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One of the key aspects to achieve high efficiency in ternary bulk-hetorojunction solar cells 
is the physical and chemical compatibility between the donor materials. Here, we report 
the synthesis of a novel conjugated polymer (P1) containing alternating pyridyl[2,1,3]
thiadiazole between two different donor fragments, dithienosilole and indacenodith-
ienothiophene (IDTT), used as a sensitizer in a host system of indacenodithieno[3,2-b]
thiophene,2,3-bis(3-(octyloxy)phenyl)quinoxaline (PIDTTQ) and [6,6]-phenyl C70 butyric 
acid methyl ester (PC71BM). We found that the use of the same IDTT unit in the host and 
guest materials does not lead to significant changes in the morphology of the ternary 
blend compared to the host binary. With the complementary use of optoelectronic 
characterizations, we found that the ternary cells suffer from a lower mobility-lifetime (μτ) 
product, adversely impacting the fill factor. However, the significant light harvesting in the 
near infrared region improvement, compensating the transport losses, results in an over-
all power conversion efficiency enhancement of ~7% for ternary blends as compared to 
the PIDTTQ:PC71BM devices.

Keywords: organic solar cells, ternary devices, OPV, iDTT, organic electronics

inTrODUcTiOn

During the last decades, the power conversion efficiency (PCE) of organic bulk-hetorojunction 
(BHJ) solar cells based on donor/acceptor blends surpassed the 10% threshold, mainly due to the 
discovery of novel materials as well as device structure engineering (Liu et al., 2014; He et al., 2015; 
Holliday et al., 2016; Huang et al., 2016; Spyropoulos et al., 2016; Zhao et al., 2016). Polymers and/
or small molecules, used as donor materials, in combination with fullerene derivatives, used as 
acceptor, are the common active components in BHJ devices (Zhang et al., 2014; Lu et al., 2015c; Min 
et al., 2015; Squeo et al., 2015). Due to the narrow absorption of the donor materials, one of the main 
challenges in order to further boost the PCE of organic solar cells is to achieve better absorption 
match to the solar irradiance spectrum. In this regard, two main concepts have been developed: 
tandem and ternary organic solar cells (Ameri et al., 2009, 2013a,b; Li et al., 2013; You et al., 2013; 
Spyropoulos et al., 2014; Lu et al., 2015b; Yang et al., 2015; Cheng et al., 2016; Goh et al., 2016; 
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scheMe 1 | Polymerization reaction toward the preparation of P1.
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Keawsongsaeng et al., 2016; Lee et al., 2016; Nian et al., 2016). 
The former is based on a complex multi-layer stack with the main 
challenge of designing a robust solution-processed intermediate 
layer. The latter, made of two donors and one acceptor, mixed 
together in a unique solution, overcomes the complexities of the 
tandem device architecture, maintaining the easy processability 
of a single-junction organic BHJ solar cell. To date, polymers (Lu 
et al., 2014, 2015a; Gasparini et al., 2015b; Yang et al., 2015), small 
molecules (Zhang et al., 2015), dyes (Ke et al., 2016), quantum 
dots (Itskos et al., 2011), and fullerene derivatives (Cheng et al., 
2014) have been adopted as “guest” in the polymer-fullerene 
“host” system. In addition to the need for donor materials with 
the complementary absorption, one of the key points to surpass 
the performance of binary cells in ternary devices is to find donor 
materials with compatible physical and chemical nature (Yang 
et  al., 2015). This can prevent the formation of recombination 
centers or morphological traps, which deteriorate the photovol-
taic properties.

