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Energy models play an increasing role in the ongoing energy transition processes either
as tools for forecasting potential developments or for assessments of policy and market
design options. In recent years, these models have increased in scope and scale and
provide a reasonable representation of the energy supply side, technological aspects
and general macroeconomic interactions. However, the representation of the demand
side and consumer behavior has remained rather simplistic. The objective of this paper is
twofold. First, we review existing large-scale energy model approaches, namely bottom-
up and top-down models, with respect to their demand-side representation. Second, we
identify gaps in existing approaches and draft potential pathways to account for a more
detailed demand-side and behavior representation in energy modeling.
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Introduction

Reducing energy demand, or at least its growth, is one of the central objectives in the transition
processes in many national and international energy markets. For example, the European vision
of a low-carbon economy identifies energy efficiency as a key driver of the transition (European
Commission, 2014), the Swiss Energy Strategy 2050 aims for a significant reduction of per capita
energy consumption of 54% by 2050 (SFOE, 2012), and the IEA’s World Energy Outlook considers
a reduction in energy consumption as one of the main measures to achieve a significant reduction
in CO2 emissions (IEA, 2014a).

Despite this importance of the energy demand side, there still exist significant knowledge gaps as
to what factors determine energy demand and how it can be influenced. Besides descriptive statistics
on specific energy consumption patterns and profiles and the technological linkage between service
demand and energy needs (for example, different options to satisfy transport or heating demand),
little is known about the underlying decision and behavioral processes. The fact that consumers
seldom demand energy in itself but services and products which require energy for their provision
links this challenge to a general understanding of consumption decision processes.

The energy demand aspects extend into the modeling dimension. In the last decades, energy
system and market modeling has gained an increasingly important role within the policy process;
i.e., forecasts based on models like the IEA World Energy Outlook using the World Energy Model
(IEA, 2014b) or the Energy Trends of the European Commission based on the PRIMES model
(European Commission, 2013) are important resources for economic and political decision makers.
Model-based scenarios also form the basis of energymarket processes like the network development
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planning in Germany and Switzerland (SFOE, 2013; NEP, 2014).
Finally, models are used for ex post policy evaluation and are,
apart from field experiments, the only way to gain knowledge
about the necessary intensity of policy interventions. The existing
energy system and market models were designed with a focus on
the different technology options on the supply and transport side
whereas demand was often assumed to be derived from exter-
nal drivers like GDP or following classic price and substitution
elasticities. Thus, they are limited in their capability to capture
important psychological or social elements and aspects beyond
the technology or price dimension.

The objective of this paper is to assess the role of the demand
side and consumer behavior within economic energy market
modeling, identify gaps in existing approaches, and design poten-
tial pathways to account for a more detailed demand side and
behavior representation in energy modeling. In Section “Review
on the Demand-Side Representation in Energy Market Models”,
we review existing model approaches for energy markets used for
policy design and evaluation with special focus on their demand-
side representation. Section “Energy Demand: Toward Richer
Models” provides concepts to extend the existing models to facil-
itate a more detailed description of energy demand. In Section
“Transferring New Approaches into Numerical Modeling”, we
discuss how these concepts can be used in numerical modeling
and Section “Conclusion” concludes.

Review on the Demand-Side
Representation in Energy Market Models

There exists a multitude of modeling approaches for energy-
related questions. Within this section, we focus on large-scale
models covering markets, sectors, or the whole energy system
and economy.1 Generally, those types of models can roughly be

1Small-scale analyses focusing on single processes or regional aspects, e.g., like
micro-grids or single building optimizations, can address detailed demand aspects
but naturally cannot capture general policy or market interactions.

clustered in two streams: bottom-up (BU) and top-down (TD)
models that are both able to address a specific range of relevant
drivers (Figure 1). The former cover techno-economic models
that provide a detailed representation of technical aspects of a
market or energy sectors, like conversion or transport specifi-
cations, as well as microeconomic market representations that
address the interaction of different market participants, like pro-
ducers, traders, and consumers within wholesale markets. The
latter cover macroeconomic models that are able to capture the
interaction among several sectors and overall welfare effects. A
related differentiation between the two clusterswould be the terms
“disaggregated” for BU models and “aggregated” for TD models
(Böhringer and Rutherford, 2009).

