,as expected,
with the second treatment time.
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DMSO, ∆�

FIGURE 1 | Cross-link reaction for SPEEK (color code: gray C, yellow S, red O).

Table 1 | Memory effect and mechanical properties (E, elastic modulus, UTS, ultimate tensile strength,YS, yield stress) for various membranes

in acid form.

SPEEK DXL% λ λ (memory effect) E/MPa UTS/MPa YS/MPa Tg/°C DMSO/wt%b

First treatment 0 33 (25°C);∞ (100°C) – 850±60 32±1 20±2 180 5.5

180°C, 3 h 8 12 (25°C); 37 (100°C) 37 (25°C) 1160±50 41±2 30±2 193 5.0

180°C, 10 h 22 5 (25°C); 24 (100°C) 24 (25°C) 1300±100 43±8 35±5 239 1.5

180°C, 24 h 35 3 (25°C); 16 (100°C) 16 (25°C) 1450±50 59±2 45±2 >250 1.3

SPEEK GF

180°C, 8 h 26 73 (110°C) – 690±10 40±2 20±2 a a

aNot measured.
bDetermined by thermogravimetric analysis.

Implications on WU and thermal stability, which both depend
on the degree of cross-linking, are of particular importance
for the development of high performance proton-conducting
membranes. Different DXL can be obtained varying the second
treatment time. Figure 2 shows the behavior of WU as a function
of DXL expressed as:

DXL =(IECinit − IECfin)/IECinit (3)

for a SPEEK sample with initial IECinit= 2.5 meq/g treated at
120/24–180/h. In Table 1, the corresponding times of treatment at
180°C are reported.

For this sample, the WU reaches a value around 50% after a
time of treatment of 14 h with a final IECfin= 1.9 meq/g. A WU
≤50% for SAP membranes is a very significant improvement and
it is important to note that the WU can be modulated very simply
by varying the time.

Another important consequence of the formation of XL is the
presence of a “memory effect”: the membrane ability to “remem-
ber” the WU reached at high temperature also at lower temper-
ature. As shown in Table 1 for a sample with DXL= 0.22, the λ

value is 24 after swelling in water for 24 h at 100°C, and this value
remains identical when the membrane is hydrated at 25°C. How-
ever, in order to use the memory effect in practice, one must take
care that the membrane is able to support a treatment in water
at high temperature without dissolving under these conditions. A
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FIGURE 2 | WU (%) after immersion in water at 100°C for 24 h as a
function of DXL for a SPEEK sample with an initial IEC = 2.5 meq/g. In
parenthesis, the time of the second treatment at 180°C is shown.

cross-link treatment is therefore mandatory before the memory
effect can be used efficiently.

Table 1 shows mechanical properties for SPEEK samples
with different DXL. In general, Young’s modulus (E, stiffness)
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Table 2 | SPEEK samples treated for 7 and 9 h at 180°C before and after

swelling in water at 25°C for 24 h.

Sample E (MPa) σMax (MPa) εBreak (%)

180°C 7 h 1270±20 43.5±0.5 103±3

180°C 7 h swelling H2O 280±60 9.8±0.5 98±10

180°C 9 h 1290±10 51±4 76±55

180°C 9 h swelling H2O 280±20 12.8±0.1 91±1

characterizes the elastic domain of polymers, where weak inter-
chain bonds are observed at the microscopic scale; it can be
related to fundamental bond properties. Stiffness explores essen-
tially weak bonds (low displacements) like: (a) Van der Waals
bonds (change of distance between chains and of dipole-dipole
interactions); (b) defects, such as entanglements; (c) the presence
of solvents, such as water and DMSO.

Yield stress (YS) and tensile strength (TS) are instead related
to strong bonds, including covalent cross-links between macro-
molecular chains, and are macroscopic scale properties. TS and YS
explore large displacements (plasticity).

Table 2 shows the influence of the swelling in water for two sam-
ples. The effect of water that acts as plasticizer is evident with a
distinct lowering of the mechanical properties. Water and DMSO,
which are high dielectric constant solvents, act as plasticizer by
reducing Van der Waals and ionic bond strength. The osmotic
pressure of the acidic solutions is opposed by the stiffness of the
polymers (Knauth et al., 2014).

From the mechanical measurements, it is evident that the
thermal treatment enhances significantly the mechanical prop-
erties of the membranes: the elastic modulus, ultimate TS, and
YS all increase significantly by XL. If we assume that mechani-
cal degradation of membranes is related to the existence of plastic
deformation during fuel cell operation, it is clear that the enhance-
ment of mechanical properties is of major importance for the
improvement of membrane durability inside the fuel cell. It should
also influence significantly the WU behavior in various relative
humidity, and the membrane swelling at high RH.

The effect of the casting direction on membranes was also
investigated. The measurements were made cutting the sample
longitudinal or traversal to the direction of casting. It is possible
to observe from Figure 3A a clear enhancement of TS and elastic
modulus in longitudinal direction only after covalent cross-linking
of chains.