Here, we report a ternary organic solar cell system processed 
in air that shows a pronounced sensitization effect, resulting 
in a PCE of more than 4.6%. As sensitizer, we incorporate the 
near infrared (NIR) polymer P1 containing alternating pyri-
dyl[2,1,3]thiadiazole between two different donor fragments, 
dithienosilole and indacenodithienothiophene (IDTT), into a 
host system of indacenodithieno[3,2-b]thiophene,2,3-bis(3-
(octyloxy)phenyl)quinoxaline (PIDTTQ) (Gasparini et  al., 
2015a) blended with [6,6]-phenyl C70 butyric acid methyl ester 
(PC71BM). Indeed, in order to have components with a similar 
chemical nature in the ternary blend system, we used two poly-
mers with the same backbone IDTT unite for the host as well 
as the guest donors.

The polymer P1 was synthesized by Stille-type aromatic 
cross-coupling reaction of a stoichiometric balance ratio of the 
distannyl derivative of para-hexyl-phenyl substituted IDTT 
(M2) and 4,4′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]
dithiophene-2,6-diyl)bis(7-bromo-[1,2,5]thiadiazolo[3,4-c]
pyridine) (M1), in the presence of tris(dibenzylideneacetone)
dipalladium(0) (Pd2dba3) and tri(o-tolyl)phosphine (P(o-tol)3) 
as the catalytic system (Scheme 1). After soxhlet extraction the 
polymer was obtained from the o-dichlorobenzene fraction with 
a number average molecular weight Mn of 36,800 g mol−1 and a 
polydispersity index of 3.3.

Figure S1 in Supplementary Material shows the absorption 
spectrum of P1 in DCB solution and as solid. The copolymer for 

both cases shows a single band in the high energy region, which 
is assigned to a localized π−π* transition and another absorp-
tion band in the low energy region (up to 1,000 nm), which is 
assigned to an intramolecular charge-transfer transition. The 
maximum of the NIR absorption band of P1 in the solid state 
is bathochromic shifted (738  nm) in comparison to the cor-
responding UV–VIS solution (695  nm). The optical band gap 
energy estimated from the absorption edge of film spectrum was 
estimated to be 1.87 eV. Based on the onsets of the oxidation and 
reduction peaks in cyclic voltammetry (CV) measurements, the 
electrochemical highest occupied molecular orbital (HOMO) 
and lowest unoccupied molecular orbital (LUMO) energies were 
estimated to be −5.34 and −3.71 eV, respectively, corresponding 
to an electrochemical band gap energy of 1.63  eV (Gedefaw 
et al., 2016).

Next, we analyzed the device performances of the ternary 
devices. The device architecture used in this work is based on 
ITO/ZnO/active layer/MoOx/Ag. PIDTTQ [its lower molecular 
weight version of PIDTTQ-LMW (Gasparini et al., 2015a)] has 
been previously presented in the literature. All the solution-
processed layers are doctor bladed in air. Figure  1A depicts 
the energy levels, measured with CV of the polymers and the 
fullerene derivate. Figure 1C shows the current density–voltage 
characteristics of the binary PIDTTQ:PC71BM (1:2 wt/wt) as 
well as ternary PIDTTQ:P1:PC71BM (different composition) 
under 1 sun illumination (100 mW cm−2). In agreement with 
previous reports, binary cells delivered a PCE of 4.3% with an 
open circuit voltage (Voc) of 0.84 V, a short circuit current (Jsc) 
of 8.62 mA cm−2, and a fill factor (FF) of 60%. Adding 15 wt% 
of the NIR sensitizer delivers the highest short-circuit current, 
reaching 10.60 mA cm−2, Voc of 0.84 V, and FF of 52%, increases 
the overall efficiency of the ternary system 4.6% under 1 sun 
conditions. As shown in Table  1, Jsc increased monotonically 
by increasing the amount of P1, due to the better harvesting 
of the ternary system in the NIR region, in the best case, an 
improvement in Jsc of ~20% is achieved in the ternary system 
PIDTTQ:P1:PC71BM (0.85:0.15:2). Notably, the Voc obtained in 
the ternary cells is identical to the binary PIDTTQ:PC71BM, 
reflecting an energy cascade between the HOMO and 
LUMO energy levels of the three components (Figure  1A). 
Unfortunately, we observed a continuously decreased in FF 
by introducing higher amount of P1, which indeed inhibits 
the higher improvements of the ternary device performance 
compared to its reference.
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FigUre 1 | (a) Energy diagram of the materials studied; (B) photoluminescence spectra of PIDTTQ (black), P1 (red) pristine films, and mixtures of PIDTTQ:P1 with 
75:15 (green) and 50:50 (blue) weight ratio; (c) current density–voltage characteristics of binary and ternary-based solar cells under solar simulator illumination 
(100 mW cm−2); (D) external quantum efficiency curves of the same devices as shown in (c).