Usually, the strengths of one model cluster are the weaknesses
of the other. BU models allow a detailed representation of specific
market characteristics, the impact of policies on a sector, and the
costs and challenges of technological change. However, their focus
on a single sector or a set of (energy) sectors limits the possibility
to capture further cross-sectoral effects, the price driven influ-
ences are often limited to cost optimization, and they omit overall
economy impacts like employment, trade, and income effects.
Consequently for TD models the reverse is true (Herbst et al.,
2012).

Following Hourcade et al. (2006) energy models can be struc-
tured along three dimensions: the technological, microeconomic,
and macroeconomic detail. Generally, applied energy models are
tailored to capture a specific dimension and have to omit other
aspects. The first dimension represents the technological explic-
itness of a model including their ability to capture technological
restrictions and how policies affect technological developments.
The second refers to behavioral realism of the model including
the representation of consumer choice and the impact of market
structures on policy effectiveness. The third refers to macroeco-
nomic feedbacks linking energy supply and demand to the general
economic structure and development.

Bottom-up models typically rank high with respect to
technological details and allow the modeling of different

Technological

Detail

Microeconomic

Detail

Macroeconomic

Detail

Bo om-Up

Models

Top-Down

Models

Hybrid

Models

FIGURE 1 | Top-down and bottom-up model dimensions.
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technology developments. Similarly, they allow the inclusion
of microeconomic aspects like strategic company behavior
or game theoretic approaches. However, typically BU model
approaches that rank high on the microeconomic dimension
need to rely on mixed complementarity formulations. This
in turn limits the representation of technological details that
require mixed-integer formulations like unit commitment of
power plants. The opposite also holds. In contrast, TD models
capture the macroeconomic interactions of economies and are
based on the basic microeconomic rational of utility maximizing
agents but lack technological detail and typically also fall short
in addressing more detailed microeconomic behavior beyond
perfect competitive market interaction.

Theoretically, a hybrid model capturing all three dimensions
would provide the most structure for evaluating energy markets
(Hourcade et al., 2006), but potentially at the expense of model
focus and transparency of results. In recent years, research on
models breaching the gaps betweenTD andBUhas increasedwith
several approaches of hybrid modeling emerging. In the following
sections, we briefly present selected BU and TD models and
methods as well as hybrid and other model approaches focusing
on their representation of the energy demand side.

Bottom-Up Techno-Economic Models
Bottom-up models are characterized by their high degree of detail
on the technology side and their representation of market struc-
ture and market architecture aspects. They are basically disaggre-
gated representations of specific sectors or markets and therefore
have to omit the more general economic interactions. They can
be used both for short-term evaluations, like electricity market
dispatch analysis, and long-term simulations, like investment sce-
narios. However, BU models rely on a set of externally defined
parameters, which capture those economic aspects that are not
covered by the model-like economic growth and demand or fuel
prices of energy sectors. Defining these parameters is challenging,
in particular for long-term evaluations, but BU models are one of
the few options to simulate the impact of future conditions that
deviate considerably from historic or current market conditions.

Bottom-up models are typically formulated as optimiza-
tion problem or complementarity problem.2 Especially techno-
economic models that focus on supply and transport restrictions
or operational details often rely on linear optimization techniques.

The large-scale energy system models are the IEA
World Energy Model (IEA, 2014b), the PRIMES model
(E3MLab/ICCS, 2014), the POLES model (Enerdata, 2014), and
theMARKAL/TIMES family of models (ETSAP, 2014), which are
covering several regions and sectors in a partial equilibrium setup.
Typically, such large-scale energy systemmodels consist of several
modules or sub-models covering specific regions, sectors, or
value-chain elements, which are linked via iterative simulations.
Due to their long-term perspective, they capture investment

2Note that also TD models are formulated as complementarity problems. The
differentiation between the BU and TD complementarity problems is in their
coverage: while TD models are formulated as general equilibrium covering the
whole economy with capital and labor effects, BU models only capture a subset
of sectors or only a single sector and therefore are also termed partial equilibrium
models.

decisions but neglect short-term dynamics. In recent years, those
model families already started to breach the gaps between BU and
TD modeling by integrating more macroeconomic aspects into
their models.