The mechanical properties also depend on the membrane
thickness. Thinner samples have higher E and UTS (Figure 3B),
probably because the sliding of macromolecular chains is less easy.

The effect of regeneration after the second treatment of mem-
branes in 5 M H2SO4 is evident in Figure 4. The elongation at
break is considerably increased. The removal of ionic cross-links,
probably by Ca2+ ions, by treatment in acidic media leads to a
lower interaction between chains increasing the plasticity.

Typical dynamic mechanical analysis curves are shown in
Figure 5. The left curve shows the storage modulus E ′, which
describes the elastic response of the polymer and should, in the
ideal case, be equal to the elastic modulus. The right curve shows
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FIGURE 3 | (A) Effect of the casting direction (longitudinal or transversal)
and (B) effect of thickness (micrometer) on stress-strain curves of SPEEK
membranes are shown.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

σ
 
(
Ν

/
m

m
2
)

ε (%)

regenerated

not regenerated 

FIGURE 4 | Regeneration in 5 M H2SO4 for a SPEEK sample treated for
16 h at 180°C is shown.

the phase angle (tan δ), which is defined as ratio of the loss modu-
lus (related to the viscous response of the polymer) to the storage
modulus. The phase angle is very sensitive to phase transitions,
and especially to the glass transition of the polymer Tg (Hou et al.,
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FIGURE 5 | Dynamic mechanical analysis of SPEEK membranes is shown. Left: storage modulus vs. temperature, right: phase angle (tan δ) vs.
temperature.

Table 3 | Conductivity values at 140°C and RH 90% for SPEEK samples

with different DXL.

SPEEK IEC (meq/g) DXL σ (S/cm)

1.8 0.2 0.061

1.5 0.4 0.033

1.5 0 0.025

2012b). One can notice a good overall agreement of elastic and
storage moduli, which increase with treating time. The glass tran-
sition temperature increases clearly with the cross-linking time
from about 180°C to over 250°C; this is correlated to a reduction
of symmetry due to XL bonds.

Table 3 shows the conductivity values at 140°C and RH= 90%
for SPEEK samples with different treatment times; the values were
checked over several weeks with consistent results. Although the
IEC is relatively low, the conductivity is good and stable with time.
Interesting is the comparison with a sample with the same IEC
value, but without cross-linking. The conductivity is lower, prob-
ably the presence of the sulfone bridges straighten the pathways
for conduction (Di Vona et al., 2013) and increase therefore the
proton mobility.

To exploit the memory effect, membranes were swelled at
high temperature (140°C) and then the conductivity was mea-
sured at 120°C as a function of the relativity humidity. For a
sample with initial DS= 1 and treated 120/24–180/16, the con-
ductivity at 30% RH increases by a factor 4 (from 3.2× 10−5 to
1.4× 10−4 S/cm) when the membranes were swelled at high tem-
perature. Although the conductivity remains relatively low, this
could be a method to improve the performances at low humid-
ity. Correlated to the memory effect are the data presented in
Table 4 for SPEEK GF. The values of conductivity are high and
increase when the content of water in the membranes increases

Table 4 | Conductivity data in full humidify condition for SPEEK GF,

treated at 180°C/8 h with a final IEC of 1.96 meq/g (DXL = 26) swelled

at 100 and 110°C before measurements.

SPEEK GF λ (25°C) σ (S/cm)

Swelled 100°C 54 25°C=5.8×10−2

40°C=6.5×10−2

60°C=7.3×10−2

80°C=7.9×10−2

Swelled 110°C 73 25°C=9.3×10−2

40°C=1.1×10−1

60°C=1.3×10−1

80°C=1.4×10−1

by the effect of temperature. In a previous paper, we predicted the
proton conductivity that can be obtained for a certain hydration
level (Di Vona et al., 2013). For example, in order to obtain con-
ductivity above 10−2 S/cm at 25°C, a hydration number above 35
was foreseen. The data reported in Table 4 confirm this point.
The proton conductivity of XL-SPEEK can be then enhanced
by hydrating the cross-linked membranes at high temperature,
under conditions that uncross-linked SPEEK does not support,
achieving good electrical properties, compatible with fuel cell
requirements.

CONCLUSION
In this work, an overview of properties of cross-linked SPEEK is
presented. The XL process is an electrophilic aromatic substitution
reaction by sulfonium ions that occurs during heat treatments at
180°C in presence of small quantities of DMSO. Different proper-
ties of various cross-linked SPEEK membranes were determined.
The cross-linked membranes present an improved hydrother-
mal stability and good mechanical properties that depend on the
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degree of cross-linking. Very interesting is the memory effect that
can be exploited to achieve high values of proton conductivity also
at low temperature. The modification of properties subsequent to
cross-linking is of utmost importance for membrane development
used in various electrochemical techniques, such as fuel cells.
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