TaBle 1 | Photovoltaic device parameters of low, medium, and high molecular weight PiDTTQ-based inverted solar cells under 1 sun illumination 
(100 mW cm−2).

PiDTTQ:P1:Pc71BM Voc (V) Jsc (ma cm−2) Fill factor (%) Power conversion efficiency (%)

1:0:2 0.84 (0.84 ± 0.01) 8.62 (8.49 ± 0.23) 60.33 (59.72 ± 0.65) 4.32 (4.24 ± 0.10)
0.90:0.10:2 0.84 (0.84 ± 0.01) 9.69 (9.50 ± 0.18) 53.14 (52.48 ± 0.55) 4.29 (4.20 ± 0.10)
0.85:0.15:2 0.84 (0.84 ± 0.01) 10.60 (10.43 ± 0.22) 51.87 (50.64 ± 1.17) 4.63 (4.45 ± 0.19)
0.80:0.20:2 0.84 (0.84 ± 0.01) 10.14 (9.64 ± 0.44) 48.86 (48.64 ± 0.20) 4.04 (3.86 ± 0.17)
0:1:2 0.81 (0.81 ± 0.01) 10.87 (10.37 ± 0.41) 46.61 (45.57 ± 0.69) 3.95 (3.79 ± 0.10)
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We further measured external quantum efficiency (EQE) 
spectra of OPV devices made from PIDTTQ:P1:PC71BM and 
PIDTTQ:PC71BM (Figure  1D). Photoaction spectra of active 
layers with increasing P1 content show improved photoresponse 
particularly around 800 nm, i.e., the enhancement in Jsc originates 
dominantly from the NIR polymer absorption regime. We note 
that the integrated EQE for these devices matches the measured 
short circuit current within a margin of 5%.

In order to shine light into the mechanism, we performed 
photoluminescence (PL) measurements. PL is widely used 
in ternary BHJ solar cells to discriminate between energy and 
charge transfer between host and guest materials (Lu et al., 2014, 

2015a; Gasparini et  al., 2015b). In principle, if the charges are 
transfer from the wide to the low band gap material, the PL of 
the host should decrease while the PL of guest material should 
not increase. On the other hands, if the energy transfer is the 
main mechanism, a quenching of the host PL is associated with 
an increase of guest PL. Moreover, in order to have an energy 
transfer, the absorption of the guest polymer should overlap with 
the emission of the guest. The inset of Figure 1B confirms the 
aforementioned requirement. Thus, we mixed together PIDTTQ 
and P1 in different weight ratio. As depicted in Figure 1B, the PL 
of PIDTTQ is quenched of 53 and 79% upon introduction of P1 
(85–15 and 50–50, respectively). In addition, we observed a clear 
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FigUre 3 | Time-dependent photo-celiV traces under light (solid lines) and dark (semitransparent traces) conditions (a) and transient photovoltage 
decays (B) of PiDTTQ:Pc71BM binary and PiDTTQ:P1:Pc71BM ternary devices.

FigUre 2 | Topography and phase images of films of PiDTTQ:Pc71BM (1:2) (a–D), PiDTTQ:P1:Pc71BM (0.85:0.15:2) (B–e), and P1:Pc71BM (1:2) (c–F) 
on top of a layer of ZnO, as measured by intermittent contact mode atomic force microscopy.
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enhancement of P1 PL compared to the pristine one, indicating 
an efficient energy transfer.