Sectoral models focus on one specific fuel and the underlying
markets. Consequently, there exist a large number of different
models for the specific energy markets; for example, for electric-
ity markets, the ELMOD model (Leuthold et al., 2012) or the
DIMENSION model (Richter, 2011) for Europe and RFF’s Haiku
model for the US (Paul et al., 2009), the World Gas Model (Egging
et al., 2010) or the COLUMBUSmodel (Hecking and Panke, 2012)
for the global gasmarkets, the TREMOVEmodel for the transport
sector (Capros and Siskos, 2012), or residential stock models for
the building sector [see Kavgic et al. (2010) for a review], to name
a few. The focus on a specific market or sector enables those
models to capturemuchmore details, such as network restrictions
(e.g., pipeline or transmission line capacities), specific technol-
ogy restrictions (e.g., power plant start-up times), and detailed
regional and temporal resolutions (e.g., daily or seasonal demand
patterns), than the large-scale energy system models mentioned
above. Their specific model setup varies strongly and is often
tailored to the specific research question at hand; that is, short-
term technical questions, long-term investment aspects, ormarket
design and strategic interaction, and consequently includes linear,
non-linear, and equilibrium approaches.

In general, BU models are well suited to evaluate changes and
impacts on the supply and transport side of energy markets.
They can capture a wide range of different production restrictions
and facilitate a corresponding detailed evaluation of policies. But
their mathematical structure limits the representation of demand-
side behavior. There are roughly speaking two main types of BU
models with respect to price and demand-side representation,
both being widely applied:

First, techno-economic BU models designed as linear or linear
mixed-integer optimization problems. They are required to take
the demand side as a fixed input and thus cannot capture price or
budget feedbacks. Changes in the demand side can only be incor-
porated as shifts of the load level, for example, via a new hourly
demand profile, due to demand-side management technologies;
an increasing demand level, due to economic growth; or differ-
ent demand scenarios based on energy efficiency assumptions.
Furthermore, the linear structure leads to a classical cost optimal
result that corresponds to a perfect competitive market frame-
work, whereas imperfect competition cannot easily be captured
within this model framework.

Second, BU models designed as complementarity problems or
non-linear optimization problems incorporate demand-side func-
tionalities, typically a relation between demand and price. Non-
linear optimization problems can include welfare maximization
instead of a pure cost minimization as the objective. This captures
the price interaction but still keeps the models limited to perfect
competitive benchmark outcomes. In addition, BU models using
the equilibrium framework allow the representation of multi-
ple agents with individual optimization rationales and thereby
facilitate the simulation of strategic firm behavior, imperfect
competition, or the impact of structural changes. Similar to the
linear type BU models, the demand functionalities need to be
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externally defined, especially regarding the price elasticities. Con-
sequently, general economic interrelations, such as budget effects
or substitution-effects acrossmarkets, cannot be captured directly.
However, the endogenous price formation makes it possible to
cover direct price-quantity effects within the respective sector.

Top-Down CGE Models
Top-downmodels aim at representing the whole economy instead
of only energy sectors and thereby capture the feedback effects
across the economy. This modeling approach requires a high
degree of aggregation and cannot represent the same technolog-
ical detail as BU models. The most prominent macroeconomic
model approach in energy economics are computable general
equilibrium (CGE) models. Those models have a highly aggre-
gated representation of the energy system and the other sectors
of an economy. The equilibrium concept ensures that all modeled
markets clear (supply equals demand on each market), given
supply and demand characteristics. This equilibrium is obtained
by endogenous price adjustments following the microeconomic
rational of utility maximizing agents and profit maximizing firms.
However, the agents in CGE models are highly aggregated; most
often, a representative household is used. Due to their aggregation
level and equilibrium concept, CGE models are well suited for
long-term evaluations of changes in the policy or market frame
and not for short-term operational simulations.

Due to the high abstraction level of CGE models, the produc-
tion technology process is transferred into production functions
with constant elasticities of substitution (ESUB). The different
inputs and outputs are linked via nesting structures; that is, the
energy input into a production function is itself an aggregate
of different energy types, like electricity and fossil fuels that
can be substituted for each other. As these elasticities determine
the degree of substitution between inputs, they are thereby an
important driver of the effects of policy changes. To capture the
effect of technological change in the energy sector – basically
a shift of the production functions – exogenous shift parame-
ters are often used, like the autonomous energy efficiency index
(AEEI). The AEEI represents a price-independent energy effi-
ciency increase, which is sometimes used to carry out sensitivity
analyses.

The same logic is applied to the demand side of CGE mod-
els. Figure 2 shows an exemplary demand-side structure for

U�lity

Leisure Consump�on

σU

Energy Non-Energy Goods

σC

Electricity Oil Gas Coal

σE

FIGURE 2 | Exemplary nesting structure of energy specific demand
side.

a CGE model with detailed energy specifications. Demand is
derived from maximizing the utility function of a representative
household, given a budget restriction. Consumption and other
“goods,” such as leisure time, form the aggregated utility good.
Consumption itself is split into direct energy use and consump-
tion of other goods. The energy use in turn can be satisfied by
different fuels which can be substituted for each other given the
elasticity σE; that is, switching from oil to electricity for heating.
The energy needed for the other goods, the embedded energy, is
obtained by a similar structure on the production side. This allows
CGE models to capture indirect energy effects due to changes in
consumption.

There exist a large number ofCGEmodels that address different
economic aspects. Bergman (2005) provides a general introduc-
tion to CGE models and a review on different environmental-
and resource-related CGEmodels. Thosemodels can be (broadly)
clustered into global, multi-regional, and single-country CGEs.
Within the first group, examples are given by the MIT-EPPA
model (Paltsev et al., 2005) and the DICE and RICE model family
(Nordhaus, 2012). The GEM-E3 model of the European Commis-
sion (Capros et al., 2013), the related GEMINI-E3model (Bernard
and Vielle, 2008), and the PACE modeling framework (Böhringer
et al., 2009) are examples for energy-related multi-regional mod-
els. Finally, the GENESwIS for Switzerland (Vöhringer, 2012) and
the MIT U.S. Regional Energy Policy Model (Lanz and Rausch,
2011) are examples for single-country CGEs.

Top-down computable general equilibrium models are well
suited to capture price-based demand side effects across different
sectors via budget effects. This is particularly important for the
estimation of rebound effects that result from such indirect effects.
They also arewell suited for public finance evaluations of taxes and
other instruments. However, the underlying parameters for the
different ESUBs and the AEEI are typically based on estimates and
expert judgments (Bataille et al., 2006). This poses two challenges:
first, data and estimations on both ESUBs, and particular AEEI,
are incomplete, and second, estimates based on past and present
data do not necessarily have to be an accurate description of
future behavior making TD models less suited for the analysis of
extensive system shifts in comparison to BU models.

Hybrid Models and Other Model Approaches
Due to the limitations of both BU and TD approaches, researchers
are developing methods to merge both lines of models for policy
analyses. The resulting hybrid models can be clustered into three
categories (Böhringer and Rutherford, 2008): First, soft-linked
models, in which independent BU and TD models are linked
by passing data between the models or via direct convergence
mechanisms, as, for example, in Schäefer and Jacoby (2006), who
link the MIT-EPPA CGE model with the MARKAL model. This
approach faces the challenge of consistency of the disaggregated
and aggregated results; that is, the electricity generation of differ-
ent power plant types of a BU electricity model run need to match
the aggregated fuel consumption of the electricity sector in the TD
model. Second, a reduced form version of one model is incorpo-
rated into another model, as, for example, in Bosetti et al. (2006)
or Leimbach et al. (2009). Third, integrating technological details
directly via the mixed complementarity problem formulation of
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a CGE model, see, for example, Böhringer and Rutherford (2008,
2009).

From a demand perspective, hybrid approaches facilitate the
combination of detailed sectoral effects, like shifts in demand
profiles, with general macroeconomic feedbacks, such as indirect
rebound effects. This is of particular relevance for energy effi-
ciency evaluations. Furthermore, the potential to model higher
temporal resolutions in BU approaches makes it possible to com-
bine short- and long-term economic feedbacks. Nevertheless, the
demand representation is still limited to the above presented
characteristics and focused on quantity-price relations and/or
externally defined levels and trends.

In addition to CGE models and optimization and partial equi-
librium BU models, there are a number of additional model
approaches in energy economics [see Catenazzi (2009) andHerbst
et al. (2012)]. These include input–output models, system dynam-
ics approaches, and econometric models. The latter often include
multiple consumer groups [i.e., the E3ME model has 13 types
of household, Camecon (2014)]. But due to their reliance on
historic data, they are not well suited to analyze significant system
shifts. On the BU side, there are furthermore simulation models
and agent-based models. The former are often more technol-
ogy driven and can represent whole energy systems with great
detail; see, for example, the LEAP model (Heaps, 2012). The
latter results from a relatively new model approach in energy
economics [e.g., see Weidlich and Veit (2008) for a review of
electricity market related agent-based models]. Instead of a closed
mathematical market formulation, individual market participants
are modeled as agents with autonomous behavior that interact
with each other. Thismakes it possible tomodel different behavior
of the market participants and thereby capture choice related
aspects.