Before getting insight into the optical and electrical behavior 
of the binary and ternary devices, we performed intermit-
tent contact mode atomic force microscopy (AFM, Figure  2). 
In  agreement with our previous study (Gasparini et al., 2015a), 
the topography of PIDTTQ:PC71BM layer shows spherical 
features with domains of ~100  nm. Interestingly, we observed 
similar morphology for ternary active layers. We calculated 
a root mean square roughness of 0.46, 0.51, and 0.60  nm for 
PIDTTQ:PC71BM, PIDTTQ:P1:PC71BM (0.85:0.15:2) and 
P1:PC71BM blends, respectively. Thus, the low FF calculated for 
PIDTTQ:P1:PC71BM cannot be ascertained to changes in the 
microstructure upon addition of the guest sensitizer.

In order to understand the lower FF obtained in the ternary 
BHJ solar cells, we first studied the charge transport properties 
by employing the technique of photoinduced charge carrier 

extraction by linearly increasing voltage (photo-CELIV) (Mozer 
et al., 2005; Clarke et al., 2015; Min et al., 2015). From the meas-
ured photocurrent transients, the charge carrier mobility (μ) is 
calculated using the following equation:
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where d is the active layer thickness, A is the voltage rise speed 
A = dU/dt, U is the applied voltage, tmax is the time correspond-
ing to the maximum of Δj of the extraction peak, and j(0) is the 
displacement current.

Figure  3A shows the transient recorded by applying a 
2 V/60 μs linearly increasing reverse bias and a delay time (td) of 
10 µs. Analysis of the photo-CELIV traces extracts charge carrier 

http://www.frontiersin.org/Energy_Research/
http://www.frontiersin.org
http://www.frontiersin.org/Energy_Research/archive


TaBle 2 | summary of calculated charge carrier mobility (μ), 
bimolecular lifetime (τ), mobility-lifetime product (μτ), and charge carrier 
concentration (n) of binary and ternary devices.

PiDTTQ:P1:Pc71BM μ [cm2 V−1s−1] τ [s] μτ [cm2 V−1] n [cm−3]

1:0:2 1.13 × 10−4 6.72 × 10−6 7.59 × 10−10 2.97 × 1016

0.90:0.10:2 8.54 × 10−5 7.35 × 10−6 6.72 × 10−10 3.02 × 1016

0.85:0.15:2 7.53 × 10−5 7.23 × 10−6 5.44 × 10−10 3.66 × 1016

0.80:0.20:2 7.42 × 10−5 4.72 × 10−6 3.50 × 10−10 1.15 × 1016

A B

FigUre 4 | charge extraction curves (a) photo-induced absorption spectra (B) of PiDTTQ:Pc71BM binary and PiDTTQ:P1:Pc71BM ternary devices.
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mobility values 1.13 × 10−4 cm2 V−1 s−1, 8.54 × 10−5 cm2 V−1 s−1, 
7.53  ×  10−5  cm2  V−1  s−1, and 7.42  ×  10−5  cm2  V−1  s−1 for 
PIDTTQ:PC71BM (1:2)-, PIDTTQ:P1:PC71BM (0.90:0.10:2)-, 
PIDTTQ:P1:PC71BM (0.85:0.15:2)-, PIDTTQ:P1:PC71BM 
(0.80:0.20:2)-based devices, respectively. We also calculated the 
charge mobility of P1:PC71BM (Figure S5 in Supplementary 
Material), and we found a value of 5.02 × 10−5 cm2 V−1 s−1. The 
lower FFs obtained in the ternary cells are in agreement with 
the lower charge carrier mobility calculated with photo-CELIV 
technique. We then analyze the lifetime of charge carriers by 
employing transient photovoltage technique (TPV) (Shuttle 
et al., 2008). The samples were connected to the terminal of an 
oscilloscope with the input impedance of 1 MΩ and illuminated 
with a continuous background laser to control the Voc. A small 
optical perturbation was applied using a blue laser (λ = 405 nm). 
The pulse intensity was controlled to keep the height of the 
photovoltage transient smaller than 10 mV resulting in a volt-
age transient with amplitude ΔV ≪ Voc. The measured transient 
decays show the form of single exponentials, as expected for the 
pseudo-first-order kinetic (Hamilton et  al., 2010; Heumueller 
et al., 2015).

 

d V
dt
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dt

k n

n

∆
∝

∆
= − = −

∆

∆
eff τ

,
 

(2)

where V is the photovoltage, t is the time, Δn is change in the 
density of photogenerated carriers due to the perturbation 
pulse, keff is the pseudo-first order rate constant, and τΔn is the 
carrier lifetime. The Figure 3B depicts normalized photovoltage 

decays as a function of time for the binary and ternary devices 
at 1 sun condition by exciting with a blue laser (λ =  405 nm). 
As reported in Table 2, the lifetime of charge carriers is similar 
for PIDTTQ:PC71BM (1:2), PIDTTQ:P1:PC71BM (0.90:0.10:2), 
PIDTTQ:P1:PC71BM (0.85:0.15:2), 6.72, 7.35, and 7.23  µs, 
respectively, suggesting that these ternary blends are not 
limited by the short lifetime of charge carriers. Otherwise, a 
reduce τ is observed for the PIDTTQ:P1:PC71BM (0.80:0.20:2) 
based ternary system (4.72  µs). Thus, with the combination of 
photo-CELIV and TPV techniques, we were able to calculate 
the mobility-lifetime product (μτ). As collected in Table  2, μτ 
decreases from 7.59  ×  10−10  cm2  V−1 to 6.72  ×  10−10  cm2  V−1, 
5.44 × 10−10 cm2 V−1, and 3.50 × 10−10 cm2 V−1 for PIDTTQ:PC71BM 
(1:2), PIDTTQ:P1:PC71BM (0.90:0.10:2), PIDTTQ:P1:PC71BM 
(0.85:0.15:2), PIDTTQ:P1:PC71BM (0.80:0.20:2)-based devices, 
reason of the poorer transport properties in the ternary blends 
compared to the binary BHJ devices.

Understood the limitation in the transport properties, we then 
focus on the better ability of the ternary system in the photogen-
eration by employing charge extraction (CE) and photoinduced 
absorption (PIA) spectroscopy (Salvador et  al., 2012; Löslein 
et  al., 2013; Gasparini et  al., 2015b). In CE measurements, the 
samples were connected to the terminal of an oscilloscope with 
the input impedance of 1 MΩ and illuminated with a continuous 
background laser to keep it in the Voc condition (Heumueller 
et  al., 2015). In order to study the transient decay, we used a 
nanosecond switch that shifts the cell from open circuit to short 
circuit condition, allowing the calculation of charge density (n) 
by integrating the curves, respectively (Figure 4A) (Heumueller 
et al., 2015; Gasparini et al., 2016). In agreement with the Jsc values 
obtained, we calculate n as 2.97 ×  1016  cm−3, 3.02 ×  1016  cm−3, 
3.66  ×  1016  cm−3, and 1.15  ×  1016  cm−3 for PIDTTQ:PC71BM 
(1:2), PIDTTQ:P1:PC71BM (0.90:0.10:2), PIDTTQ:P1:PC71BM 
(0.85:0.15:2), PIDTTQ:P1:PC71BM (0.80:0.20:2) based devices, 
respectively (Table 2). The ability of charge generation in the BHJ 
solar cells is also studied with PIA spectroscopy. We employed 
steady-state and frequency-dependent PIA spectroscopy at a 
pump energy of 2.33 eV to gain further insight into the underly-
ing photophysical steps of the sensitization process. Figure 4B 
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depicts the PIA spectra of binary and ternary devices measured 
at 60 mW cm−2 pump intensity at 10 K. All spectra show a pro-
nounced transmission minimum (bleach) around 1.81 eV and a 
PIA feature around 1.24 eV. Contrary, the ternary blends show 
a novel bleaching feature around 1.58 eV. We associate the two 
transmission maxima at 1.81 and 1.58 eV to the photobleaching 
of the electronic ground states of PIDTTQ and P1, respectively. 
As shown in Figure 4B, higher polaron signal is observed for the 
ternary PIDTTQ:P1:PC71BM (0.90:0.10:2), PIDTTQ:P1:PC71BM 
(0.85:0.15:2)-based devices compared with the binary cells, con-
firming the higher photogeneration ability by adding 10–15% of 
P1 into the host PIDTTQ:PC71BM system.