Summarizing the different existing energy model approaches,
we see that they are typically designed to capture supply side
related market aspects while demand-side aspects are much less
detailed. This is partly a result of the underlying computational
structure but also a result of the historic market development;
for a long time, electricity and natural gas systems were regulated
markets in which cost optimal energy supply was the main focus.
Furthermore, most of the recent energy-related developments
took place on the supply side, such as, the emergence of renewable
energy technologies.

It is thus not surprising that existing models typically lack
endogenous demand-side influences beside price-quantity rela-
tions. Furthermore, most models treat the demand side as an
aggregate with little detail on specific consumer aspects and
differentiated consumers.3

Despite these problems, existing models are well suited to ana-
lyze small, price-induced changes on the demand side as well
as the effects of pre-defined (scenario-based) changes to energy
consumption on markets and energy supply. However, with
an increasing focus on energy efficiency and the liberalization

3Note that especially energy system models often rely on different demand mod-
ules (e.g., one for transport demand, one for heating demand etc.) and com-
bine/aggregate detailed consumer information to derive those modules. Many
demand aspects are therefore part of the parameterization and not endogenous
model aspects.

of former monopolistic markets, the demand side will become
increasingly important: policies directly aimed at end users will
increase, companies will need to compete for consumers with
better products or services, and finally consumer will also become
active market participants providing their own energy supply
and storage potential as ‘prosumers’. In particular, it will be nec-
essary to develop models that capture consumer choices with
respect to energy provision and that can describe the rela-
tion between changes in individual behavior and demand-side
policies.

Energy Demand: Toward Richer Models

As discussed above, most applied economic models describe
energy demand as being a function of prices and income only.
From a theoretical perspective, this is warranted by the basic
microeconomic model of consumer choice, where an individual
maximizes her utility U(e, x) over a bundle of energy goods e and
other goods x subject to the condition that total expenditure does
not exceed income y for a given vector of energy prices z and other
prices p:

max
e,x≥0

U(e, x),

s.t. z e + p x ≤ y.

This results in a demand function for energy e= f (z, p, y).
Under conventional assumptions, demand for each energy good
is a decreasing function of this good’s price and an increasing or
a decreasing function of the prices of other goods, depending on
substitution possibilities. Typically, the above consumer is used
in the sense of a (descriptive) representative consumer, that is,
the consumer is used as an “average” of all consumers, so that
the characteristics of aggregate demand (over all consumers) are
identical to the characteristics of this consumer’s energy demand.
This approach forms the basis of most CGE models, whereas BU
models rely on further simplifications.

The above basic setup is useful to describe the response of
energy demand to price changes, in particular, the effects of
changes in energy markets or of some policy instruments, such
as energy taxation. In fact, numerous studies have assessed the
price responsiveness of demand for different energy goods, see,
for example, Filippini (2011) or Krishnamurthy and Kriström
(2015). Furthermore, it can be used to examine simple indirect
phenomena, like the above discussed rebound effects.

However, to assess other types of demand-side policies or
more general effects, the model lacks structure. A simple but
powerful extension is to consider heterogeneous consumers, for
example, groups of consumers that differ regarding their income
or preferences. Such an extension makes it possible to assess
the distributive impacts of energy policies. Furthermore, such a
model can be used to assess potential benefits of group-specific
interventions.

But even with this extension, the model does not capture many
effects that have been found to be relevant in field studies.4

4For a review of energy-related intervention studies, see, e.g., Abrahamse et al.
(2005).
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Most importantly, the above model assumes that consumers are
perfectly aware of all actions to reduce their energy consumption,
so that information-based policies are ineffective by definition,
and that there are no interactions among consumers, apart from
market interactions. Furthermore, preferences are considered as
being given and constant, so that there is no leeway for changes to
individual lifestyles that are not “forced” by changing conditions
(such as, prices or income).

In the next subsections, we will discuss how the above model
can be adjusted in simple ways to capture the potential relevance
of information, social interactions, and changing preferences.

Modeling the Influence of Information on Energy
Demand
To make room for potential effects of information-based
approaches to steer energy demand, a necessary assumption is that
consumers are not perfectly aware of all options for changing their
energy demand. For example, theymight not knowwhich energy-
efficient appliances exist, what quality and prices they have, and
where they can be bought. Thus, if they want to change their
behavior, they need to search for new solutions. There is a long
tradition of search models in economics, with applications mostly
to labor markets, explaining price dispersion, and innovation.
Chandra and Tappata (2011) use such a model to explain differ-
ences in gasoline prices among stations; Kortum (1997) as well as
Makri and Lane (2007) use a search model to explain how firms
find new technological solutions.

To transfer the main insights of these models to individual
energy demand, it is useful to assume that consumers need to
invest in appliances (some goods x, in our above notation) to
alter their ability of adjusting energy use e. However, they are not
aware of the properties of the relevant goods x and thus need to
spent time or money searching for an appliance that meets their
requirements. From a modeling perspective, we could assume
that consumers know a distribution of possible characteristics of
appliances, that is, they know which qualities, costs, usage charac-
teristics, and energy reductions are technically feasible. However,
without gathering information, they do not knowwhich appliance
has which properties.

Thus consumers can either buy an appliance without this infor-
mation or invest time (modeled via fixed opportunity costs S) to
ascertain the characteristics of one appliance (they randomly draw
an appliance from the overall distribution and learn its properties).
If they invest in this search, they can afterward decide to buy
this good or to research another one. This decision will be made
based on the overall distribution of possible characteristics, that
is, on their knowledge what is feasible; whenever the good comes
sufficiently close to having the preferred characteristics among all
feasible goods, a consumer will not invest in a new search (the
probability of finding a better solution is too small) and rather buy
this good.

Such a model is able to describe some interesting effects. First,
changing energy consumption induces one-time costs (search
costs). Thus potential gains in energy efficiency will only be
reaped, if these gains compensate for the search costs, in other
words, small changes to energy prices will have little, but some-
what larger changes might have substantial effects. Furthermore,

themodel explainswhy different consumerswill resort to different
solutions in the short run (and thus explain technological variety,
e.g., different alternatives to conventional light bulbs) but might
converge to similar solutions later on, when they observe the
choices of others. Finally, and most importantly, the model can
describe an impact of information-based policies. Such policies
would lead to a reduction of search costs, implying an earlier start
of the search process and thus making it easier to reap small gains
in energy efficiency.

However, as preferences remain unchanged, the model also
highlights an important constraint of information-based policies:
Such policies only reduce frictions, and they do not alter a con-
sumer’s overall assessment of whether it is beneficial to reduce
his energy consumption. Thus in the context of this framework,
information-based policies will be ineffective; if consumers do not
reduce their energy consumption, because the individual gains
(savings from using less energy) do not cover the individual costs
(in terms of expenses or reduced quality of life).

Social Interactions and Social Norms
A different way of influencing individual behavior is to provide
information about the behavior of others or (implicit) information
about social norms regarding energy consumption. This approach
has been found to be effective in a number of studies. For example,
Allcott (2011) shows in a large-scale field study with 600,000
households that using such non-price instruments can have sim-
ilar short-run effects on total energy consumption as an 11–20%
increase in energy prices.

Again, there is some tradition in other fields of economics
of modeling social norms. A convenient approach is to include
a “disutility” of not meeting a social norm in the description
of individual behavior, see, for example, Lindbeck et al. (1999),
where such an approach is used in the context of social security.
Other contexts where this modeling approach is used are the
explanation of tipping behavior, see, for example, Azar (2004), and
green consumption, as in Nyborg et al. (2006).

In a general framework, this can be modeled by a slight exten-
sion of the above basic model. To this end, assume that the utility
of individual i (out of n individuals) depends not only on her
consumption (ei, xi) but also on a social norm N:

max
e,x≥0

Ui(ei, xi,N),

s.t. z ei + p xi ≤ yi.

The social norm is in turn a result of the behavior of all individ-
uals in the society (whichmight, however, have different influence
on norm formation):

N = g (e1, x1,e2, x2, . . . , en, xn) .

In such a model, changes in individual behavior can result in
adjustments of social norms, which in turn will lead to further
changes in individual behavior.5 This approach thus introduces

5To ensure that this process converges, it can be useful to assume that the second
(norm-induced) effect on individual behavior is always smaller than the original
change in behavior.
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a feedback effect in the basic model. Furthermore, it is possible
that there are several equilibria, for example, an equilibrium with
low and one with high energy consumption, which are each sta-
bilized via the endogenously formed social norm (Lindbeck et al.,
1999).

An information-based policy could be described either as
manipulating the social norm or as making people more aware
of an existing norm. In the first case, it might be possible to
suggest that the norm is low energy consumption, which could
move the system to an equilibrium with lower energy consump-
tion (if multiple equilibria exist). In the second case, the pol-
icy could increase the disutility from not being close to the
norm, which would induce both a direct change in behavior
and an according adjustment of the norm. Such increases in
disutility could be achieved by providing information about the
behavior of other consumers. An example is given in Traxler
(2010), who shows how changing the beliefs of tax payers regard-
ing the incidence of tax evasion (and thus their disutility from
not meeting a social norm) can change overall outcomes rather
drastically.