cOnclUsiOn

In conclusion, we reported a novel ternary system with a clear 
contribution in the incident photon-to-current efficiency in the 
NIR region. A Jsc improvement of around 20% was obtained 
for PIDTTQ:P1:PC71BM (0.85:0.15:2) ternary devices com-
pared to PIDTTQ:PC71BM binary cells. However, the low FF 
limited the performances of the ternary BHJ solar cells. We 
studied the transport mechanism of the organic solar cells by 
employing photo-CELIV and TPV techniques. We found that 
by adding P1 into the host system of PIDTTQ:PC71BM the 
μτ product is reduced, explaining the lower FFs. Despite the 
poorer transport properties, the complementary results of CE 
and PIA spectroscopy showed an improved charge generation in 
PIDTTQ:P1:PC71BM (0.85:0.15:2) ternary solar cells, leading to 
a PCE of more than 4.6%.

eXPeriMenTal secTiOn

Materials and instruments: all reagents and starting materials 
were received from commercial suppliers and used without 
further purification. Anhydrous toluene was purchased from 
Sigma-Aldrich. Monomers M1 (Gasparini et al., 2015a) and M2 
(Welch et al., 2013) were prepared according to literature proce-
dures. The reactions were carried out under argon with standard 
and Schlenk techniques. Gel permeation chromatography (GPC) 
measurement was carried out at 135°C on a Waters Alliance 2000 
GPC System equipped with PL-Guard and PL-mixed-B col-
umns using trichlorobenzene as solvent. The UV spectrum was 
recorded on a Jasco V-670 spectrometer at room temperature. The 
HOMO energy level was determined by atmospheric pressure 
photoelectron spectroscopy using a photoelectron spectrometer 
model AC-2. The optical band gap was calculated using the for-
mulae Eg = h(c/λ) + 0.3 eV. Cyclic voltammetry was executed in 
chloroform with 0.1 M (n-Bu)4NClO4 against a standard calomel 
electrode. The electrochemical HOMO and LUMO energy levels 
were calculated using the formulae HOMO = −(Eox + 4.7) eV 
and LUMO = −(Ered + 4.7) eV, respectively.

Fabrication of Photovoltaic Devices
All devices were fabricated using doctor blading under ambient 
conditions with the structure of Figure 1A. Pre-structured ITO 
substrates were cleaned with acetone and isopropyl alcohol in 
an ultrasonic bath for 10 min each. After drying, the substrates 

were successively coated with 40  nm of zinc oxide (ZnO), 
10  nm of Ba(OH)2, and finally a 80- to 90-nm-thick active 
layer based on PIDTTQ:PC71BM and PIDTTQ:P1:PC71BM 
(20 g L−1). To complete the fabrication of the devices 10 nm of 
MoOx and 100 nm of Ag were thermally evaporated through a 
mask (with a 10.4 mm2 active area opening) under a vacuum of 
~2 × 10−6 mbar.

nuclear Magnetic resonance (nMr)
1H-NMR and 13C-NMR measurements were carried out in 
CDCl3solutions on a BruckerAVANCE III 600 spectrometer 
using a resonance frequency of 1H-250 MHz. The NMR system 
was controlled by the TopSpin 2.1 software by Bruker (Figure S2 
in Supplementary Material).

Thermogravimetric analysis
Thermogravimetric analysis measurements were performed on 
a Perkin–Elmer Pyris Diamond TG/DTA. Samples of approxi-
mately 5 mg were heated in air from 25 to 9°C, at a rate of 5°C/
min.

cyclic Voltammetry (cV)
Cyclic voltammetry studies were performed using a standard 
three-electrode cell. A platinum disk electrode was used as work-
ing electrode, a platinum wire as the counter electrode, and silver 
as the quasi-reference electrode. The oxidation and reduction 
potentials were calibrated against a ferrocene/ferrocenium (Fc/
Fc+) redox couple, then they were referenced against saturated cal-
omel electrode. Tetrabutylammonium perchlorate (TBAP; 99%) 
was used as supporting electrolyte. Measurements were recorded 
using a PAR potensiostat/galvanostat Model VersaSTAT4, which 
was connected to a personal computer running the VersaStudio 
software version 2.44. In a typical experiment, around 2 mg of the 
material was diluted in chloroform in the presence of 0.1 M TBAP. 
The cyclic voltammetry graphs were recorded at a potential scan 
rate of 100 mV s−1 under argon atmosphere at 25°C.

J–V Measurements
The J–V characteristics were measured using a source measure-
ment unit from BoTest. Illumination was provided by a solar 
simulator (Oriel Sol 1A, from Newport) with AM1.5G spectrum 
at 100 mW/cm2. UV–VIS absorption was performed on a Lambda 
950, from Perkin Elmer. EQEs were measured using an integrated 
system from Enlitech, Taiwan. In order to study the light intensity 
dependence of current density, we used a series of neutral color 
density filters. The intensity of light transmitted through the filter 
was independently measured via a power meter. All the devices 
were tested in ambient air.

Photo-celiV
In photo-CELIV measurements, the devices were illuminated 
with a 405-nm laser diode. Current transients were recorded 
across an internal 50  Ω resistor of an oscilloscope (Agilent 
Technologies DSO-X 2024A). We used a fast electrical switch to 
isolate the cell and prevent CE or sweep out during the laser pulse 
and the td. After a variable td, a linear extraction ramp is applied 
via a function generator. The ramp, which was 20-µs long and 2 V 
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in amplitude, was set to start with an offset matching the Voc of 
the cell for each td.

TPV and ce Measurements
A 405-nm laser diode was settled for keeping the solar cells in 
approximately Voc condition. Driving the laser intensity with a 
waveform generator Agilent 33500B and measuring the light 
intensity with a highly linear photodiode allowed to reproducibly 
adjust the light intensity with an error below 0.5% over a range 
of 0.2–4 suns. A small perturbation was induced with a second 
405 nm laser diode driven by a function generator from Agilent. 
The intensity of the short (50 ns) laser pulse was adjusted to keep 
the voltage perturbation below 10 mV, typically at 5 mV. After the 
pulse, the voltage decays back to its steady state value in a single 
exponential decay. The characteristic decay time was determined 
from a linear fit to a logarithmic plot of the voltage transient and 
returned the small perturbation charge carrier lifetime. In CE 
measurements, a 405-nm laser diode illuminated the solar cell for 
200 µs, which was sufficient to reach a constant open-circuit volt-
age with steady state conditions. At the end of the illumination 
period, an analog switch was triggered that switched the solar 
cell from open-circuit to short-circuit (50 Ω) conditions within 
less than 50 ns.

Photoinduced absorption
Photoinduced absorption studies were performed by exciting the 
sample with a 405-nm laser while simultaneously probing the 
sample with a white lamp. The PIA spectra of the sample were 
dispersed by a 1,200 lines/mm grating monochromator (iHR320) 
and detected by a silicon detector through lock-in technique.

atomic Force Microscopy
Atomic force microscopy measurements were performed on a 
solver nano from NT-MDT using 300 kHz single crystal silicon 
cantilevers (Nt-MDT, NSG30).
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