A slightly more elaborate version of the above model would not
use a single social norm but rather a set of group-specific norms,
whose formation may be interrelated. This would facilitate the
modeling of social interactions or peer pressure within groups.

However, a major problem is the quantification of the effects
that social norms have on individual decisions. Some authors
argue [see, e.g., Camerer and Fehr (2004) or Krupka and Weber
(2013)] that laboratory experiments can be used to gain at
least an approximate quantification. Others, such as Levitt and
List (2007), are more critical and point out that questions
regarding a limited transferability of experimental situations to
every-day-behavior have particular relevance for the case of
adherence to social norms. Field experiments provide another
option, see, for example, Shang and Croson (2009), who study
the influence of social information on public good provision.
However, as field experiments are rather costly, this option usu-
ally implies a transfer across contexts and countries, as it is
not possible to implement a field experiment in every situation
where the influence of social norms on energy use needs to be
assessed.

Modeling Changing Preferences and Sufficiency
Another, much discussed, approach toward reducing energy con-
sumption is sufficiency. This term is used in the literature in dif-
ferent ways [see, Oikonomou et al. (2009) or Alcott (2008) for an
overview]. Most importantly, sufficiency needs to be disentangled
from efficiency, which is not trivial, as the economic concept
of efficiency covers both changes in technology and changes in
behavior.

Often, sufficiency is considered to be an enforced or voluntary
frugal way of living (Oikonomou et al., 2009). In case of enforced
frugality, this might imply reduced individual well-being. In con-
trast, if sufficiency is to be chosen voluntarily, an individual has to
get a sufficient recompense for the reduced consumption, which
might take the form of an increased self-esteem, utility from
contributing to a socially desirable outcome, or an increase in
leisure time (due to be able to cope with less income).

However, a salient question is if sufficiency gains exist, why
have they not yet been fully reaped? Building on the concept of
social norms discussed in the preceding subsection, one argument
might be that different societal equilibria exist and individuals are
“trapped” in a situationwhere the benefits of sufficiency cannot be
reaped, because they depend on similar behavior by others. This
would reduce the problem of modeling sufficiency to the cases
discussed in the preceding subsection and interventions toward
sufficiency would need to address social norms.

A different approach to sufficiency would be to remain on the
individual level and to assume that individuals can only assess
the quality of life in situations that they have already experienced.
Thus they knowhow to live in theway they are currently living and
how to react to small shocks. However, there might be different
ways of living that reduce energy consumption without sacrificing
well-being that the individual has not yet experienced and thus
does not know.

In terms of modeling, we could assume that preferences consist
of a set of local preferences (each defined in a neighborhood of
a given consumption bundle) out of which an individual knows
only one (her current) local preferences. The other preferences
(i.e., ways of living) are not known to exist but their properties
(how much utility can be gained, how goods can be substituted)
are uncertain until this way of living has been tried. In such a
setting, a risk-averse consumer would not alter his way of living
until “forced” to do so (either by changing energy prices or by
other interventions). Once a new way of living has been tried,
the respective local preferences become known. If the driving
force of the change vanishes (energy prices come down again), the
consumer might either maintain this way of living or switch back
to her original consumption pattern.

The benefit of this approach is that it captures much of the
essence of the sufficiency concept and introduces an effect into
the energy economic modeling that is not present so far: a one-
time intervention can have lasting effects for some but not all parts
of the population. For example, an oil price shock might initially
increase the number of people not using cars. However, once oil
price go down again, some consumers might switch back to their
original way of living, whereas others have experienced a new and
preferred lifestyle, which they voluntarily maintain.

However, it should be noted that if sufficiency gains are to be
depicted in a model, this model cannot use per capita consump-
tion, GDP, or total costs to assess demand-side policies. Rather,
a measure of welfare has to be used that is based on individual
utility and that captures either utility derived from adhering to
social norms or the above mentioned uncertainty. Whereas this is
common in theory, it is hard to implement in numerical models,
as the necessary data is lacking.

Transferring New Approaches into
Numerical Modeling

Obviously, existing numerical energy models will need adjust-
ments and extensions to address the challenges in relation to
increased energy efficiency and demand-side policies. For all
changes, a necessary first step is the inclusion of heterogeneous
consumers into the existing model structures. For CGE models,
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this basically refers to a more disaggregated structure on the
demand side of the market transferring the oftentimes single
representative household into several household types; for exam-
ple, households representing different income classes that dif-
fer in their demand elasticities for specific goods.6 This is less
a modeling challenge, as the basic computational model struc-
ture remains unaltered, but more a question of data availabil-
ity. Detailed data on different household types, their income,
the split of income across sources, and consumption choices
would be needed. For BU models, such a disaggregation is
possible but will only result in a differently shaped aggregate
demand function without much impact on overall computational
model structure. Again, the main bottleneck for such a devel-
opment is data availability like sufficient spatial or temporal
resolution.

Building on this, it might be feasible to include richer models,
such as those presented in Sections “Modeling the Influence of
Information on Energy Demand,” “Social Interactions and Social
Norms,” and “Modeling Changing Preferences and Sufficiency.”
Some extensions might be fairly easy to achieve, for example, the
basic structure of norm-based interactions does not differ much
conceptually from the inclusion of public knowledge on the pro-
duction side in endogenous growth [see, for example, Bretschger
and Suphaphiphat (2014)] and should thus be transferable to
numerical CGE modeling. Including sufficiency or search pro-
cesses would be muchmore difficult, as this requires the inclusion
of uncertainty, which is hard to achieve in large-scale numerical
models.

For BU models, a stepwise or time-dependent model structure
as used in dynamic investment models, unit commitment models,
or rolling planning models can be used as starting point. Within
a period t the consumption decision is derived from externally
defined parameters including, for example, norm driven aspects.
The resulting consumption will then have an influence on the
impact of norms in the following period t+ 1. Whether this
influence is handled outside the model, that is, by adjusting the
demand function accordingly, or within the model depends on
the scope and structure of the model. The former should easily be
accommodated by most BU model approaches, including linear
optimization problem following a myopic logic. The latter intro-
duces dynamic elements similar to path dependent investment
aspects which increases the model complexity.

However, the proposed concepts require a quantification of
their effects before they can be included into numerical models.
Given our current knowledge on energy demand and particu-
lar on non-price driven influences this represents a significant
non-modeling challenge. Consequently, to properly address those
aspects in economicmodels wewill first need a better understand-
ing of the fundamental drivers of consumers energy demand.

Conclusion

Overall, this paper has two main messages. First, most of the
currently available applied energymodels do not use sophisticated

approaches to describe the demand side. In fact, most mod-
els cannot describe or assess demand-side interventions apart
from price changes. However, the second part shows that this
is not a restriction imposed by the general economic approach
to modeling consumer behavior. Much richer models are fea-
sible and are used in other fields of economics. In particular,
it is feasible to model many effects, such as social norm or
social interactions that have been found to be relevant in field
studies.

In our view, there are two reasons why these approaches are
currently not used in energy modeling. First, there is a lack of
demand. For decades, energy policy has focused on the sup-
ply side; whereas billions have been spent to enact changes
in energy supply, demand-side policies have typically a small
budget.7 Accordingly, demand for policy assessments is biased
toward supply side policies and thus most applied energy mod-
els have a highly detailed supply and a fairly simple demand
structure.

Second, applied modeling requires not only concepts but also
data. Whereas data on energy supply is abundant, there is a lack of
data regarding the structure of energy consumption and its main
determinants apart from prices and technologies. Few countries
have a micro census that includes more than some elementary
energy-related items, so that projects aiming for a better descrip-
tion of the demand side have to collect their own data. Given the
different foci of such projects, there is little chance of combining
their data to a sufficiently broad database.

As energy strategies in many countries are based on a strong
reduction in per capita energy consumption, the first reason will
vanish rather rapidly; the need for more qualified assessments of
demand-side policies will strongly increase within the next years.
However, the second bottleneck (missing data) will not dissolve in
a likewise manner. Thus if better models of energy consumption
are desirable, generating the necessary data should be the main
priority.

The need for detailed data also extends to a more general
lack of understanding the fundamental drivers and mechanisms
of energy demand beyond the technological layer. Overcom-
ing this knowledge gap will require fundamental research in
social and political science as well as psychological and con-
sumer behavior research and the transfer of those insights
into the economic model community. How such an integrated
interdisciplinary framework could be achieved is addressed in
Burger et al. (2015) in the same issue of Frontiers in Energy
Research.
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6There are numerous examples of this approach in the context of social security evaluation and climate policy. For example, Nijkamp et al. (2005) use this approach to study
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7A notable exception is policies targeting energy efficiency in residential buildings.
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